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Abstract

Multi-Light Image Collections (MLICs), i.e., stacks of photos of a scene acquired with a fixed viewpoint and a varying surface

illumination, provide large amounts of visual and geometric information. In this survey, we provide an up-to-date integrative

view of MLICs as a mean to gain insight on objects through the analysis and visualization of the acquired data. After a general

overview of MLICs capturing and storage, we focus on the main approaches to produce representations usable for visualization

and analysis. In this context, we first discuss methods for direct exploration of the raw data. We then summarize approaches that

strive to emphasize shape and material details by fusing all acquisitions in a single enhanced image. Subsequently, we focus

on approaches that produce relightable images through intermediate representations. This can be done both by fitting various

analytic forms of the light transform function, or by locally estimating the parameters of physically plausible models of shape

and reflectance and using them for visualization and analysis. We finally review techniques that improve object understanding by

using illustrative approaches to enhance relightable models, or by extracting features and derived maps. We also review how these

methods are applied in several, main application domains, and what are the available tools to perform MLIC visualization and

analysis. We finally point out relevant research issues, analyze research trends, and offer guidelines for practical applications.
CCS Concepts

• General and reference → Surveys and overviews; • Human-centered computing → Visualization systems and tools; •

Computing methodologies → Computer vision representations; Reflectance modeling;

1 Introduction

Multi-Light Image Collections (MLICs) are sets of digital images
of a scene acquired from the same fixed viewpoint but with varying
lighting conditions. The most general and common setup assumes
that the color of the same scene point is captured with different
incident light directions to gather information on the reflectance
field. Such a collection of samples, typically arranged in image
stacks, provides massive amounts of visual data that can be analyzed
to extract information and knowledge on shape and appearance.

The continuous improvement of controllable lighting and digital
photography has made the acquisition of high-resolution MLICs
practical and affordable using many different physical setups
(Sec. 3). As a result, a wide variety of applications are using
MLICs as a major mean to non-destructively gather information
on scenes and objects at many scales, as well as to provide users
with useful visualization tools for object analysis (Sec. 6). These
applications benefit from an array of computational tools that
have been devised in different domains, such as feature detec-
tion and enhancement [FAR07], reconstruction of normals and 3D

shapes [Woo80, AG15], extraction of surface appearance and ma-
terial behavior [WK15, DRS10], and creation of relightable im-
ages [MGW01]. The research community working on these prob-
lems appears, however, fragmented, as highlighted by the fact that
even the input data are called in several different ways, includ-
ing MLIC [FAR07], Reflectance Transformation Imaging (RTI)
Stacks [MMSL06], or Photometric Stereo Datasets [SWM∗16], de-
pending on the type of processing that is applied.

In the recent past, extensive surveys have been presented for sev-
eral aspects of MLICs, mainly focusing, however, on very specific
acquisition and modeling aspects (Sec. 2). In this survey, we provide,
instead, an up-to-date integrative view of MLICs as a mean to gain in-
sight on scenes and objects through the analysis and visualization of
the acquired image stacks. Our aim is to provide a fresh view of the
subject, and help readers navigate through the constantly expanding
literature on MLIC analysis and visualization. The target audience
of our report includes researchers in analysis and visualization of
imaging data, as well as scholars and practitioners in the relevant
application fields. Researchers will find a structured overview of the
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field, which organizes the various methods and their applications,
and indicates challenging open problems. Domain experts will, in
turn, find a presentation of the areas where MLICs are helping, or
have the potential to improve, analysis work and scholarly research.
After providing background information on related survey literature
(Sec. 2) and MLIC capturing and representation techniques (Sec. 3),
we introduce a taxonomy of the surveyed methods (Sec. 4) and
provide a review of available techniques (Sec. 5). We then discuss
how these methods are applied in practice (Sec. 6.1), and what are
the available tools to perform MLIC analysis (Sec. 6.2). We finally
point out relevant research issues, analyze research trends, and offer
guidelines for practical applications (Sec. 7).

2 Related surveys

The areas of MLIC acquisition, processing, and analysis are vast
and have many applications (Sec. 6.1). Available surveys have fo-
cused, so far, on specific acquisition and modeling aspects, such
as the geometry computation [AG15] and the extraction of sur-
face appearance and material behavior [WK15, DRS10], includ-
ing Bi-directional Reflectance Distribution Function (BRDF) fit-
ting [WLL∗09, GGG∗16] and Bidirectional Texture Function (BTF)
extraction [FH09]. We refer the reader to these prior surveys for a
more in-depth analysis of these vertical subjects.

Our analysis is focused on MLICs obtained with varying incident
illumination, which is the wider class. We do not include capture
and processing methods involving only frequency variations (multi-
/hyper-spectral imaging), or only polarization variations, but we
consider the literature coupling frequency/polarization and direction
changes [VHW∗18]. We refer the reader to a recent survey [YGC17]
for coverage of multi-/hyper-spectral-only methods.

Since the ratio between the largest and smallest values acquired
is typically extremely high, especially for glossy materials, most
of the methods discussed here will benefit from being applied in
a high-dynamic-range (HDR) setting. Many of the standard HDR
techniques can be applied to MLICs at the acquisition stage to fuse
multiple captures, and at the presentation stage to deal with tone
mapping issues. This is an orthogonal aspect, and we thus refer the
reader to a comprehensive book on the subject [RHD∗10].

3 Background

MLICs are series of digital images arranged in a stack. They are
acquired from the same fixed viewpoint but varying the lighting con-
dition at each image (Fig. 1). Thus, in the image stack, a single view
ray is associated with each pixel position, while different light rays
are associated with it (typically, but not necessarily, one per image
in the stack). In this survey, we consider that a variation of light di-
rection is always present, while variations in other parameters (e.g.,
intensity, wavelength, polarization) are optional. In order to facilitate
visual analysis, the image stack is typically transformed into inter-
mediate representations, from which photorealistic or illustrative
images can be generated to support visualization and analysis tasks,
often in interactive settings. Before presenting a classification of the
various approaches (Sec. 4) and discussing them in detail (Sec. 5,
we provide relevant background information on light configurations,
and on input and output data representations.

Figure 1: General concept. An imaging device acquires a stack of images

while varying the illumination to generate a MLIC, which is then transformed

into an intermediate representation for visualization and analysis.

3.1 Light configurations

Many physical realizations exist for MLIC capture, and full cov-
erage is out of the scope of this survey. We summarize here only
the main characteristics which have an impact on the subsequent
processing and visualization steps.

The most common approach is to capture a MLIC by using a dif-
ferently positioned small light source per image (often approximated
by a directional, point, or spotlight model). This can be achieved by
static setups, which sequentially fire a different light, by dynamic
setups, which move a single light to a different location at each
shot, or by a combination of both approaches. In terms of impact
on visualization and analysis, the most important aspects are the
number of light sources and the uniformity of their distribution.

The smallest static setup is the 4-source light-ring [RTF∗04].
Since it is simple and easy to miniaturize, a version of this de-
sign has been tailored to medical applications (Sec. 6.1). However,
this minimal setup leads to undersampling of the reflectance func-
tion and missing data due to shadows, so most of the MLIC pro-
cessing is done with a much larger number of lights uniformly
sampling the entire sphere or hemisphere around the scene. Im-
plementations of this approach include large static light-domes ap-
proximating a far-light condition [MGW01, PSM05, CHI19, HP15,
EBB∗11,AIK13], smaller micro-domes [EBB∗11,FBKR17,Ham15,
WVM∗05, PBFS14, VVP∗18, HBMG02] requiring the handling
of non-collimated light-rays through near-light or spot-light mod-
els [AG15, PCGG16, HWBC15], or virtual domes made with mov-
ing light arcs or robotic arms with a small number of light sources
to span the entire hemisphere [MBW∗14, SOSI03, DCCS06]. The
known regular arrangement of lights in these solutions, using tens
to hundreds of lights, allows methods, user interfaces, and tools to
exploit a parameterization of the light space for navigation and/or
interpolation (Sec. 5 and Sec. 6.2).

In free-form setups, instead, the light source is freely moved in
space with hand-held or robotics setups [MDA02,CGS06,MVSL05,
KK13]. This approach is more flexible but requires more calibra-
tion efforts to deal with non-uniformity of light intensity and the
variable spacing of positioning [GCD∗18], and more effort to de-
sign interfaces to navigate in the data. For these reasons, physical
constraints are often applied to approximate a uniform sampling of
the hemisphere in a free-form setting [CHI19], or, alternatively, a
regular light distribution is simulated through interpolation before
further processing or interaction [PCS18].

As an alternative to moving point lights, several specialized solu-
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tions have been introduced to control incident illumination through
extended light sources, e.g., linear lights [GTHD03, RDL∗15,
RWS∗11], or more complex structured illumination models, such
as spherical gradient illumination [MHP∗07, GCP∗09, GCP∗10]
or spherical harmonic illumination [TFG∗13]. However, these ap-
proaches are mostly used to support specialized processing methods,
especially for BRDF extraction (Sec. 5.4), and, so far, have not
been directly exploited for visualization and analysis tasks, since
the generated model is oblivious of the illumination pattern.

3.2 Captured data representation

Some of the techniques for visualizing and analyzing MLICs
can work without any other information than the captured images,
eventually after performing undistortion as well as a wavelength-
dependent correction to take into account the camera response
(Sec. 5.2). However, most of the visualization and analysis methods
also require additional information on camera parameters and lights
to reason on the relation between the measured light, the view direc-
tion, and the incoming light direction and intensity. The images are
thus augmented with metadata coming out of calibration.

A large variety of solutions have been proposed, including
assuming mechanically calibrated arrangements for domes and
rings [RTF∗04], using known calibration objects [GCD∗18, Mac15,
CCC08, MDA02, GCD∗17], and/or autocalibration techniques that
reconstruct illumination parameters by making assumptions on the
image reflectance field [WMTG05, XDW15, PF14, GCD∗18] or on
the light form factor [ASSS14, USTY15, PCGG16, XSJ∗15]. Acker-
mann et al. [AFG13] present a validation through error statistics of
both a forward and backward geometric point light source calibra-
tion by using sets of different numbers of reflective spheres, showing
that significant errors are present even in common use cases just for
the identification of light position. However, while MLIC calibration
strongly affects tasks such as 3D reconstruction, many of the MLIC
visualization and analysis techniques proved to be reasonably robust
to inaccuracies in a fine calibration, since the incident light field is
smooth, and small global shifts have reduced effects in local details.

In the RTI settings [CHI19, MGW01, MMC∗08, PLGF∗15,
PCS18], the classical approximation is a directional light per shot.
For domes or planar arrangements, the recovered information stored
together with the MLIC can be light positions, so that the classical
encoding for planar lights is a discretized light matrix [RDL∗15]. In
order to cope with more complex real-world lights, some methods
virtually use a different per-pixel light direction. Since the field
is smooth and slowly varying, this per-pixel lighting information
is not usually stored at image resolution, but approximated by a
low-degree polynomial function [GCD∗18]. It should be noted that
in these methods the incident lighting direction is expressed rela-
tive to a particular reference object (e.g., a constant-depth plane),
and not to the imaged object, whose actual depth is generally a
result of further processing. More complex lighting patterns us-
ing light bases [GTHD03, MHP∗07] or polarized light [GCP∗10]
also store extra information related to the specific light configura-
tion. Finally, note that different terms are often used to refer to the
same light parameterization. For instance, the measured color as
a function of incoming light direction is sometimes called Light
transport function [HWBC15] or Appearance profile [GCD∗18] and
its discretization on a grid has been called Observation map [Ike18].

3.3 Output data representation

While the processing of MLIC data can result in a large va-
riety of information, e.g., 3D surface meshes from photometric
stereo [XDW15] or single-material BRDFs from imaging of planar
samples [NDM05], the most widespread representation in the con-
text of visualization and analysis is image-based. Thus, visualization
and analysis-friendly representations are associated with each pixel
(or pixel group), by using the same view of the input MLIC. Per-
pixel representations range from rearranged/compressed/resampled
input data samples (Sec. 5.1), to single colors resulting from data
fusion (Sec. 5.2), to a variety of learned parameters for computing
novel relighting (Sec. 5.3), to shape and material samples usable in
a deferred shading settings (Sec. 5.4), to data usable for illustrative
visualization (Sec. 5.5), to a variety of derived maps, typically pre-
sented as overlays over original images (Sec. 5.6). In most cases,
the processing leads to visualization methods and user interfaces
that work in image space (Sec. 6.2).

4 Overview and taxonomy

A wide variety of methods have been devised over the past
decades to extract information from MLICs. In this survey, we
focus on techniques from the point of view of the data and inter-
action means that they make available to users for analysis and
visualization. Our proposed taxonomy is summarized in Table 1.

A first set of methods strives to support the direct exploration of
the captured MLIC (Sec. 5.1). These techniques typically exploit a
light-space parameterization to offer a user-interface to browse the
input dataset, eventually performing interpolation to provide conti-
nuity of motion, or to simulate in-between lighting configurations.
Little processing or enhancements are applied in these techniques,
which are mostly used as components of larger data exploration sys-
tems. Minimal calibration is required here, most of the time limited
to an approximation of the spatial configuration of lights.

The second group of techniques generates a fused single-image

(Sec. 5.2) that maximizes for each output pixel the amount of in-
formation present in the input MLIC. This is generally done by
an optimization process, and the resulting image is static, and not
used in interactive settings. User interaction is typically limited to
changing parameters to guide the detail enhancement process. More-
over, many of them can be applied without the knowledge of the
illumination pattern, thus limiting calibration needs.

User interaction is, instead, at the core of the techniques used to
generate relightable models. These techniques typically rely on, at
least approximately, calibrated data, and compute per-pixel repre-
sentations that can be exploited at visualization time to generate
novel illumination patterns. A first set of methods in this class, pos-
sibly the most popular one, constructs fitted representations that
approximate the light transport function, or perform a light matrix
domain fitting (Sec. 5.3). A second set of methods tackles the more
complex problem of separating shape and material contributions,
typically producing Spatially-Varying BRDF (SVBRDF), models
coupled with mesostructure descriptors (Sec. 5.4). While the latter
methods are, in general, usable also to solve the 3D reconstruction
problem, in our context they are employed to produce relightable
models, which can be evaluated in a deferred shading context. A

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



R. Pintus al. / MLICs for Surface Visualization and Analysis

Class Approaches Features

Direct exploration

(Sec. 5.1)

Visualization of input

data, possibly with inter-

polated light positions

Input browsing [Mac15]; Resampling & interpolation [Buh03,
GCD∗17, PCS18].

Good fidelity but little or no relighting possibilities; In-
teraction limited to moving in light space (best for dense
sampling); Static visualization limits depth cues; En-
hancements only on single images; No calibration or
just light position approximation required for in-between
light generation; Data size is an issue.

Single-image data fu-

sion

(Sec. 5.2)

Static presentation of all

data in a single image

Albedo/Normal [CDG∗18, Woo80, AG15]; Multi-scale analy-
sis [FAR07, ZLR∗10]; Discontinuity detection [RTF∗04]; Multi-
spectral fusion [CSS15, VHW∗18, VdPHB∗16, WVP15].

Static visualization; Interaction limited to pan-
ning/zooming and parameter tuning; Enhanced percep-
tion of visible and invisible details; Automatic illustra-
tion and false color visualization; No calibration or just
light direction approximation required; High per-image
computation costs; Low memory footprint.

Relightable

models

Interactive

inspection

with novel

illumination

Relightable

images

(Sec. 5.3)

Reflectance

field models

Polynomial Texture Map [DHOMH12, MGW01, PGPG17, ZD14];
(Hemi-)Spherical harmonics [BJK07, MMC∗08, ZD14]; Discrete
Modal Decomposition [PLGF∗15, PLGM∗17a]; Layered Mod-
els [DHOMH12, Mac15, Mac18, FBKR17, ZD14]; Deep Learn-
ing [RDL∗15, XSHR18]; Light Transport Matrix [TBF∗17].

Interactive relighting; Mostly low-frequency modeling
and no global illumination effects; High-frequency com-
ponents with increased computational complexity and
less portable models; Good light/camera calibration
needed; Compact and fast analytic models available.

(SV)BRDF

fitting

(Sec. 5.4)

Decoupled

shape and

appearance

models

Example-based [HS17]; Analytic BRDF [AWL13, AWL15,
GTHD03, HNI08, RPG16, RMS∗08]; Polarization based [GCP∗09,
GCP∗10, MHP∗07]; Gradient illumination [GCP∗09, MHP∗07];
Spherical harmonic lighting [TFG∗13].

Interactive relighting; Supports novel viewpoints; Inter-
active pan/zooming/rotate and BRDF parameter tuning
and editing; Hard to compute in practice from small sam-
ples; Supports only specific classes of objects; Can be
extremely photorealistic; Good light/camera calibration
needed; Good trade-off memory/visualization quality.

Non-photorealistic

enhancement

(Sec. 5.5)

Illustrative presentation

Diffuse gain [CM11, EBB∗11, HBMG02, MVSL05, MGW01,
New15,SSM∗17,UW13]; Specularity Enhancement [AIK13,CM11,
CSS15, EBB∗11, GCD∗17, HBMG02, HP15, KK13, MGW01,
MWGA06,MVSL05,MMSL06,MCPC17,New15,SSM∗17,UW13,
WVM∗05]; Exaggerated shading [GCD∗17, MWGA06, PCC∗10,
VdPHB∗16, VHW∗18, WVM∗05]; Unsharp masking [CM11,
HP15,PCC∗10,SSM∗17]; Light extrapolation [HBMG02,MGW01,
PSM05]; Multi-light enhancement [GCD∗17, HP15, PCC∗10].

Interactive relighting; Interactive pan/zoom/parameter
tuning; Enhanced tiny details and global shape visual-
ization; May be used for real-time enhancement during
capture at video rates; Compact representation.

Features and derived

maps

(Sec. 5.6)

Extraction of shape and

appearance characteris-

tics

Edge extraction [BCDG13, EBB∗11, Pan16, RTF∗04, VVP∗18];
Saliency maps [PLGM∗17b, PLGM∗17c]; Sketch-like visual-
ization [EBB∗11, Ham15, WVM∗05, ZHS∗18]; Slope exaggera-
tion [MWGA06, VVP∗18, WVM∗05]; Normal/gradient/curvature
visualization [AG15, BCDG13, DGL∗14, EBB∗11, GCD∗17,
CDG∗18, MHP∗07, MBW∗14, MCPC17, PSM05, SSM∗17,
TML∗13, VdPHB∗16, VHW∗18, VVP∗18, WLW17, WVM∗05];
Normal maps [GCP∗09, MBW∗14]; Depth maps [CB12,
DGL∗14, CDG∗18, TLQ06, WVM∗05]; Other derived
maps [GCD∗17, GPDG12, CDG∗18, PSM05].

Many visualization modes (edges, sketches, toon-like,
normal maps, saliency); Interaction limited to pan-
ning/zooming and parameter setting unless mixed with
other relighting techniques; Increased detail perception;
Small memory footprint.

Table 1: Taxonomy. Major approaches and their features for each MLIC method class.

user interface is generally provided to control the simulation of
novel lighting, which is used in exploration applications (e.g., using
simulated raking lights to enhance particular features). In contrast
to the direct exploration methods, the lighting used during the inter-
active task is not limited to be an interpolation of the ones used for
the acquisition.

While these relighting techniques are typically employed in pho-
torealistic settings, illustrative techniques help in gaining insight on
objects through visual effects (Sec. 5.5). These methods are rarely
applied for enhancing specific aspects of the raw images (e.g., color
discontinuities and color frequencies at different levels of resolu-
tion), while, most often, they are combined with relightable image
methods to support an improved visual interpretation of the scene
of interest in an interactive setting.

Finally, feature maps and derived maps (Sec. 5.6) can be extracted
from the data to identify interesting features concerning overall

shape, discontinuities, roughness, material changes, and so on. In the
visualization and analysis setting, these maps are directly visualized
(often as overlays) to highlight particular aspects of the imaged
object, or are used to drive more complex visualization techniques
(e.g., for illustrative rendering).

5 Methods

In the following sections, we build on our taxonomy to provide
an in-depth analysis of the various methods that have been proposed
in the literature. For each class of methods, we provide a general de-
scription of the overall goals of the methods, comparatively discuss
the various techniques that have been proposed to reach those goals,
and discuss the related visualization and analysis issues.

5.1 Direct exploration of acquired data

Direct exploration approaches aim at providing a framework to
browse original data, by performing little processing except, eventu-
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ally, for the computation of in-between images to simulate a contin-
uous sampling of the light space. One of the main challenges is the
need for dealing with large amounts of data at exploration time.

5.1.1 Approaches

In the case of original image navigation, no processing is needed
on the image stack, so the only issue is how to offer interactive
access to the displayed images, which is done either by a simple
discrete selector, or by finding the nearest neighbor in a continuous
interface for specifying the light position [Mac15].

In the direct interpolation scenario, Radial Basis Functions
(RBF) [Buh03] interpolation has been typically used to pro-
duce a relighted image with a new virtual light from the MLIC
stack [GCD∗17]. Given the N images corresponding to the closest
neighbors of the new light direction, RBF interpolation is achieved
by computing the parameters that define a sum of N radial functions.

The reflectance I is expressed as I
(

~l
)

= ∑
N
i=1 αie

‖~l−~li‖
2

R2 , where αi

is estimated per pixel by solving a least squares problem. A recent
objective and subjective evaluation has shown, in particular, how
RBF interpolation is capable of better visualizing the behaviour
of complex materials for in-between views with respect to classic
fitting approaches [PDJ∗18] (Fig. 2). However, the need to access
large amounts of data makes the method very computation and
memory-intensive. For this reason, it has been combined with com-
pression approaches. Since the extraction of a set of basis has been
demonstrated to work well to approximate the appearance [SOSI03],
Ponchio et al. [PCS18], in particular, propose a relighting method
based on a simple bilinear interpolation. In the pre-processing step,
they create a novel relighting with RBF by using novel light di-
rections that form a regular grid in the light direction space. Then,
they combine this information with a per-pixel compression strategy
based on Principal Component Analysis (PCA). At exploration time,
they perform relighting from a novel light direction by applying
bilinear interpolation to the pre-computed grid, and by selecting
the final color from the compact PCA basis. Their data encoding
is extremely suitable for online relighting, and a WebGL based in-
teractive viewer has been realized that exploits the combination of
those two techniques. Finally, another interesting thing is that PCA
components can be stored in byte planes, and compressed as JPEG
images to support compact relightable data exchange [PCS18].

5.1.2 Visualization and Analysis

Direct exploration approaches are the least sensitive to calibra-
tion and raw data quality (e.g., for original data viewing without
interpolation, the visual quality is simply the same as the capture
sensor). For this reason, these techniques have been successfully
employed in many application domains (e.g., Cultural Heritage -
CH, Sec. 6.1), and they prove very suitable to directly treat com-
plex materials with behaviour that is difficult to model [GCD∗17].
Original data visualization, and to a lesser extent interpolated data,
is capable of reproducing both high-frequency components (e.g.,
highlights) of the reflectance field, and global effects, such as cast
shadows and interreflections, that allow users to appreciate and un-
derstand the geometry at a meso/macro level. With an extremely
dense acquisition, and a continuous light selection interface coupled
with nearest neighbor interpolation, the user can naturally select the

Figure 2: Direct interpolation. For each row, here we show (from left to

right): one of the original images in the MLIC; PTM-based rendering

(Sec. 5.3): HSH-based rendering (Sec. 5.3); RBF rendering. RBF interpola-

tion is capable of visualizing better novel virtual light directions, compared

to classic methods. Courtesy of Pintus et al. [PDJ∗18].

original image to display, and interactively simulate controlled illu-
mination. Direct exploration of the original images may be, however,
difficult for visualizing massive image collections in remote settings.
Moreover, the Graphical User Interface (GUI) for selecting a light
is efficient only for regular acquisitions (e.g., domes), which offer
a natural 2D parameterization. Further, the lack of continuity may
make the perception of details difficult, as it is not possible, in most
practical cases, to exploit motion parallax. Compression techniques
combined with interpolation [PCS18]) allow for simulating more
flexible scenarios, including, for instance, moving a raking light,
which is one of the classical methods used in real-world surface anal-
ysis and inspection. While the simulated continuous light motion
may improve perception through motion parallax cues, it may also
produce artifacts for cast shadows and highlights, especially if the
sampling is not dense. Thus, some authors [GCD∗17] have proposed
to let users interactively tune the locality of the interpolation, but
this approach is far from optimal.

5.2 Single-image data fusion

While direct exploration strives to provide direct access to all
the individual images composing the MLIC, single-image fusion
approaches have the goal to maximize the information that can
be conveyed in a single static image. Often the performed data
fusion produces physically inconsistent or impossible images, but
nevertheless serves to increase the amount of shape information
(less often appearance) presented in a single view of the object.

5.2.1 Approaches

The most straightforward way, and classic way, to extract a single
image that conveys object surface information from a MLIC is
the albedo visualization. This is a light-independent view of the
low-frequency (typically constant), spatially-varying BRDF across
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(a) MLIC composed of three images (b) Two enhanced results

Figure 3: Single-image data fusion. The input data consists in a 3 image

MLIC (a). The multi-scale approach of Fattal et al. [FAR07] has been

applied and two possible results have been obtained with different parameter

configurations (b). The enhanced view on the left locally highlights details

and flattens the global appearance of the object, while the result on the

right implicitly uses some shadows to increase detail perception. Courtesy
of Fattal et al. [FAR07].

(a) A car engine (original vs enhanced).

(b) A flower plant (original vs enhanced)

Figure 4: Single-image data fusion for illustrative visualization. Some

MLIC-based fusion methods are capable of enhancing visual information

in complex shapes, e.g., mechanical parts (a), and of removing texture data

through a digital visual abstraction that still preserves important features

across the viewed surface (a)(b). Courtesy of Raskar et al. [RTF∗04].

the surface [CDG∗18, Woo80, AG15]. Since the albedo removes
highlights or other high-frequency effects that might disturb the
underlying content in the visualization, this approach is often used
for objects where pigment information is important (e.g., think of a
painting inspection). However, a large amount of information about
small, fine surface details is contained into the high-frequency part
of that signal and is completely lost.

Motivated by artistic techniques, which bring-out fine-scale de-
tails, while at the same time preserving the global object shape,
several methods perform a multi-scale analysis of the MLIC signal
at different spatial resolutions and frequencies, and then reconstruct
an enhanced image that combines detail information at each scale
across all the input images. Fattal et al. [FAR07] decompose each
image in a MLIC into a series of detail images plus a base image.
The detail images are the differences between two bilaterally fil-
tered versions at consecutive scales, while the base image encodes
the low-frequency shading. The final visualization is built by a
weighted sum of those contributions. Fig. 3 shows both an input 3
image MLIC and two possible results given different parameters,

which drive the image fusion. One enhanced version makes the
local finest details pop up, but flattens the global appearance of
the object, while the other output implicitly uses some shadows
(no shadow map has been explicitly extracted though) to augment
the global perception of the object geometry. Since some high-
frequency signals are generated by phenomena that are not related
to local surface topology, or, in other terms, to real details or surface
features (e.g., globally cast shadows), some algorithms integrate
this approach with an additional step of shadow detection and re-
moval [ZLR∗10]. Other works exploit shadows cast by multi-light
acquisitions in order to classify spatial changes among those caused
by spatially-varying materials across the surface, rather than depth
discontinuities [RTF∗04]. They use that information to build a sin-
gle image visualization, which superimposes a stylized rendering
on a processed version of the original input MLIC that removes
unnecessary details while increasing the three-dimensional percep-
tion. This results in a final toon-like visualization, which highlights
boundaries between the various shapes in the framed scene. Fig. 4
shows how this kind of illustrative techniques has been employed
to highlight boundaries of complex shapes (Fig. 4a), and to remove
texture data that contains less information through an abstraction
strategy that preserves important features across the viewed surface.
In this approach, an interactively controllable ”degree of abstrac-
tion” parameter controls the amount of local details that can be
removed (Fig. 4). When MLIC acquisition is performed also in a
colored or even multi- or hyper-spectral framework [CSS15], it is
possible to exploit not only detail information from the varying light
position/direction but also from shading-independent wavelength
response across visible and invisible spectra. Once light-position-
dependent components have been fused, the multi-spectral signals
can be combined to produce false color visualizations, which fuse
per-pixel contributions into a single image with highlighted de-
tails and main polychrome regions [VHW∗18]. In this context, a
common strategy to visualize high-dimensional chromatic data is to
perform false color PCA visualization. This data-reduction approach
computed on a multi-spectral MLIC proved to be very powerful in
significantly increasing the legibility of almost-faded details on the
surface [VdPHB∗16] and subsurface layers (e.g., underdrawings in
paintings or manuscripts [WVP15]), which are completely invisible
in the original photographs.

5.2.2 Visualization and analysis

The combination, through a data fusion process, of all the MLIC
information in a single image has the inherent disadvantage that
some information is lost, interactive browsing is no more possible,
and motion parallax cannot be exploited. On the other hand, the
data-fusion process produces images that convey much more read-
able information than any single image in the MLIC. Compared to a
photorealistic visualization by using direct exploration (Sec. 5.1),
single image methods are capable of revealing both tiny surface
texture elements and patterns, and global shape features (e.g., depth
discontinuities in cluttered/complex environments), which are oth-
erwise poorly visible or completely invisible in the photorealistic
version or in the original images. Since they try to emphasize ge-
ometrical features and to convey a visualization with a high level
of abstraction, these techniques can provide useful insights into the
nature of the real material appearance. For these depicting capabil-
ities and their efficiency, these data fusion methods are employed
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for several tasks. Examples include visualization of surface texture
and cracks in rock [FAR07], fur visualization [ZLR∗10, FAR07],
as well as venation and texture enhancement in botanic visual in-
spection [ZLR∗10, FAR07, RTF∗04]. When multi- or hyper-spectral
capture is available, the shading-independent response to several
different wavelengths can be used to enhance small poorly visi-
ble inscriptions (e.g., incisions on stones) [CSS15, VdPHB∗16],
to visualize abundance maps of pigments across the acquired ob-
ject [CSS15, VHW∗18, WVP15], or to improve the visibility of
faded inks in old written text [VHW∗18]; moreover geometrical
structures and irregularities under the surface layer (e.g., pictorial
layer visualization) can be made visible together with geometrical
gradients. Moreover, these methods may produce a meaningful visu-
alization even with a small amount of input data (e.g., 3−4 images).
For this reason, they have also been used for the enhancement of
images during dynamic capture. Most of the approaches, moreover,
do not require camera and light calibration, since they perform the
analysis just starting from the intensity changes in the image stack.
The fact that they analyze multiple images at once makes them more
effective than single-image enhancements or exaggerated shading
techniques directly applied to 3D geometry [FAR07]. They are em-
ployed to display scenes with low-contrast depth edges, and complex
geometries such as mechanical parts (Fig. 4) or medical data (e.g.,
in endoscopy [RTF∗04]). In addition, during the visualization, the
user has only to tune a small number of parameters to interactively
weight the contribution of various surface behaviour components
(e.g., weights of base and detail signals [FAR07], amount of detail
enhancement [ZLR∗10], or degree of abstraction). Single image
approaches are also very suitable for storage and communication
purposes in the context of web-based visualization platforms, since
they exhibit a really compact and compressed representation, and
are very appropriate for printing. The limitation to static visualiza-
tion may be an interesting area of future work, since multi-image
data fusion might be used in the context of real-time exploration
methods, e.g., by fusing only subsets of images near the currently,
interactively determined, focus light, or by exploiting a globally
fused field in combination with other methods to improve shape and
detail perception while performing relighting or other interactive
tasks.

5.3 Relightable images

While single-image data-fusion mostly focuses on static visual-
ization, offering the possibility of dynamically relighting the models
is at the core of relightable model based approaches, which analyze
the MLIC in order to learn the relation between measured images
and incident illumination, and synthesize it in a relighting model.
The first set of methods, relightable images, surveyed in this section,
strives to directly model the reflectance field, without separating
shape and material contribution. The second set of methods, that
we will analyze in the next section, performs, instead, that separa-
tion. In both cases, the techniques require, in addition to the MLIC,
metadata with information on camera and light parameters to reason
on the relation between measured reflectance, view direction, and
incoming light direction and intensity.

5.3.1 Approaches

The seminal insight behind relightable images, introduced by
Malzbender et al. [MGW01] in terms of Polynomial Texture Maps

Figure 5: Layered models. This class of models combine a matte model with

a specular/shadow layer to better render complex materials. In this figure

we show several layers that are modeled from a MLIC data: (1st row, left

to right) surface normals, matte albedo; (2nd row, left to right), specular

quotient (the ratio between specular and diffuse intensities), and the specular

color. Courtesy of MacDonald [Mac15].

(PTMs), was to replace classical multi-light processing based on
Photometric Stereo [Woo80] with a more flexible interpolation-
based approach, which transforms the high amount of data in
RTI image stacks into a compact multi-layered representation
focused on approximating the measured appearance as a func-
tion of light direction. The method is based on a per-pixel bi-
quadratic polynomial interpolation of the image stack producing
a spatially varying reflectance I as a function of the light direc-
tion. At each pixel, given the six parameters αi computed from
data fitting, and a light direction~l, the reflectance is computed as

I
(

~l
)

= α0~l
2
x +α1~l

2
y +α2~lx~ly +α3~lx +α4~ly +α5. This method was

the basis of the development of the RTI framework. A drawback
of the quadratic model is that it captures only the low-frequency
reflectance behaviour, and it is not capable of reproducing high-
frequency effects like specularities and shadows. The use of high
order polynomials has been also tested [ZD14], where third order
coefficients have been used, increasing the quality of the relighted
images at the expense of increased oscillations in case of unreli-
able data. High-frequency effects may also act as outliers in the
fitting process, damaging the accuracy of the reconstruction. For
this reason, robust fitting methods have been successfully proposed.
For instance, Drew et al. [DHOMH12] propose a Least Median
of Squares fitting, while Pintus et al. [PGPG17] proposed an ac-
celerated guided robust matte-model fitting method that exploits
similarity of nearby pixels to speed-up computation.

Similarly to the Fourier series, spherical harmonics are a good set
of basis to describe functions on the surface of a sphere, and low or-
der sets of those bases are typically used in modeling low-frequency
reflectance, e.g., applied in photometric stereo scenarios [BJK07].
In typical MLIC acquisition setups, the incident light at any surface
point is defined on the upper hemisphere only, and a full spherical
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representation is not needed. For this reason, the hemispherical basis
defined from the shifted associated Legendre polynomials [ERF11]
has been introduced to represent image irradiance [MMC∗08]. To
create relightable images from a captured dataset, the projection of
the images onto the elements of the basis up to a maximal order is
estimated. Typically, the maximal order used is 1 (4 coefficients),
2 (9 coefficients) or 3 (16 coefficients). The per-pixel reflectance

is computed as I
(

~l
)

= ∑
n−1
l=0 ∑

l
m=−l αm

l Hm
l

(

~l
)

, where Hm
l are the

hemispherical harmonic (HSH) basis functions. Relightable images
encoded with HSH coefficients are also currently used in application
domains, and are supported by RTI viewers (Sec. 6.2). HSH fitting
is generally preferred to PTM since it captures better high-frequency
reflectance behaviours. However, the analysis performed by Zhang
and Drew [ZD14] shows that, with a similar number of coefficients,
polynomial and HSH coefficients provide similar results.

Discrete Modal Decomposition (DMD) has also been proposed
to generate a continuous model of the local reflection. The DMD
method is based on a projection on the modal bases, which are
composed of elementary forms that take their origin from a struc-
tural dynamic problem. Pitard et al. [PLGF∗15, PLGM∗17a] adopt
this technique for modeling angular components of the local re-
flectance by devising new modal shapes called Reflectance Modal
Basis (RMB) from the set of images based on the Discrete Modal de-
composition. They model the surface reflectance function, f , as the
sum of a linear combination of the modal vectors and the residue of
the decomposition Rn, which can be expressed as f (θv,ϕu)(θi,ϕi) =

∑
n
k=1 λk (θv,ϕu)Qk(θi,ϕi)+Rn, where the modal coefficients λk can

be obtained as the projection of the vector of measured luminance L

onto each modes (Qk, k=1,...n, where n is the number of modes) of
the non-orthonormal basis. A comparative analysis with other fitting
techniques has shown that the DMD is well suited for approximating
the complex physical behavior of light reflections, especially for
shiny reflective surfaces [PLGF∗15, PLGM∗17a].

Simple parametric functions are, however, usually well suited to
model the matte reflection and some shininess, but fail to model
higher-degree phenomena such as transparency, interreflections,
specularities, and shadows. To tackle this problem, a possible way
is to use a layered model that composes a matte model and specu-
lar/shadow models to obtain the relighted image. Some proposed
methods [DHOMH12, ZD14] are based on the assumption that the
matte component can be described by the inliers in a robust re-
gression of a PTM or an HSH model. The difference between the
original images and the matte interpolation is then interpolated with
a RBF, in order to model the high-frequency component of the orig-
inal signal, and to obtain a more photorealistic rendering. Fornaro et
al. [FBKR17] employ a PTM to model the matte signal and compute
the distance between that matte function and the intensity of each
pixel for all lighting directions. The average of those distances is
considered a measure of the pixel glossiness, and used to add a
Phong based shading component to the rendering. This method is
less general than the previous approaches, since it makes the implicit
assumption that the object is a reflective surface. Similarly, in the
method proposed by Macdonald [Mac15,Mac18] the matte model is
used to extract the albedo and the normals (Fig. 5). Specularities are
then obtained in the following way: first, the specular quotients are
calculated as the ratio of the actual intensity divided by the Lamber-

tian intensity, then a modified Lorentzian function is fitted on them
(Fig. 5). The method, however, has not been used to interactively
render images with arbitrary light directions.

In contrast to the methods that recover the relighted image inde-
pendently per pixel, Xu et al. [XSHR18] have proposed a method
to learn the behaviour for entire image patches using specialized
Convolutional Neural Networks (CNNs). Two networks are trained,
one to select optimal light sampling (that, therefore, is then fixed
with a certain tolerance), and the other to relight the scene given
a novel light direction. The method can reasonably model global
effects (e.g., shadows and interreflections) and complex materials
(general isotropic) with an extremely small number of images com-
pared to state-of-the-art techniques (e.g., only 5 images). However,
the rendering of global high-frequency behaviours, such as sharp
cast shadow boundaries, still remains a challenging issue. That is
the reason why that approach is more suitable (and can obtain good
error metrics) when environmental light is provided rather than a
directional light.

Among the methods that model appearance as a function of light
direction domain, without explicitly recovering shape/material de-
scriptions, a few of them do not focus on the light transport function
but they try to interpolate the measured signal in the light matrix
domain. Specifically, they interpolate a discretized matrix I(~i, j)
called Light Transport Matrix (LTM), which represents the light
reflected at each pixel location as a function of the illumination
on a planar surface parallel to the image plane. Thanikachalam et
al. [TBF∗17] sample the matrix entries by acquiring the object un-
der varying illumination with a mobile phone LED that moves on a
plane, and the relighting is performed with a compressive-sensing
based reconstruction that has been proved to interpolate better than
bicubic interpolation or kernel regression. Similarly, the LTM can
be also recovered from a sparse sampling with the use of a Neu-
ral Network ensemble, by exploiting spatial coherence [RDL∗15].
However, methods interpolating the LTM usually perform relight-
ing based on a larger number of input images (e.g. 200-300) with
respect to methods sampling input light in the light direction space
(50-100).

5.3.2 Visualization and analysis

This class of relightable models is very general and easy to apply.
By avoiding to solve the complex problems of separating shape from
material contributions, and of modeling complex light transports,
these methods can, in principle, provide visually realistic approx-
imations while interactively controlling a virtual light. Similarly
to the local interpolation methods (Sec. 5.1), this class of fitting
techniques can be used to simulate interactive lighting or raking
light. The user is provided with a simple interface element to select
a virtual light source (typically a Gaussian sphere projected in 2D),
and the visualization algorithm uses the parameters of the fitted
analytic model to transform that light direction input in the proper
relighted image; in addition, the user might pan and zoom, and
select regions of interest within the relightable image. In addition to
simple interpolation, moreover, more complex modifications can be
made to the illumination, including spatially-varying intensity and
direction control.

Due to the rich viewing experience that this approach provides,
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Figure 6: Light Transport Matrix Reconstruction. The first row shows a series of ground truth images of a light transport matrix column which is not included

in the input data used to produce the relightable image model. The second row are the same matrix columns reconstructed by using a trained relighting Neural

Network. Courtesy of Ren et al. [RDL∗15].

this is the most used approach in a wide range of visualization
and analysis tasks. Interactive relighting controls allow viewers to
better understand object morphology in terms of meso- (e.g., local
surface bumps, roughness, superficial patterns) and macro-structures
(e.g., global curvature, convexity and concavity cues) by using an
interface that mimics the typical real-world inspection (e.g., with a
raking light). This fact makes them a good virtual alternative to real-
world inspection under controlled light for surface quality control
in many fields from CH study and inspection, criminal forensics,
art conservation, and paleontology [MMC∗08], to micro-mechanics,
biomedicine, and horology.

In most cases, however, only the low-frequency behavior is suffi-
ciently accurate for typical acquisition sampling rates (i.e., hundreds
of images). A full model in terms of geometry and material is
more amenable to produce physically-valid relighting; such meth-
ods are only computable for specific classes of objects (Sec. 5.4),
but relightable images are more generally applicable, and have been
shown to help in understanding how different optical features as
matte nature or glossiness, and generally heterogeneous materials,
are distributed across the object, as well as to visually highlight
surface grain/granularity, damages, weathering patterns, erosion,
and general decay.

All the various methods, based on attempting to directly map,
through a small set of parameters, the changes in perceived color
to change in illumination direction, tend to exhibit visual artifacts
due to the global interpolation in the light space. To overcome
this issue, LTM-based methods and CNN-based methods strive to
learn more information on global transport. In principle, LTM-based
methods are capable of producing an extremely accurate relighting,
with anisotropic, transparent and highly complex local behaviour
of materials and global illumination effects (Fig. 6). Unfortunately,
while they meet these goals, LTM approaches pose several problems
in terms of capture complexity, and memory occupancy for both
storage and communication issues. In terms of capture, to avoid
hallucinations, very high-frequency MLIC should be employed.
Moreover, the size of typical reconstructed light transport function
for each pixel is about 200k samples [TBF∗17], so, even for small
images, the representation tends to pose very hard problems in terms
of storage, transmission, and computation required to meet interac-
tive rates during relighting. The use of neural networks [RDL∗15],

trained for each specific dataset, tries to cope with this problem, by
producing a relatively small model with tractable memory footprint
and fast relighting performance. However, the methods proposed
so far tend to produce hallucinations, and are, therefore, not very
appropriate to visual inspection tasks.

For these reasons, the most employed methods in practice are
still those based on low-frequency fitting (e.g., PTM, HSH). These
representations are easy to compute and to compress, eventually
exploiting available image-based encoding (e.g. JPEG) to compress
the various layers, leading to straightforward incorporation in web
tools and mobile devices (Sec. 6.2. In these tools, visualization is
often integrated with more complex knowledge organization and
representation software, and within systems for the annotation of
specific sets of objects, e.g., in the arts and humanities fields. Some
of those tools allow the user to link comments and annotate the
relightable images during the visualization experience [FBKR17],
and export or store this information as metadata. This opens the way
for collaborative visualization environments.

5.4 (SV)BRDF fitting and meso-structure visualization

A clear limitation of the reflectance fitting/interpolation approach
is the lack of proper decoupling of shape and material information.
For this reason, a number of methods try to extract a geometric
model from the MLIC and associate it to a material model. This
problem is very complex, and feasible only by limiting the class of
scenes to which the approaches are applied. Even in the simplest
case of opaque surfaces, the key challenge is that the reflectance,
characterized in terms of SVBRDF, and the shape, characterized
in terms of surface normals, are inherently coupled and need to be
estimated jointly. Furthermore, the SVBRDF is a 6D function of
space and incident/outgoing angles, and, in the absence of additional
assumptions, its estimation requires a large number of input images
captured with precisely calibrated, and often prohibitively expensive,
setups. Moreover, in the typical MLIC setting, modification of the
view direction is not available. The problem of estimating a full
representation of the shape and the material from a single viewpoint
data is thus heavily ill-posed and requires the introduction of extra
knowledge. To this end, a variety of approaches have been proposed.
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Figure 7: SVBRDF from MLICs. Comparison between the real photograph (first row) and a virtually rendered surface under novel lighting and viewing

conditions (second row). Courtesy of Aittala et al. [AWL13].

5.4.1 Approaches

The classic approach to shape and BRDF recovery is to first
extract surface normals by using a photometric stereo approach,
and, then, perform a fitting assuming that the geometry is known.
The underlying assumption is that the surface and the material are
sufficiently simple so that second bounce effects are negligible. Shi
et al. [SWM∗16] have benchmarked state-of-the-art photometric
stereo solutions, showing that reasonable accuracy can be obtained
for non-Lambertian objects when using calibrated data. Once the
normal field is known, the most straightforward approach is to fit
the data to an analytical model by using a non-linear optimizer that
minimizes the fitting error [NDM05]. The fitting, however, is heavily
underconstrained, since only a very small portion of the 4D space
and incident/outgoing angles are measured at each point.

A common assumption for enabling computationally tractable
models for SVBRDF is that the BRDF at each pixel is a weighted
combination of a few, unknown reference BRDFs [LBAD∗06].
Based on this concept, Hui and Sankaranarayanan [HS17] present a
method that recovers normals and BRDF parameters for complex
materials from MLICs. The method is based on the assumption that
the BRDF at each pixel lies in the non-negative span of a known
BRDF dictionary. First, the normals are estimated using a variant of
example-based photometric stereo. Given the surface normals, the
SVBRDF is obtained by constraining the BRDF at each pixel to be
in the span of the dictionary while leveraging additional priors to
regularize the solution.

By imposing strong limitations on the shape and/or material dis-
tribution, the recovery of the shape and the material can also be
obtained with a limited number of images. A common assump-
tion is that objects are (mostly) planar. For this case, Gardner et
al. [GTHD03] exploit a linear light source instead of a point or direc-
tional lights to create the MLIC data. They have developed a method
capable of finding parameters of a Ward BRDF model (diffuse and
specular reflectance, and roughness) for planar surfaces by building
a reflectance table to determine which parameters most closely fit
the captured data. The method is adapted to capture surfaces with
perturbed normals, allowing for the rendering of images of the sur-
faces under novel lights. Aittala et al. [AWL13] recover SVBRDF
parameters for near-planar surfaces; they use ad-hoc illumination
patterns for the MLIC generation by creating point samples in the
2D Fourier space. When applied to surfaces in which repeated pat-

terns of the same materials and varying normals are known to be
present, these methods are capable to obtain the SVBRDF from just
two images [AWL15].

Fig. 7 shows a comparison between original photographs and
virtual renderings under novel lighting and viewing conditions for
the method of Aittala et al. [AWL13]. It proves how photorealistic
visualization can be provided by these kinds of approaches if the
assumptions on the imaged scene are met in practice. With this
approach, moreover, the recovery of the per-pixel BRDF parameters
allows for generating novel views in addition to novel illumination,
even if the result is not satisfactory for all the materials.

The polarization of light can also be used to recover reflectance
parameters for relighting. The creation of MLICs by using spherical
gradient illumination patterns combined with linear or circular po-
larization [MHP∗07] allows for the separation of spatially varying
diffuse and specular optical behaviour across the surface, and it
is used also to extract normals. Rendering is then performed with
a hybrid normal mapping that combines the diffuse and specular
shading. While Riviere et al. [RPG16] present a method to practi-
cally fit BRDF parameters from a MLIC capture performed with a
fixed viewpoint and gradient lights, Ghosh et al. [GCP∗09] extend
the method of Ma et al. [MHP∗07] by using polarizers and gradi-
ent lights to recover view-independent BRDF parameters. A more
general isotropic BRDF extraction has been presented by Ghosh et
al. [GCP∗10], which recover per-pixel estimations of the diffuse and
specular albedo, the index of refraction, and the specular surface
roughness. It is based on the estimation of Stokes parameters of the
reflected light based on a three image MLIC, acquired with differ-
ently oriented linear polarizers positioned in front of the camera, and
one additional photograph captured with a circular polarizer. For
the computation of normals, this method exploits a classic photo-
metric stereo approach [Woo80]. Given the known object shape, the
reflectance properties can be obtained from small MLICs (or even a
single image) by representing the specular reflection as a mixture
of probability distributions on the unit sphere, and then by using
the Expectation Maximization (EM) algorithm to estimate parame-
ters [HNI08]. Another technique to acquire and visualize accurate
spatially-varying reflectance properties of an object with complex
anisotropic materials is based on continuous spherical harmonic
lighting conditions [TFG∗13].
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5.4.2 Visualization and analysis

With respect to all previous methods, the recovery of shape
and material in terms of per-point normal and BRDF has major
limitations in terms of managed materials and the computational
complexity (involving, often, the introduction of several additional
constraints to make the shape and material decoupling possible,
and to cope with insufficient data). Moreover, joint computation of
BRDF and normal fields requires highly precise acquisition setup
calibration, and the resulting model is very sensitive to errors in
camera, light and radiometric parameters. On the other hand, in the
case where the recovery is possible, the BRDF and normals repre-
sentation allows for the visualization of geometric topography at
different scales, i.e., microfacets distribution, mesoscale structures,
and global/macro geometry/curvature, and the extraction of a normal
vector field can also lead to the computation of the depth (see also
Sec. 5.6). Moreover, the representation is usable within realistic ren-
derers, making it possible to generate faithful visual representations
of the optical response of the surface to light and viewing conditions.
The full shape/BRDF estimation not only allows for interactive re-
lighting, but supports other different visualization modes up to ren-
dering under environmental maps and even novel viewpoints. Due to
the fact that BRDFs are extremely useful in a wide range of applica-
tions (e.g., CH, industry, automotive, medical imaging, etc.), tools to
visualize, explore, and edit those BRDFs (and other related optical
functions) are continuously evolving [BS12,BBP14,FPBP09]; those
tools can handle analytic representations, data-driven BRDFs, and
anisotropic materials. The user can both visualize the object with
the corresponding BRDF properties, and the parameters that control
the material appearance; by interactively tuning those parameters,
and by visualizing the corresponding 2D or 3D graphs in real-time,
those interfaces help in understanding and analyzing different sur-
face optical behaviours (e.g., diffuse or specular albedo, index of
refraction, specular roughness), and to see how they respond to sev-
eral illumination conditions. Moreover, they serve as a workbench
to compare expected BRDFs and sample measurements. Apart from
virtual reality renderings, BRDF capture can serve to calibrate 3D
printers, and to pre-process 3D models for rapid-prototyping, so that
the visualization will happen in the physical real-world with photo-
realistic replicas of the acquired objects. In this context, BRDFs are
used to decrease the perceptual color error between digital copies
and real objects created by multi-material 3D printers [TU16].

5.5 Non-photorealistic enhancements

Relightable image models are often combined with illustrative
techniques, in order to improve the understanding of scenes beyond
what is possible by sticking to photorealistic approaches. Differently
from static methods, which extract single images that convey an
enhanced view of the object (already seen in Sec. 5.2) or feature
maps showing shape or material properties (that we will see in
Sec. 5.6), the methods described here focus on interactive-rate solu-
tions that modify the employed representations, or that post-process
the generated images.

5.5.1 Approaches

The most popular strategies to improve surface detail readabil-
ity in real-time relighting applications are the Diffuse Gain [UW13,

Figure 8: Non-photorealistic enhancement. Exaggerated shading helps

in the visualization of the finest object details. Here, for instance, direc-

tions of smoothing marks across the surface have been highlighted by this

non-photorealistic way of display MLIC-derived data. Courtesy of Van et
al. [VdPHB∗16].

CM11,SSM∗17,EBB∗11,HBMG02] and the Specular enhancement

approaches [EBB∗11, CM11, AIK13]. The Diffuse Gain has been
presented for the first time by Malzbender et al. [MGW01]. The
main idea is to apply a transformation to the fitting parameters of the
matte model function (in their case, the six PTM parameters). By
non-linearly changing those luminance coefficients, they are capable
of increasing the visual perception of the curvature of the surface re-
sponse to light direction variations. That transformation is designed
in order to maintain the same per-pixel normal field. This reflectance-
based contrast improvement, together with the dynamically moving
light position, proved to be an efficient and fast way for aided mor-
phology inspection and the visualization of surface subtleties not dis-
cernible to the naked eye [MVSL05,UW13,SSM∗17]. Having an un-
derlying normal vector field, all types of materials can be visualized
by adding a specular component to their analytical or data-driven
BRDF function. This is an old and widely used technique, due to its
simplicity, efficiency and effectiveness in enhancing meso and micro
structures across the object surface [MMSL06, MVSL05], to better
discern object content [MCPC17,SSM∗17,UW13]; figure 8 is an ex-
ample of how those exaggerated shading can reveal not only shape
content but also semantic information about how the object has
been manufactured [VdPHB∗16]. The most simple specular model
consists in a combination of a specular color ks and a non-linear
(typically exponential) function driven by a roughness parameter α.
During the visualization, the user can easily tune those parameters in
real-time [MWGA06] while dynamically changing the light source
to even extreme conditions, up to raking light [KK13] (see also light
extrapolation explained below), in order to obtain the desired effect
and to highlight different shape properties and features [HBMG02].
The Specular Enhancement can be used together with the color
information blended with it [WVM∗05], or in a visualization that
removes the albedo or generally the chromatic information, by dis-
playing only the reflectivity component, and by focusing only on
the amplification of slope perception [CSS15, UW13].

Besides those two ways of enhancing relightable image visualiza-
tions, which are of paramount importance for visual details inspec-
tion, other techniques are less used, although equally effective for
the task. One consists in applying unsharp masking to the luminance
field [CM11, SSM∗17]. Others exploit a light that is not constrained
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to have a unit norm, and goes beyond that physically acceptable
condition, and perform light extrapolation [HBMG02,PSM05]. This
non-photorealistic representation provides a more ”oblique”, raking
light, and a higher image contrast. Of course, by enabling virtual
relighting, one can also increase the number of virtual lights. This
can be used to increase object readability by automatically choosing
the appropriate set of lights that augments details perception. Palma
et al. [PCC∗10] present a multi-lighting detail enhancement that,
given a single light direction selected by the user, computes a virtual
lighting environment that aims at increasing the local contrast across
the image. This is a non-photorealistic method because that virtual
lighting is not feasible and reproducible in the real world due to the
high number of lights, the very localized contribution (or support
volume) of each light (which is not physically plausible), and the
real-world interreflections which would ruin the original enhance-
ment purpose by smoothing out the desired sharpening effect.

In order to enrich the quality of the visualization enhancement,
the aforementioned interactive techniques are typically combined
with the real-time normal enhancement mode [MWGA06] to in-
crease granularity and sharpness in the final visualization. Other
approaches consist in directly applying the same rationale of un-
sharp masking [PCC∗10], or a simple contrast enhancement opera-
tor [GCD∗17], to the normal vector field. While in Sec. 5.6 normal
maps are exploited to extract features for further analysis, here they
are used within the visualization pipeline as a layer to produce the
effect of a slope and shading exaggeration [WVM∗05, VHW∗18].

5.5.2 Visualization and analysis

With the same purpose of the methods seen in Sec. 5.2, non-
photorealistic enhancement is aimed at producing a visualiza-
tion that increases details perception. Similarly to single-image
data-fusion methods, many of the approaches are specially de-
voted to highlight microfeatures (e.g., roughness) and mesostruc-
tures/patterns across the object surface, and mostly focus on shape
rather than material enhancement. Unlike single-image data-fusion
methods, however, most of the illustrative techniques are interac-
tive and tightly coupled with both a dynamic relighting, and, in
some cases (e.g., Diffuse Gain, Specular enhancement, and Un-

sharp Masking) even with real-time MLIC acquisition and enhance-
ment [MWGA06]. Direct interactive control of parameters is gen-
erally used to tune various contributions of different appearance
layers. Since most of the methods can be applied to the data stored
in classic relightable image formats, the same advantages in terms of
portability, compression and communication described in Sec. 5.3
and Sec. 5.4 are valid here as well.

Many of the non-photorealistic techniques focus more on the
shape than on the appearance. For this reason, many of them rely
on the computation of normals from MLIC in order to convey
shape information, which, as discussed for BRDF extraction, is
not applicable to all imaged scenes. When this is possible, those
non-photorealistic enhancements have proved to be successful in
highlighting hardly visible features (e.g., poorly visible inscrip-
tions [WVM∗05]). In some cases, to highlight geometrical details,
the appearance is even changed on purpose, e.g., when applying
specular enhancement on completely matte objects to emphasize
surface finish, so optical material interpretation is not applicable

and misleading. Further, some visualization techniques consider
the color or appearance information as a cluttering element, and
they remove that to bring the wanted details to light [MCPC17].
This is true also in the cases where the appearance/color informa-
tion is not removed but rather exploited; the multi-spectral signal
is used to produce false-color images that, rather than containing
information about the optical behaviour of the surface, make it visi-
ble underlying shapes and features [VHW∗18]. Since the scope of
non-photorealistic methods is the enhanced visualization of seman-
tic structures and of details across the surface, visualization is not
so dependent on an accurate light/camera calibration, since, gener-
ally, small scale calibration errors do not change much the overall
information content of the imaged scene. Unlike the methods in
Sec. 5.3, illustrative techniques are thus more robust to acquisition
noise and inaccurate, relaxed computation of light, camera, and
radiometric parameters. Due to the combination of a compact data
format, the user-friendly interface, the robustness to noise or poor
calibration, and the effectiveness of those illustrative techniques,
this group of methods are the most used ones in a large amount of
daily applications (Sec. 6.1).

5.6 Feature maps and derived maps

All the methods presented so far, whether photorealistic or illustra-
tive, aim at visualizing the original object with all its chromatic and
geometrical information, and, eventually, with some enhancement
or some exaggerated representation of specific details or regions
across the surface. Conversely, other techniques (visually) discard
all the input data, and are more focused on the visualization of just
the results of some particular MLIC processing, in one or multiple
layers. More precisely, those pipelines have basically two steps, i.e.,
the extraction of a particular set of features or per-pixel attributes
(≥ 1), and the presentation of them in a set of MLIC derived maps.

5.6.1 Approaches

By exploiting the high-correlation between appearance changes
due to moving light direction and depth discontinuities in the ob-
served scene, a group of works directly visualize a per-pixel attribute
that maps edges and contours on the object, without computing any
geometrical representation of the object shape. With this rationale,
Raskar et al. [RTF∗04] are able to produce edge-rendering, sketches
and toon-based visualizations of a scene captured with just four
lights, by exploiting depth discontinuities retrieved without the esti-
mation of an explicit normal map (as Photometric Stereo methods
do). They combine an ambient signal and the four photographs lit
by different light sources by using several differences and ratio im-
ages. Other techniques exploit the variation of the parameters of a
particular MLIC fitting model; for instance, Pan [Pan16] visualizes
surface edges by computing them directly from Polynomial Texture
Map coefficients (Sec. 5.3); the probability of having an edge is
proportional to the largest variation of one of its six parameters
in terms of direction and magnitude. The amount of edges or dis-
continuities in the original MLIC signal is also a cue for spotting
details or important regions with significant features. Some papers
use this idea to extract saliency maps out of MLICs [PLGM∗17b].
Pitard et al. [PLGM∗17c] use DMD (Sec. 5.3) to extract saliency
maps that highlight the local changes of reflectance; they develop
a method which can split the modes into rotation-dependent and
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Figure 9: Sketch-like extraction. We present here two images: a color repre-

sentation of cones with inscriptions, and a sketch-like visualization obtained

by applying a line drawing algorithm to the captured MLIC. Courtesy of
Hameeuw [Ham15]

rotation invariant ones, so that their robust computation of surface
saliency exhibits an invariance to object rotation.

Unlike the previous ”implicit” methods, another group of works
produces visual representations of feature maps, such as edges, by
explicitly relying on normal map computation from MLIC data.
Brognara et al. [BCDG13] take the normals computed from PTM
coefficients and extract surface discontinuities by the sum of the
squared directional derivatives of the normal vector field. The final
edge, or sketch-like, visualization is obtained by simply applying a
Canny filter to the discontinuity signal. They apply this process at
different scales and merge them into a single representation, in order
to smooth out the final visualization and to make it more meaningful,
clean, and more artifact/outlier free. Similarly, Earl et al. [EBB∗11]
directly apply a Sobel filter on the normal map to produce a per-pixel
edge map visualization of the object under study. In addition, very
accurate and extremely readable sketch-like views can be extracted
by feeding automated line drawing algorithms with the normal map
computed by MLICs [Ham15]. Fig. 9 presents the result of a typical
and very useful transformation from the MLIC to a more effective
sketch-like view of the object under study; in this case, it is very
clear how, by removing chromatic information, low-frequency lumi-
nance signals, and unimportant details, all the inscriptions on ancient
cones are presented in a more abstract way, and ultimately are more
readable than in the original photo. Of course, with the normal maps
at our disposal, it stands to reason that other measurements can be
derived, whose values represent better edges and surface features.
Normal unsharp masking or gradient maps, as well as the compu-
tation of curvature from normal vector fields, are able to display
exaggerated surface features [VVP∗18]; they can reveal fine struc-
tures across the object that only non-photorealistic renderings can
bring to light, such as curvature coloring, slope exaggeration or a
combination of them [WVM∗05].

Edges, sketch maps, and the curvature-based saliency reveal a
more geometric nature of the object. A large number of papers
completely focus their attention to geometry and strive to compute
a visualization that contains a pure geometric-based signal, by re-
moving as much as possible the information about shading, color,
and general material BRDFs. Normal computation from MLICs
(a.k.a. Photometric Stereo) is a well-known topic with an over-
whelming amount of literature [AG15]; besides the computational

aspect, a big bunch of works uses this signal for visualization pur-
poses among a really heterogeneous set of applications (Sec. 6.1).
In some cases the original [BCDG13, DGL∗14, EBB∗11, CDG∗18]
or the enhanced [GCD∗17]) normal map display can be an ad-
ditional option for object inspection. In other cases, this kind of
visualization is necessary due to extreme conditions, such as visual
clutter due to other appearance components. For instance, highly
spatially-varying and noisy albedo over a smoothed surface geome-
try (e.g., due to material aging) makes the aforementioned sharping
algorithms almost useless. Only by separating color and normals
one can produce a visualization that is capable of revealing the un-
derlying scene content [MCPC17]. Compared to the literature on
Photometric Stereo, which aims at exactly computing normal maps
or shape geometry from MLICs, normal map based visualization
can relax the requirement of an accurate normal vector field, given
that the visualization is still suitable to understand the geometric
content of the surface. When the image signal has a strong bias
due to particular acquisition noise and environmental conditions
(e.g, underwater acquisition with high turbidity), normal maps, al-
though not precisely reconstructed, can provide better and cleaner
visualization of the finest surface details [SSM∗17]. Similarly, in
a multi-spectral MLIC framework, different wavelengths produce
slightly different normal maps of the same object, due to the fact that
each light frequency reacts differently at different sub-surface layers
of the object [TML∗13]. Forgetting the fact that, from a Bayesian
approach, the definition of a ”true” normal per pixel is a meaning-
less concept, and it makes sense only from a probabilistic point
of view, those sets of ”pseudo-normals” (per pixel and per wave-
length) can be employed to visualize and render a lot of information
about both surface behaviour at a mesoscale (nor globally, neither
locally), and local, per-pixel scale, tiny details across the object. For
instance, since ultra violet (UV) light does not penetrate the surface,
it can be used to visualize very sharp normal maps from the outer
object layer; conversely, infrared MLIC produces a normal-based
visual signal which renders the low-frequency component of the
object shape [VdPHB∗16, VHW∗18]. Rather than providing normal
map visualization from different wavelengths, some papers extract
and visualize normals from a single optical component of the sur-
face; more specifically, some do that from the diffuse nature of the
object [BCDG13, DGL∗14, EBB∗11, CDG∗18], while others only
from the specular component of the reflectance [MHP∗07]. What-
ever is the source of the normal vector field, several visualizations
can be done by enhancing and sharpening this signal. Willems et
al. [WVM∗05] apply a slope exaggeration operator to the normal
vector field, by increasing the angle between the z-axis (i.e., the view
direction) and each per-pixel normal. Since this operation is very
fast, it can also be employed in real-time surface visualization and
inspection [MWGA06]. The local standard deviation of the normal
orientation has been also considered a valuable way to visualize
morphological anomalies in the case of expected low-frequency
geometry [MBW∗14]. Normal map processing can also produce
several types of derived visualizations, ranging from surface rough-
ness to tangent and bi-tangent vectors [GCP∗09]; by integrating
normals one can also display 2D images of depth maps (or height
fields) [DGL∗14,TLQ06]. If the MLICs are acquired by using polar-
ization principles, it is possible to visualize different normals from,
for instance, circularly polarized and unpolarized illumination, as
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(a) Visible light, infrared, and ultraviolet photos of a painting

(b) Lambertian Outlier map (top) and Outlier Direction map (bottom)

Figure 10: Derived maps. Given a multi-spectral acquisition, consisting in

three (visible light, infrared, and ultraviolet) MLICs (a), it is possible to

extract derived maps that highlight different responses of the object surfaces

(b). Here we present the Lambertian Outlier maps of the visible and infrared

signal, and the Outlier Direction maps for the same channels. Courtesy of
Giachetti et al. [GCD∗17].

well as to produce the visualization of other feature maps such as
circularly polarized and unpolarized stokes parameters [GPDG12].

Different signal and interesting visual cues emerge as a side prod-
uct of classic fitting or MLIC processing. During the computation
of matte component from MLICs a lot of computation is devoted
to spotting deviations from the imposed model or simply data out-
liers. These are not binary measures (e.g., outlier/not outlier), but,
obviously, they represent a probabilistic estimation of labeling confi-
dence. Besides helping in the computation framework, those values
used as visualization matter proved to be a good way to reveal
the spatially varying behaviour of the surface, e.g., in terms of dif-
fuse and specular component distribution [CDG∗18]. Giachetti et
al. [GCD∗17] present two kinds of maps derived from those numer-
ical pipelines. The first map, called the Lambertian Outlier map,
can be obtained by summing the squared differences between the
measured reflectance and the result of matte fitting (e.g., by using
Photometric Stereo or PTM); this difference is a visual representa-
tion of the high-frequency component of the surface optical material
response. After the matte component fitting, another map can be
computed by counting for each pixel the number of reflectance
values that deviate from the fitted curve; this multiplicity map of
deviations from the model has been called Outlier Direction map.
Fig. 10 shows those derived maps computed from the visible and
infrared signals of a multi-spectral five channel MLIC (the five chan-
nels are the infrared, the three visible, and the ultraviolet signal). It
is clear how they highlight different types of surface behaviours that
are poorly visible or invisible at a naked eye. Look, for instance, at
the Outlier Direction map of the infrared channel, which makes a
goldish region of the knight’s hat pop up; this particular behaviour is
really hard to spot in common photographs of that painting. Finally,
other approaches visualize several maps obtained by combining

relightings, e.g., the difference between the same relighting of two
acquisitions of the same object made at different times [PSM05], or
computing Di Zenzo gradients [Pan16, GCD∗17]. Fig. 11 presents a
comparative view of different signals; one is the Static Multi-Light

enhancement presented in Sec. 5.5, and the other are the Di Zenzo
gradient map [Pan16, GCD∗17], a contrast-enhanced normal map,
and the Outlier Direction map. Arrows in the latter prove how those
types of derived data are capable of make relief patterns across the
object surface more visible and readable.

5.6.2 Visualization and analysis

Many sorts of feature maps have been devised to provide insights
on the shape and appearance of the imaged scene. Most methods
are designed to be robust to errors, non-idealities in the acquisition
pipeline, and inaccurate calibration of light, camera and radiometric
parameters. Unlike most single-image methods (Sec. 5.2) or illustra-
tive techniques (Sec. 5.5), many feature maps bear little relation with
the original photorealistic view, but directly identify and highlight
the regions of interest and their information content.

For shape understanding, feature maps are used in support of
visualization and analysis at all scales. Approaches include both
micro- and meso-details (sub-pixel geometric structures [TLQ06],
normal/gradient maps or discontinuity maps [Pan16,BCDG13]), and
more global shape information (e.g., visualization and analysis of
structures such as leaf venations [ZHS∗18] or inscription [Ham15]
supported by depth maps obtained from the integration of normal
and/or shadow maps. When dealing with appearance, the main use
is in support of material characterization and segmentation. For
instance, the Lambertian Outlier or the Outlier Direction maps
can visually reveal the distribution of optical behaviour across the
surface (e.g., material discontinuities [RTF∗04]).

The capability of pre-computed or interactively computed feature
maps to improve the understanding of scenes makes them a compo-
nent of many tools, which use them either as direct display, or as
a component of illustrative techniques for a variety of specialized
applications (Sec. 6.1). Moreover, the extracted feature maps are not
solely used for direct visualization, but are also components of more
elaborate processing and visualization pipelines. For instance, su-
pervised or unsupervised machine learning systems for shape-based
or material classification [BCDG13, WGSD09] often take as input
feature maps in replacement or in addition to the original image
data.

6 Applications and tools

MLIC techniques have been mixed and matched to solve several
problems in a variety of application domains, and they have been
also integrated into user-friendly software tools aimed at supporting
both visualization and analysis.

6.1 Applications

The visual analysis of MLICs is at the basis of several appli-
cations and tasks, ranging from pure visualization to geometric
analysis [PPY∗16]. We provide here a structured overview of the
areas where MLICs have been successfully used for daily visual-
ization and analysis work. Table 2 presents a schematic view of the
distribution of the techniques presented in Sec. 5 with respect to the
main application domains they are employed in.
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Figure 11: Combination of Features and Relighting. The extraction of features can also enhance interactive relighting by superimposing those two components

in one dynamic visualization. Here we show how those techniques are used to better display brush strokes in a detail of a painting. We compare (a) Static

Multi-Light enhancement (Sec. 5.5) with (b) a di Zenzo gradient map, (c) contrast-enhanced normal map, and (d) an Outlier Direction map. Arrows in the latter

show how this type of derived map is capable of make relief patterns more visible. Courtesy of Giachetti et al. [GCD∗17].

6.1.1 Cultural Heritage

CH appears, by far, to be the application domain where MLICs
are more popular. In particular, this is due to both the versatility
of the capturing approach (capable of working at a large number
of scales), and the large quantity of information that can be gath-
ered about object surfaces by using relatively low-cost equipment.
Moreover, using moving lights fits well with traditional CH analysis
means, and it is thus well received by CH experts. Nowadays MLIC
based acquisition is considered a well-assessed digitization method
in CH, and specific surveys and tutorials have been dedicated to
them [MMC∗08, VVP∗18].

Since their introduction, relightable images based on MLICs
(Sec. 5.3) have been used for the analysis of CH objects like
tablets, statues [MGW01, GTHD03, MMSL06, MVSL05, SOSI03,
DHOMH12], paintings [PSM05, PCS18], coins [PBFS14, PCS18],
and manuscripts [WVP15]. The interactive relighting is particu-
larly appreciated by CH experts as it also enables the simulation
of the typical raking light surface inspection [PRA15]. Another
common practice in the CH community is related to the use of
illustrative enhancements (Sec.5.5), such as Diffuse gain, Spec-

ular enhancement, and Unsharp masking, to intensify the detail
perception on tablets [WVM∗05, PCC∗10], petroglyphs or written
stones [UW13, MCPC17], mural graffiti [CSS15], coins [KK13], or,
generally, metallic alloys [Mac18]. In this context, a major research
need is the enhancement of legibility and readability of written
texts or engraved symbols [EBB∗11], and the processing of MLICs
can lead to the extraction of meaningful lines and inscriptions on
tablets [BCDG13, Pan16]. Further, an advanced application to au-
tomatically recover line drawings of inscriptions has been demon-
strated on a collection of Mesopotamian clay cones [Ham15].

The combination of the surface penetration given by the infrared
light together with the non-photorealistic exaggeration facilitated by
the multi-directional light images has proven effective for recovering
invisible texts of the Dead Sea Scrolls [CM11], where the deteriora-
tion of the parchment caused its blending with the black iron-gall ink.
Similarly, the engravings on a very small golden lamina [CDG∗18]
benefited from the single visualization of the albedo (Sec. 5.2) cor-
responding to the infrared and ultraviolet signals, where the contrast
between the engraved symbols and the background is higher than in
the visible case. Furthermore, by using RBF interpolation (Sec. 5.1),
the raking light analysis is enabled, and certain engravings around
the margins of the lamina gain more visibility.

Another application of MLICs coveted by the CH end-users is the
visualization of the dynamic interplay between light and the com-
plex surfaces of artworks characterized by heterogeneous optical
behaviours. In a recent work [FBKR17], the authors manage to trace
back the original visual impression of mosaic tesserae and early
prints by unmixing the glossy details from the diffuse component
as a result of fitting the light transport function formulated as a
polynomial (Sec.5.3). In this manner, they obtain a layered repre-
sentation of the artwork’s reflectance. Moreover, in order to allow
the end-users to customize the digital surrogate according to their
own artistic view, the gloss layer is enhanced in a non-photorealistic
fashion (Sec. 5.5) and generated synthetically according to a Phong
reflection model. Through the user input, parameters such as the
degree of shininess, diffusiveness, and specularities can be interac-
tively modified in order to render different degrees of glossiness.
The separation of the specular component has been proposed as
well by Macdonald [Mac18] as a way to improve the quality of CH
object relighting. The importance of the specular reconstruction for
the visualization of relighted paintings’ surface is demonstrated also
by Thanikachalam et al. [TBF∗17], where the method based on the
reconstruction of light transport matrix with a compressive sensing
approach (Sec. 5.3) preserves the visual richness of paintings, and
allows for the visualization of how the specular behaviour migrates
over the painting’s surface. Pitard et al. [PLGM∗17a] show that
a better interactive relighting model could not only improve the
quality of the specular component on a jewel visualization but also
allows for a better understanding of texture relief on a wall painting.

The analysis of the rich data in MLICs has given promising re-
sults in revealing the manufacturing techniques of a craftsman or the
painting style of an artist. This application is especially relevant for
reclaiming information of unknown or unstudied heritage, as well
as very old or lost-and-found historical objects. Newman [New15],
based on the specular enhancement visualizations (Sec. 5.5), dis-
tinguishes between three types of negative profiles (incisions and
striations) in the creation and finishing of archaeological bone arti-
facts from El Zotz assemblage. At the same time, Artal and Klaus-
meyer [AIK13] propose a method that uses non-photorealistic en-
hancements and feature maps in the case of Greek red-figure vases
(Sec. 5.5 and Sec. 5.6) to guide the end-user in distinguishing be-
tween various types of decoration lines with positive profiles, as
well as their order of application at the fabrication moment. Sim-
ilarly, others spot different orientation patterns in the clay mold-
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Cultural Heritage Natural Sciences Industry Underwater Medical Imaging

Direct ex-

ploration

(Sec. 5.1)

Interpretation/Monitoring [GCD∗17]; Dissemi-
nation/Inspection [GCD∗17, PCS18, SOSI03].

Single-image

data fusion

(Sec. 5.2)

Enhanced perception [CSS15, CDG∗18];
Showing the invisible [CDG∗18,
VdPHB∗16, VHW∗18, WVP15]; Pig-
ments [CSS15,VdPHB∗16,VHW∗18,WVP15].

Enhanced percep-
tion [FAR07, RTF∗04,
ZLR∗10]; Automatic illus-
tration [FAR07, ZLR∗10,
RTF∗04]; Dissemina-
tion/Inspection [FAR07].

Enhanced percep-
tion [RTF∗04].

Endoscopy [RTF∗04];
Shape and re-
flectance anal-
ysis [SSS∗08,
SLDS14].

Relightable

images

(Sec. 5.3)

Surface defects [Mac15]; Mate-
rial characterization [Mac18]; In-
terpretation/Monitoring [GLSWE18,
New15, MMC∗08]; Dissemina-
tion/Inspection [GLSWE18, PBFS14, Mac15,
FBKR17, TBF∗17, DHOMH12, MGW01,
MMC∗08, PLGM∗17a].

Enhanced percep-
tion [MMC∗08, MGW01];
Species identifica-
tion/Interpretation [HP15];
Dissemina-
tion/Inspection [MMC∗08,
MGW01].

Surface Quality
Inspection [SS00,
PLGF∗15,
PLGM∗17a].

Shape and re-
flectance anal-
ysis [SSS∗08,
SLDS14].

(SV)BRDF fit-

ting (Sec. 5.4)

Material characterization [GTHD03]; Dissemi-
nation/Inspection [GTHD03, MHP∗07].

3D Printing -
Real-world visu-
alization [TU16];
Surface design
and inspec-
tion [RMS∗08].

Non-

photorealistic

enhancements

(Sec. 5.5)

Enhanced perception [CM11, EBB∗11,
CSS15, UW13, MCPC17, MGW01,
WVM∗05, PCC∗10, PSM05, MMSL06];
Showing the invisible [CM11, MCPC17];
Pigments [GCD∗17, CSS15]; Sur-
face defects [PSM05]; Interpreta-
tion/Monitoring [VdPHB∗16, VHW∗18,
KK13, EBB∗11, New15, AIK13, CM11];
Dissemination/Inspection [VHW∗18, MGW01,
AIK13, PCC∗10, KK13, PSM05, MMSL06,
UW13, EBB∗11, MVSL05]

Enhanced percep-
tion [MGW01, HBMG02,
MWGA06]; Automatic
illustration [HBMG02];
Species identifica-
tion/Interpretation [HP15];
Dissemina-
tion/Inspection [MGW01,
HBMG02, MWGA06].

Enhanced
percep-
tion [SSM∗17].

Feature and

derived maps

(Sec. 5.6)

Enhanced perception [Pan16, VVP∗18,
Ham15, BCDG13, CDG∗18, MCPC17,
EBB∗11, WVM∗05, PSM05]; Show-
ing the invisible [MCPC17]; Surface
defects [PSM05, MBW∗14]; Material
characterization [GCD∗17]; Interpreta-
tion/Monitoring [VdPHB∗16, New15,
MBW∗14, EBB∗11, BCDG13]; Dissemi-
nation/Inspection [VHW∗18, PSM05, EBB∗11,
MHP∗07, Ham15].

Enhanced perception [Pan16,
RTF∗04, MWGA06];
Automatic illustra-
tion [RTF∗04, Pan16,
ZHS∗18]; Species identifica-
tion/Interpretation [ZHS∗18,
WLW17]; Dissemina-
tion/Inspection [MWGA06,
Pan16].

Enhanced percep-
tion [RTF∗04];
Scanning Elec-
tron Microscope
Data Visualiza-
tion [PPV08,
PS05]; Surface
Quality Inspec-
tion [PLGM∗17c,
PLGM∗17b].

Enhanced
percep-
tion [SSM∗17,
FQJ∗17].

Enhanced per-
ception - En-
doscopy [DGL∗14,
PLG∗13, RTF∗04]
- La-
paroscopy [CB12];
Shape analy-
sis [LCG12]

Table 2: Techniques vs Major Application Domains. For each class of MLIC analysis and visualization methods, the major use cases for each application

domain are presented.

ing process of Execration Egyptian statuettes made of unbaked
clay [VdPHB∗16]. Analogously, in painted items, it is possible to
render the relief and orientations of the brushstrokes related to a
style or an artist. In addition, many methods aim at detecting partic-
ular pigments through direct local MLIC interpolation in the light
space (Sec.5.1), by computing feature maps (e.g., Outlier Direction

map, Sec. 5.6) [GCD∗17], by mixing the multispectral data into a
single false color visualization [VHW∗18, VVP∗18] (Sec. 5.2), or
by directly analyzing histograms of the per-pixel reflection maps
(Sec. 5.1). In this context, MLICs have also been used to recover lost
pigments and to revive faded colorings by using non-photorealistic
renderings [VdPHB∗16]. Finally, fibers in historical textiles with
different materials and patterns of decay can be visually detected by
using magnified multi-light images under UV radiation [GLSWE18]
(Sec. 5.2).

MLICs can be maneuvered as a measurement tool in assessing
the conservation condition of CH materials. For instance, single
image visualization and non-photorealistic enhancements based on
MLICs of coins [KK13] indicate the need for material cleaning, and
show whether a conservation treatment was applied successfully
or not. Similarly, the incorporation of profile measurements on
an exaggerated shaded view of manuscripts has shown to provide
useful visual annotation with respect to the analyzed documents and
their medium [VHW∗18]. In addition to single image visualizations
and dramatic enhancements, by deriving feature maps (Sec. 5.6)
that target crack formation, Manfredi et al. [MBW∗14] propose
a quantitative approach to monitor damages in paintings. With a
resembling underlying procedure, MacDonald [Mac15] measured
the extent of cracks in a fresco at the National Gallery of London.
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6.1.2 Natural Sciences

MLICs are a well-recognized imaging technique for natural sci-
ences as well [MMC∗08]. In biology, MLIC-based relightable image
models (Sec. 5.3) are used to support animal species identifica-
tion [HP15], while MLIC-based image fusion (Sec. 5.2) is used for
detail visualization of leaves or flowers [FAR07, RTF∗04, ZLR∗10].
Non-photorealistic visualization methods combined with feature
extraction (Sec. 5.6) have also been successfully used for the
visual analysis of biological surfaces [WLW17] and leaf vena-
tions [ZHS∗18]. In paleontology, MLIC visualization methods have
mainly two functionality: detail visualization and whitening. The
low visibility of images of fossils is hampering visual analysis.
Mostly, this factor comes due to low color contrast and a corroded
relief. To solve this problem, the classic RTI framework is often
used to illustrate subtle features from fossils, assisting in discovering
hidden details [HBMG02]. MLIC data are used not only to create
interactively relightable images of the fossils [MGW01, MWGA06]
(Sec. 5.3), but also to simulate fossil whitening, a task performed to
get information regarding their morphology. Normally, this task is
done manually using various techniques such as airbrush or chemi-
cal agent (ammonium chloride). Hammer and Spocova [HBMG02]
show that this can be done digitally using MLIC-based photore-
alistic visualization, with a competitive performance with respect
to traditional more invasive techniques. Enhancements like edge
detection have been used as well to increase the perception of fossil
structures [Pan16].

6.1.3 Industry

In industrial manufacturing, the inspection of an object surface
is often performed to control whether the final product meets pre-
defined tolerances. In recent years, major efforts have been made
to replace, wherever possible, manual or physical testing with vir-
tual visual inspection. MLIC visualization is emerging as a promis-
ing solution since it allows for a reliable acquisition of materi-
als, their high-quality visualization, and an exchange of that in-
formation for industrial monitoring and design [XR19]. Enhanced
single image visualization based on MLICs can be used to bet-
ter understand the structure of mechanical parts [RTF∗04]. Pitard
et al. [PLGM∗17c, PLGM∗17b] have used a MLIC photorealistic
visualization technique for the detection and the analysis of vi-
sual anomalies on challenging metallic surfaces. This technique is
derived from DMD [PLGF∗15] (Sec. 5.3), and automates the vi-
sual inspection by introducing a rotation-invariant representation of
the reflectance characteristics of the inspected surface. Smith and
Stamp [SS00] also use MLIC based photorealistic visualization tech-
nique for quality inspection of textured ceramic tiles, while Rump et
al. [RMS∗08] employed MLICs visualization for metallic car paint
inspection and design. In the context of quality control and investi-
gation of electronic reliability, MLICs captured with the Scanning
Electron Microscope (SEM) [PS05] are used to produce meaningful
visualization of micro- and nano-details on the surface of electronic
circuits; Pintus et al. [PPV08] demonstrate an application to the
visualization of damaged solid-state electron devices.

6.1.4 Underwater inspection

An image-based surface analysis in the underwater environment
is a difficult task, due to factors such as water clarity/turbidity,

excessive algae, and other participating media. This highly affects
the light phenomena, and usually results in dark, low contrast, and
bluish tone-image. A specialized approach of MLICs applied to that
type of environment has been proposed by Selmo et al. [SSM∗17].
Authors use RTI to study underwater CH objects, e.g. details from
historic shipwrecks. They also perform a study on the effects of
turbidity on relighting quality. Another issue in underwater MLIC
processing is related to light refraction effects. Fan et al. [FQJ∗17]
propose a flat refractive model to cope with this phenomenon by
computing the mapping of virtual and real points; they are capable
of removing distortions in underwater acquisitions both for 3D
reconstruction and MLIC visualization.

6.1.5 Medical imaging

The application of multi-light visualization in the area of medical
science strives to increase readability of medical images. It is mostly
used in the type of examination where the internal organ such as the
esophagus, stomach, and upper part of the small intestine is visually
inspected, often in real-time during examinations [PLG∗13, CB12].
This is typically achieved by modifying existing instruments (e.g.,
endoscopes [DGL∗14]) to perform multi-light acquisitions, and by
fusing several images to help in visualization. The typical approach
is to reconstruct normals and remove highlights in the visualiza-
tion [PLG∗13]. By using a simple MLIC capture with few light
sources and single image enhanced visualization it is possible to
assist doctors in the understanding of the 3D structure of anatom-
ical parts in endoscopic views [RTF∗04]. MLIC analysis is also
used for 3D reconstruction of different organs. For instance, Lv
et al. [LCG12] used Photometric Stereo to retrieve the shape of a
tongue, which is used for accurate diagnosis. To support visualiza-
tion, the reconstructed organ is mapped with the surface albedo.
MLIC-based visualization is also used in dermatology, which often
uses interactive visual inspection to support diagnostic tasks. In this
area, a photorealistic visualization with fitted relightable models
(Sec. 5.3) has been proposed for pigment lesion analysis [SSS∗08],
or to find biomarkers for early skin cancer detection [SLDS14]. Sun
et al. [SSS∗08] have shown that MLIC-based non-photorealistic
enhancement (Sec. 5.5) is able to generate an efficiently encoded
and reasonably complete representation of skin appearance, which
assists in analysis and diagnosis of pigmented skin lesions.

6.2 Interactive visual inspection tools

Several interactive MLIC-based visualization tools have been
described in the literature, and a few of them have been made
publicly available and are actively maintained. Some of them are
generically applied to datasets captured with different cameras and
lighting setups, while others are used to visualize only data ac-
quired by a specific acquisition device (e.g., a light dome) and/or
pre-computed versions of the relighted image [VHW∗18, Mac15].
While some of them allow for visualization on the web or on portable
devices [PCS18, PBFS14], others are developed considering only
desktop applications with fully resident data. A summary of the
major available tools is shown in Table. 3.

The most popular application is RTI viewer (Fig. 12a). It has been
primarily developed by the ISTI/CNR Visual Computing Labora-
tory, and financed and distributed now by Cultural Heritage Imag-
ing [CHI19]. Complete credits and executable codes can be found at
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(a) RTIViewer (b) apTool (c) Relight Viewer

(d) Digital Materiality Viewer (e) ImageViewer (f) PLDViewer

Figure 12: Screenshots of visualization tools: (a) RTIViewer [CHI19], the most popular solution for relightable image visualization; (b) apTool, a research

tool developed by University of Verona [G∗19]; (c) Relight Viewer, a tool part of a powerful library developed at ISTI/CNR Pisa [P∗19b]; (d) Digital

Materiality Viewer application developed at the Digital Humanity Labs (University of Basel) [DHL19]; (e) GUI of desktop visualization tools described by

MacDonald [Mac15] (this tool does not allow interactive relighting); (f) PLDViewer GUI, which handles dense acquisition realized with the Portable Light

dome [KUL19].

the CHI web site. This tool allows for the visualization of relightable
image files stored on the local file system and remote files through
HTTP. It features a visible virtual torch, which allows the user to
perform photorealistic image relighting based on PTM or HSH
(Sec. 5.3), and includes several non-photorealistic enhancements
(Sec. 5.5), including specular enhancement and image unsharp mask-
ing. Due to its free availability and ease of use, together with the
CHI [CHI19] capture software, it is widely utilized in different areas
of study presented in Sec. 6.1. Another desktop application tool, but
mainly used in image processing research works, is APTool [G∗19]
(Fig. 12b). This tool allows for interactive exploration of raw MLIC
data using RBF interpolation; it also creates relightable images by
using PTM or HSH, and extracts and visualizes feature maps. It
can also interactively show per-pixel interpolated reflectance maps.
This tool has been used in CH for the study of various objects
such as coins, rock art, statues, and paintings [GCD∗17, CDG∗18].
A multi-functionality application tool called PLDviewer (Portable
Light Dome viewer) has been developed at KU Leuven [KUL19],
based on a full processing framework [VHW∗18]. This tool accepts
as input proprietary compressed file generated with a specific dome
device and an undisclosed processing pipeline. It provides interac-
tive relighting (photorealistic visualization), 3D model construction,
and non-photorealistic visualization. The first can be performed with
the help of two virtual light sources with tunable intensity (Fig. 12f).
The viewer supports several rendering modes, e.g. albedo and ambi-
ent, and allows for multi-spectral visualizations in five spectral bands
(i.e., Infrared, Red, Green, Blue, and UltraViolet). Six views of an
object are shown in the interface for full 3D objects creation, and the
user can interactively visualize one at a time by switching between

different views using arrow-keys. In addition, this tool allows for
performing non-photorealistic enhancement (Sec. 5.5) such as cur-
vature coloring, exaggerated shading, and sketching. Furthermore,
it allows for displaying the map of the response to the set of lights
on single pixels (reflection maps) and local histograms. This tool is
mainly developed for CH applications but can be extended to other
application domains. The desktop visualization tool presented by
MacDonald [Mac15] (ImageViewer, Fig. 12e) is capable of display-
ing original photographic images and different kinds of modified
renderings with the same lighting. Unlike RTIViewer, APTool, and
PLDViewer this tool does not support interactive relighting. Several
tools have been proposed also for web-based visualization of re-
lightable images. WebRTIViewer [P∗19a] is a web-based multi-light
visualization tool that allows for the visualization of the relightable
images created using PTM or HSH in a standard web page, with-
out the installation of any plugin and with a recent web-browser.
PLDWebviewer is the web-based counterpart of the PLDViewer
with similar functionality. Other web-based tools have been devel-
oped by the University of Basel [DHL19]. In particular, the Digital
Materiality Viewer (Fig. 12d) allows for interactive relighting and
glossy enhancement, as described by Fornaro et al. [FBKR17]. Re-
light [P∗19b] is a library to create and view (on the web) relightable
images (RTI), which supports the encodings described by Ponchio
et al. [PCS18]. The library can be used to create relightable images
based on PTM, HSH, and RBF, and exploits different compression
and color coding options. The visualization methods feature both
an OpenGL Javascript library for RTI rendering on the web, which
can be used to create web pages with single or multiple relightable
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Tool Access Visualization Platform

RTIViewer
[CHI19]

Public Photorealistic relighting
(PTM, HSH); Specular
enhancement; Diffuse gain;
Normal, Image & coeff
unsharp mask

Desktop

APTool
[G∗19]

Private Photorealistic relighting
(PTM, HSH, RBF);
Normal/Albedo Maps;
Appearance profile vis.

Desktop

PLDViewer
[KUL19]

Private Photorealistic relighting;
(Exaggerated)Shading;
Curvature; Sketch

Desktop

ImageViewer
[Mac15]

Private Original images; Outline,
albedo and normal map;
Specular components;
Low-frequency fitting (PTM,
HSH)

Desktop

WebRTIViewer
[P∗19a]

Public Photorealistic relighting
(PTM, HSH);

Web

Relight-viewer
[P∗19b]

Public Photorealistic relighting
(PTM, HSH, RBF, Bilinear)

Web

PLDWebViewer
[KUL19]

Public Photorealistic relighting;
(Exaggerated) Shading;
Curvature; Sketch

Web

DigitalMateriality
Viewer
[DHL19]

Public Photorealistic relighting;
Specular enhancements

Web

Table 3: Tools. Major MLIC-based visualization software tools described in

the literature.

images, and the Relight Viewer, a multiresolution viewer with a
toolbar controlling a few basic options (Fig. 12c).

7 Discussion

Our survey demonstrates that a vast amount of research results
can be exploited for visually displaying and analyzing the informa-
tion encoded in multiple images of a surface captured from a single
point of view and changing the illumination. These solutions have
been used standalone, or mixed and matched in various ways, to
the benefit of scholars and practitioners in a wide range of practical
applications. Moreover, due to the availability of low-cost proto-
cols or automatic systems to capture MLICs at many scales, the
applicability of these methods is constantly growing. The analysis
of the literature outlined several interesting points for discussion
and revealed relevant challenges that need to be faced in future
research in order to improve the effectiveness of MLIC analysis and
visualization.

7.1 Analysis of current state-of-the-art

In the following assessment of the current state-of-the-art, we
focus on the main issues that we find important for using MLICs in
visualization and analysis settings.

7.1.1 Light space sampling, data storage, and compression

MLIC data are practically multidimensional vectors storing per-
pixel information sampling the space of a light transmission encod-
ing. The amount of information captured on the analyzed surface
by a MLIC depends clearly on the number of images stored, e.g. on

the sampling density in the light parameters’ space. With a dense
sampling, it is possible to have a good understanding of the sur-
face properties just by looking at the original images, or to have
a simple interactive relighting by interpolating pixel values in the
light parameter space (Sec. 5.1). However, this requires to store all
the original information in memory to enable interactive surface
inspection, with limitations on interactivity as well as on usability
in non-local situations (e.g., web viewers). The use of data compres-
sion (e.g., PCA [PCS18]) can reduce the memory requirements for
data storage and exchange, at the expense, however, of some loss in
quality. Relightable images consisting of interpolation coefficients
can be efficiently stored and rendered (Sec. 5.3), but, since they rely
on low-frequency models, they are not able to reproduce complex
material behaviors. While several solutions have been presented to
extend them to higher-frequency models, these are far from perfect,
and incur a considerable storage overhead. BRDF models, coupled
with mesostructure information, could provide the best trade-off
between encoding size and relight quality, but are difficult to be
fitted from a sparse sampling of complex materials (Sec. 5.4).

The sampling of the data is critical. While it is possible to ob-
tain edge information [FAR07], or even a photorealistic relight-
ing [XSHR18], with very few images, the recovery of reliable BRDF
parameters or non-hallucinated details requires a quite dense sam-
pling. Other applications, like normal map reconstruction, may be
realized with a limited number of optimally sampled directions, and
the addition of further samples does not necessarily improve the
quality of results in a relevant manner [BZS18].

Some methods to derive relighting or material descriptors rely
on the assumption of predefined and fixed light directions or light
bases. This may guarantee optimal results for both material seg-
mentation and relighting. Algorithms can learn sets of optimal pre-
defined lights to maximize the extracted information. However, in
many cases, the lighting cannot be accurately controlled, but only
measured a posteriori with calibration procedures. More flexible
algorithms can deal with different sampling, and also with the inac-
curacy of simplified light models (like directional and point lights),
to produce relightable images independent of original light direc-
tion sampling and light beam shape [GDR∗15]. One of the most
interesting research directions in MLIC processing techniques is
the investigation of optimal resampling of the data in light space.
The idea of resampling the lights in a regular pre-defined grid has
been recently proposed for compression purposes [PCS18], but the
proposed approach, based on RBF interpolation, is effective only if
the original sampling is sufficiently dense.

7.1.2 Handling color channels and multispectral data

MLIC capture can result in a set of monochromatic images, color
images, or even multispectral images, depending on the light sources
and the camera employed. Most of the techniques for visualization
and analysis (Sec. 5) are described for single-channel data.

While the most common approach is to simply apply them to
color or multispectral data by handling each channel separately,
a popular approach is to separate luminance and chromaticity in
order to reduce memory and increase speed. In the RTI framework,
relighting is often performed in Luminance-RBG (LRGB) mode, by
multiplying the relighted luminance by an average/median per-pixel
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chromaticity (Sec. 6.2). This simplification, reasonable for matte sur-
faces, is typically wrong for glossy objects, where the hue typically
changes with lighting direction. The LRGB approximation should
thus be used with particular care. When using BRDF extraction,
a common simplification is to use only a Lambertian contribution
plus one specular lobe with a shape identical across the color chan-
nels, so that only two chromaticities need to be specified [NDM05].
This dichromatic approach is closer to represent a larger variety of
reflectance behaviors.

The separation of chromaticity from luminance is also used in
compression methods, e.g., performing PCA for dimensionality
reduction [PCS18], even if this approach generates artifacts for
objects with varying reflectance properties. For compression, the
separation is often done in the YCbCr color space, which reduces
cross-correlations so as to increase compression while improving
chroma fidelity [SZV∗14]. As an alternative, other approaches have
also proposed to perform computation in perceptual color spaces
to improve compression or provide fittings that most closely match
human perception [DPF01].

Moreover, some MLIC acquisition frameworks capture images
in different spectral bands [RM07, GCD∗17, WHV∗16]. A useful
application of multispectral imaging is in photometric stereo setups,
since the extra channels lead to improved separation of the shape and
albedo contribution for polychromatic surfaces [TML∗13, NK14].
In terms of visualization and analysis, several approaches have
been presented to merge channels into false-color images, and to
analyze individual spectral response maps [WHV∗16]. However,
so far multispectral visualizations do not appear to have been fully
exploited together with relighting.

7.1.3 Relighting accuracy and evaluation

The quality of novel images of the captured surfaces relighted
with the methods described in Sec. 5.3 can be evaluated by measur-
ing the similarity with corresponding ground truth images (captured
with the same similar light and not included in the data used to
create the relighting). The similarity can be assessed with standard
image quality measuring metrics such as Peak Signal to Noise Ratio
image (PSNR), and/or Structural Similarity Index (SSIM). These
approaches are used in many papers dealing with relightable im-
ages [DHOMH12, ZD14, JA11, GCD∗17, PCS18].

According to those metrics, on most images local interpolation
(e.g., RBF) provides better results than HSH and PTM [PDJ∗18].
Looking at several works [ZD14,PLGM∗17a], it seems that, using a
similar number of coefficients, PTM/HSH and DMD provide similar
results. The results reported by Xu et al. [XSHR18] show that the
CNN based relighting presented may provide higher PSNR than
PTM and BRDF based methods [HS17].

However, simple comparison metrics cannot account for the many
different aspects of the relighting quality. Algorithms can be evalu-
ated for their ability in reproducing the low-frequency reflectance
behavior, in replicating the high-frequency specular effects, and in
correctly representing non local effects (e.g., shadows and inter-
reflections). For the matte behavior, low order parametric functions
(e.g. PTM) seem sufficient to obtain good image quality, but, in the
case of glossy or metallic surfaces, it is evident that the global fitting

Figure 13: Global CNN-based relighting. The blended shadows artifacts

obtained in interpolation-based relighting (left). The method proposed by

Xu et al. [XSHR18] avoids it by using a global CNN based relighting, but

the shadow shape is clearly different from the real one. Courtesy of Xu et
al. [XSHR18].

with low-frequency functions cannot provide the correct appearance.
For this reason, if the sampling is sufficiently dense, a local inter-
polation provides results that are closer to the target image, even
if the location of the specular reflections is not accurate. All the
algorithms interpolating in the light direction space are "local" and
cannot reproduce correctly shadows and interreflections. This results
in the typical "blended" shadows, less evident in the local interpola-
tion of dense sampling, but still clearly visible. Global CNN-based
relighting methods [XSHR18] solve this problem, but create sharp
shadows with hallucinated shape, not corresponding to the real one
(Fig. 13).

Global illumination effects, correct glossiness and even relighting
from different viewpoints could be handled by reliable methods
that recover both the shape and the BRDF from MLIC data only.
However, at the moment, such methods seem still not available for
complex objects.

7.1.4 Photorealism, accuracy, and task specific evaluation

Given these considerations, the quality of the "photorealistic"
relighting should be evaluated in a very task-specific way. First,
it should be stated if the goal of the relighting is to create just a
photorealistic image or an accurate simulation of a real image of the
same object under novel light (that is the case of many applications
shown in Sec. 6.1). In the first case, we could rely also on methods
that potentially create hallucinated details, otherwise, they should
be avoided. Furthermore, we should consider the object materials
and application task. In Pintus et al. [PDJ∗18] subjective tests are
performed in addition to the objective ones, by engaging users of
different background to evaluate both the similarity to target images
and the perceived quality. It turned out that the evaluation criteria
may depend on users, tasks, and materials. For example, even if CH
experts consider the RBF based relighting to better simulate target
image of glossy objects, when the relighted images are presented
without a ground truth reference, a matte-like PTM rendering is
considered of higher quality. For less specular materials this was no
longer true. Non-expert people, however, gave an opposite evalua-
tion.
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Arbitrary light Sampling Relight efficiency Compact enc. Photorealism Accuracy Arbitrary view

Original images no fixed, dense - no total perfect no
PTM [MGW01] yes free, sparse good yes + + no
HSH [MMSL06] yes free, sparse good yes + ++ no
DTD [PLGF∗15] yes free, sparse good yes + ++ no
RBF [GCD∗18] yes free, sparse bad no ++ +++ no
RBF+PCA [PCS18] yes free, sparse good yes ++ ++ no
Resampling+Bilinear [PCS18] yes free, sparse good yes ++ ++ no
RelightNET [XSHR18] yes fixed, 5 images good yes +++ ++ no
BRDF Dictionary [HS17] yes free, sparse good yes + + yes

Table 4: Comparison of photorealistic visualization approaches working on MLIC data.

7.1.5 Comparative evaluation of relighting methods

Considering the critical properties described above, we summa-
rize in Table 4 the main features of the relighting methods that have
been described in Sec. 5. The evaluation of the different properties
is just indicative: photorealism and accuracy may vary by changing
the order of PTM or HSH, or by using different color/luminance
compression. Photorealism here is referred to the natural aspect of
the image, looking correct for both matte aspect, gloss and shadow
reproduction quality. Accuracy is related to the ability to reproduce
original image details. We penalize the global CNN based approach
due to detail hallucination. According to the evaluation of Xu et
al. [XSHR18], we considered not very good, at the current state of
work, both photorealism and accuracy for the BRDF based methods,
mainly because of the difficulty of their practical application to
common settings (multi-material object with complex shapes and
limited numbers of available views). We expect that, at least for
selected object and material classes, BRDF based method providing
photorealistic and accurate results will emerge in the near future.

7.2 Challenges for future research

Our comparative survey of methods, applications, and tools, and
our analysis of the current state-of-the-art makes it possible to high-
light promising and challenging research areas for future work. We
summarize the main identified ones in the following sections.

7.2.1 Standardization of protocols, data exchange formats,

and visualization approaches

One relevant challenge for the MLIC data visualization side is
the development of standardized acquisition, processing, encoding,
and visualization methods for this kind of data. Most image cap-
ture setups share a light-direction based parameterization, even if
with different density and constraints. However, there are not well-
defined standards to encode the calibrated data stack. Moreover, in
all the intermediate steps of the MLIC processing pipeline (e.g. light
calibration, data storage, reflectance models, and parameters encod-
ing) there is a clear lack of guidelines and widely accepted exchange
formats. Also, for the relightable image visualization, even if the
requirements for most practical applications seem to be quite similar
(users need to be able to relight the surfaces with novel illumination,
using false colors to represent attributes over the surface, visualize
material signatures clicking on specific points), there are not stan-
dard container formats for the data that allow for interoperability of
different solutions. The RTI framework [CHI19] can be considered
a de facto standard for some applications in CH due to the fact that
it is based on free and known software, but many more recent and

performing solutions for relightable images and enhancements are
not integrated and not compatible. Moreover, creators of light dome
applications typically develop proprietary solutions for encoding
and rendering data. It would be therefore useful in the near future to
spend some efforts for the development of standardized protocols
and data formats. This would also make it possible to experiment
with novel visualization and user interface techniques.

7.2.2 Improving direct visualization

The improvement in capture techniques is making dense acquisi-
tion more practical. Direct visualization techniques (Sec. 5.1) have
shown their applicability in several domains, but are currently under-
developed. The need to access at visualization time large amounts
of data has, in particular, restricted their applicability, especially in
remote settings, where bandwidth is limited. Relighting based on
low-frequency fitting (Sec. 5.3) is by far the most commonly em-
ployed visualization, but significant inaccuracies have been shown
to exist [PDJ∗18]. Early attempts at using resampling and compres-
sion methods to support direct interpolation are promising [PCS18],
but this research is in early stage and only supports aggressive lossy
compression. It is reasonable to expect that the area of direct visual-
ization can be significantly improved, tackling at least two different
directions. On one hand, interpolation of nearby images can be im-
proved by exploiting more prior knowledge instead of using plain
smoothness constraints. Moreover, multiresolution structures and
compression techniques can be exploited, as done, e.g., in massive
volumetric rendering [BGI∗14], to allow for the real-time browsing
of full MLICs on bandwidth- and storage-limited settings.

7.2.3 Smart use of machine learning techniques for

relighting and BRDF estimation

Deep learning is a powerful learning method inspired by how the
brain works. (Convolutional) Neural Network based methods have
recently replaced traditional methods in a large part of Computer
Vision applications. For MLIC processing aimed at recovering shape
(Photometric Stereo), CNN based methods have recently demon-
strated the possibility of recovering normals better than traditional
methods [Ike18]. It is expected that these methods could be used
also to recover other intrinsic properties of the material for visualiza-
tion and also for interactive relighting, as shown in Sec. 5.3, Sec. 5.3
and Sec. 5.4. The use of deep learning approaches could solve
also current issues encountered by methods estimating BRDF from
sparse MLIC acquisitions [HS17]. Recent approaches proposed for
SVBRDF acquisition use training data and models designed to in-
corporate physical insights for material estimation, using specialized
loss functions [LSC18]. If normals and BRDF coefficients could
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produce a synthetic rendering comparable with the interpolation
based one, this would be clearly preferred due to its compact en-
coding and flexibility; in this case, multiview rendering could be
supported as well, and standard 3D visualizers could be used instead
of the specific 2.5D viewer. A key factor for the development of
novel machine learning solutions will consist in the creation of large
datasets of real and simulated MLIC dataset to train the algorithms.
Accurate and fast rendering techniques will be required to quickly
generate images, but also, for example, to compute loss functions in
CNN training based on a similarity between rendered and reference
images.

7.2.4 Improved interaction and data fusion for illustrative

and perceptually-motivated presentation

While a variety of data fusion and illustrative techniques have
been presented, this area seems under-developed with respect to
other visualization areas, such as, e.g., volumetric data exploration,
where these techniques have shown to significantly improve data
understanding. Several data-fusion techniques have been introduced,
e.g., in multispectral/hyperspectral-only data-fusion and visualiza-
tion [YGC17] that could be explored also to enhance the perception
of details in MLICs. Moreover, besides few examples (Sec. 5.5
and Sec. 5.6), most of the used techniques perform just overlays of
feature maps and/or contrast enhancement using manipulations of
some shape and appearance parameters. User interaction, in these
cases, remains very limited.

In the area of visualization, however, many promising solutions
have been explored, including a vast array of perceptually-motivated
illustrative rendering approaches [PBC∗16], and several interac-
tive tools connected to illustrative methods, such as interactive
lenses [TGK∗17]. We foresee as a promising research direction
the integration and further development of these techniques into the
MLIC visualization and analysis pipeline.

7.2.5 Availability of specific benchmarks and datasets

Another important goal for future research could be the valida-
tion of the visualization tools for specific user tasks. As previously
shown, the usefulness of the different visualization approaches is
not easily evaluated with a simple quantitative comparison of re-
lighted images or normal maps with a ground truth reference by
using common similarity metrics. From a visualization point of
view, we should be able to evaluate the possibility of performing
different tasks, e.g., searching for specific information, or evaluating
details without distortion or artifacts. The task should be performed
on different materials in accordance with the end user applications.
The availability of specific benchmarks for different surface anal-
ysis tasks will be fundamental to validate methods and develop
guidelines for the use of MLIC visualization software in different
domains.

7.3 Guidelines for end user applications

Considering the surveyed literature, we can also derive some
guidelines for people exploiting MLIC based visualization in dif-
ferent applied sciences. In particular, we find important to take into
account the following issues:

• Maximize data quality and perform accurate calibration. It
is true that interactive relighting can be done without the need
of having a very accurate calibration of light directions and in-
tensity; in many of the applications presented in Sec. 6.1, little
or no calibration was performed. However, it has been shown
that the quality of the relighting and the accuracy of all the other
estimated parameters (e.g., normals) is heavily dependent on the
correct light characterization. Robust methods to estimate nor-
mals should also be applied to remove outliers, increasing the
quality of normals and albedo estimation [DHOMH12]. All the
methods performing enhancements or relighting based on nor-
mals and BRDF critically depend on the quality of the estimation
of the model parameters, on the accuracy of the calibration, and
on the robustness of the fitting procedure.

• Adapt the methods to task requirements. The choice of the
encoding and relighting techniques, as well as parameters’ tuning
and the customization of algorithm options, should be carefully
done according to the specific task. For instance, the number of
coefficients in PTM/HSH/DMD can make a difference in con-
veying the proper rendering in the case of highlights or other
high-frequency or global effects. The choice of a compression
strategy can be also controlled by finding a trade-off between data
size and information preservation. Choosing the color space can
affect the final result a lot; for instance, LRGB color encoding
is not suitable for colored metallic objects as the hue changes in
the highlight region. Moreover, in the medical domain, specific
protocols could be defined for the different material under study.

• Check the relight quality. A good evaluation practice for people
that apply a MLIC visualization pipeline in a particular context is
to check the quality obtained by each available method in a leave-
one-out testing setup, e.g., like that used in Pintus et al. [PDJ∗18].
This could be useful to optimize the parameters for the specific
materials, and does not require the availability of ground truth
parameters (normals, shape).

8 Conclusion

We have provided a structured survey on the use of MLICs as a
mean to gain insight into scenes and objects through visual means.
The sheer amount of research and applied work surveyed demon-
strates the very high interest in the topic, as well as the many con-
nections between methodological and application areas. We expect
that this survey will provide a fresh view of the subject, helping both
researchers and practitioners to navigate through the ever-increasing
literature. Our analysis has highlighted, moreover, that, even though
the domain of MLIC capture and processing is mature and has a
long history, open problems remain, especially connected to the
analysis and visualization area.
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