
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Formal Approach to Physics-Based Attacks in
Cyber-Physical Systems

RUGGERO LANOTTE, Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Italy

MASSIMO MERRO, Dipartimento di Informatica, Università degli Studi di Verona, Italy

ANDREI MUNTEANU, Dipartimento di Informatica, Università degli Studi di Verona, Italy

LUCA VIGANÒ, Department of Informatics, King’s College London, UK

We apply formal methods to lay and streamline theoretical foundations to reason about Cyber-Physical Systems

(CPSs) and physics-based attacks, i.e., attacks targeting physical devices. We focus on a formal treatment of

both integrity and denial of service attacks to sensors and actuators of CPSs, and on the timing aspects of

these attacks. Our contributions are fourfold. (1) We define a hybrid process calculus to model both CPSs and

physics-based attacks. (2) We formalise a threat model that specifies MITM attacks that can manipulate sensor

readings or control commands in order to drive a CPS into an undesired state, and we provide the means

to assess attack tolerance/vulnerability with respect to a given attack. (3) We formalise how to estimate the

impact of a successful attack on a CPS and investigate possible quantifications of the success chances of an

attack. (4) We illustrate our definitions and results by formalising a non-trivial running example in Uppaal

SMC, the statistical extension of the Uppaal model checker; we use Uppaal SMC as an automatic tool for

carrying out a static security analysis of our running example in isolation and when exposed to three different

physics-based attacks with different impacts.

CCS Concepts: • Security and privacy→ Formal security models; Logic and verification; Embedded
systems security; • Theory of computation→ Timed and hybrid models;

Additional Key Words and Phrases: Cyber-physical system security, formal methods, theoretical foundations,

process calculus.

ACM Reference Format:
Ruggero Lanotte, Massimo Merro, Andrei Munteanu, and Luca Viganò. 2019. A Formal Approach to Physics-

Based Attacks in Cyber-Physical Systems. ACM Trans. Priv. Sec. 0, 0, Article 0 (2019), 39 pages. https://doi.org/
0000001.0000001

1 INTRODUCTION
1.1 Context and motivation
Cyber-Physical Systems (CPSs) are integrations of networking and distributed computing systems

with physical processes that monitor and control entities in a physical environment, with feedback

loops where physical processes affect computations and vice versa. For example, in real-time control

systems, a hierarchy of sensors, actuators and control components are connected to control stations.

Authors’ addresses: Ruggero Lanotte, Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Como, Italy,

ruggero.lanotte@uninsubria.it; Massimo Merro, Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy,

massimo.merro@univr.it; Andrei Munteanu, Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy,

andrei.munteanu@univr.it; Luca Viganò, Department of Informatics, King’s College London, London, UK, luca.vigano@kcl.

ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

2471-2566/2019/0-ART0 $15.00

https://doi.org/0000001.0000001

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

0:2 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

In recent years there has been a dramatic increase in the number of attacks to the security of

CPSs, e.g., manipulating sensor readings and, in general, influencing physical processes to bring the

system into a state desired by the attacker. Some notorious examples are: (i) the STUXnet worm,

which reprogrammed PLCs of nuclear centrifuges in Iran [36]; (ii) the attack on a sewage treatment

facility in Queensland, Australia, which manipulated the SCADA system to release raw sewage

into local rivers and parks [53]; (iii) the BlackEnergy cyber-attack on the Ukrainian power grid,

again compromising the SCADA system [32].

A common aspect of these attacks is that they all compromised safety critical systems, i.e., systems

whose failures may cause catastrophic consequences. Thus, as stated in [25, 26], the concern for

consequences at the physical level puts CPS security apart from standard information security, and
demands for ad hoc solutions to properly address such novel research challenges.

These ad hoc solutions must explicitly take into consideration a number of specific issues of

attacks tailored for CPSs. One main critical issue is the timing of the attack: the physical state
of a system changes continuously over time and, as the system evolves, some states might be

more vulnerable to attacks than others [34]. For example, an attack launched when the target state

variable reaches a local maximum (or minimum) may have a great impact on the whole system

behaviour, whereas the system might be able to tolerate the same attack if launched when that

variable is far from its local maximum or minimum [35]. Furthermore, not only the timing of the

attack but also the duration of the attack is an important parameter to be taken into consideration

in order to achieve a successful attack. For example, it may take minutes for a chemical reactor to

rupture [55], hours to heat a tank of water or burn out a motor, and days to destroy centrifuges [36].

Much progress has been done in the last years in developing formal approaches to aid the safety
verification of CPSs (e.g., [5, 19, 20, 29, 48, 49], to name a few). However, there is still a relatively

small number of works that use formal methods in the context of the security analysis of CPSs
(e.g., [2, 9, 11, 12, 46, 50, 57, 59]). In this respect, to the best of our knowledge, a systematic formal

approach to study physics-based attacks, that is, attacks targeting the physical devices (sensors and

actuators) of CPSs, is still to be fully developed. Our paper moves in this direction by relying on a

process calculus approach.

1.2 Background
The dynamic behaviour of the physical plant of a CPS is often represented bymeans of a discrete-time
state-space model1 consisting of two equations of the form

xk+1 = Axk + Buk +wk

yk = Cxk + ek

where xk ∈ R
n
is the current (physical) state, uk ∈ Rm is the input (i.e., the control actions

implemented through actuators) and yk ∈ R
p
is the output (i.e., the measurements from the

sensors). The uncertainty wk ∈ R
n
and the measurement error ek ∈ Rp represent perturbation and

sensor noise, respectively, and A, B, and C are matrices modelling the dynamics of the physical

system. Here, the next state xk+1 depends on the current state xk and the corresponding control

actions uk , at the sampling instant k ∈ N. The state xk cannot be directly observed: only its

measurements yk can be observed.

The physical plant is supported by a communication network through which the sensor mea-

surements and actuator data are exchanged with controller(s) and supervisor(s) (e.g., IDSs), which

are the cyber components (also called logics) of a CPS.

1
See [61, 62] for a taxonomy of the time-scale models used to represent CPSs.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:3

1.3 Contributions
In this paper, we focus on a formal treatment of both integrity and Denial of Service (DoS) attacks to
physical devices (sensors and actuators) of CPSs, paying particular attention to the timing aspects of
these attacks. The overall goal of the paper is to apply formal methodologies to lay theoretical foun-
dations to reason about and formally detect attacks to physical devices of CPSs. A straightforward

utilisation of these methodologies is for model-checking (as, e.g., in [20]) or monitoring (as, e.g.,

in [5]) in order to be able to verify security properties of CPSs either before system deployment

or, when static analysis is not feasible, at runtime to promptly detect undesired behaviours. In

other words, we aim at providing an essential stepping stone for formal and automated analysis

techniques for checking the security of CPSs (rather than for providing defence techniques, i.e.,

mitigation [45]).

Our contribution is fourfold. The first contribution is the definition of a hybrid process calculus,
called CCPSA, to formally specify both CPSs and physics-based attacks. In CCPSA, CPSs have two
components:

• a physical component denoting the physical plant (also called environment) of the system,

and containing information on state variables, actuators, sensors, evolution law, etc., and

• a cyber component that governs access to sensors and actuators, and channel-based commu-

nication with other cyber components.

Thus, channels are used for logical interactions between cyber components, whereas sensors and

actuators make possible the interaction between cyber and physical components.

CCPSA adopts a discrete notion of time [28] and it is equipped with a labelled transition semantics
(LTS) that allows us to observe both physical events (system deadlock and violations of safety condi-

tions) and cyber events (channel communications). Based on our LTS, we define two compositional
trace-based system preorders: a deadlock-sensitive trace preorder, ⊑, and a timed variant, ⊑m ..n ,

form ∈ N+ and n ∈ N+ ∪ {∞}, which takes into account discrepancies of execution traces within

the discrete time intervalm..n. Intuitively, given two CPSs Sys
1
and Sys

2
, we write Sys

1
⊑m ..n Sys

2

if Sys
2
simulates the execution traces of Sys

1
, except for the time intervalm..n; if n = ∞ then the

simulation only holds for the firstm − 1 time slots.

As a second contribution, we formalise a threat model that specifies man-in-the-middle (MITM)
attacks that can manipulate sensor readings or control commands in order to drive a CPS into an

undesired state [54].
2
Without loss of generality, MITM attacks targeting physical devices (sensors

or actuators) can be assimilated to physical attacks, i.e., those attacks that directly compromise

physical devices (e.g., electromagnetic attacks). As depicted in Figure 1, our attacks may affect

directly the sensor measurements or the controller commands:

• Attacks on sensors consist of reading and eventually replacing yk (the sensor measurements)

with yak .
• Attacks on actuators consist of reading, dropping and eventually replacing the controller

commands uk with uak , affecting directly the actions the actuators may execute.

We group attacks into classes. A class of attacks takes into account both the potential malicious

activities I on physical devices and the timing parametersm and n of the attack: begin and end

of the attack. We represent a class C as a total function C ∈ [I → P (m..n)]. Intuitively, for ι ∈ I,
C (ι) ⊆ m..n denotes the set of time instants when an attack of classC may tamper with the device ι.

2
Note that we focus on attackers who have already entered the CPS, and we do not consider how they gained access to the

system (e.g., by attacking an Internet-accessible controller or one of the communication protocols as a Dolev-Yao-style

attacker [17] would do).

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

0:4 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Plant

Logics

SensorsActuators

xk

ya
k

yk
uk

ua
k

wk ek

Fig. 1. MITM attacks to sensor readings and control commands

In order to make security assessments on our CPSs, we adopt a well-known approach called

Generalized Non Deducibility on Composition (GNDC) [18]. Thus, in our calculus CCPSA, we say that

a CPS Sys tolerates an attack A if

Sys ∥ A ⊑ Sys .
In this case, the presence of the attack A, does not change the (physical and logical) observable

behaviour of the system Sys, and the attack can be considered harmless.

On the other hand, we say that a CPS Sys is vulnerable to an attackA of classC ∈ [I → P (m..n)]
if there is a time interval m′..n′ in which the attack becomes observable (obviously, m′ ≥ m).

Formally, we write:

Sys ∥ A ⊑m′ ..n′ Sys .
We provide sufficient criteria to prove attack tolerance/vulnerability to attacks of an arbitrary

class C . We define a notion of most powerful attack of a given class C , Top(C), and prove that if a

CPS tolerates Top(C) then it tolerates all attacks A of class C (and of any weaker class
3
). Similarly,

if a CPS is vulnerable to Top(C), in the time intervalm′..n′, then no attacks of class C (or weaker)

can affect the system out of that time interval. This is very useful when checking for attack

tolerance/vulnerability with respect to all attacks of a given class C .
As a third contribution, we formalise how to estimate the impact of a successful attack on a CPS.

As expected, risk assessment in industrial CPSs is a crucial phase preceding any defence strategy

implementation [1]. The objective of this phase is to prioritise among vulnerabilities; this is done

based on the likelihood that vulnerabilities are exploited, and the impact on the system under attack

if exploitation occurs. In this manner, the resources can then be focused on preventing the most

critical vulnerabilities [44]. We provide a metric to estimate the maximum perturbation introduced

in the system under attack with respect to its genuine behaviour, according to its evolution law and

the uncertainty of the model. Then, we prove that the impact of the most powerful attack Top(C)
represents an upper bound for the impact of any attack A of class C (or weaker).

Finally, as a fourth contribution, we formalise a running example in Uppaal SMC [16], the statis-

tical extension of the Uppaal model checker [7] supporting the analysis of systems expressed as

composition of timed and/or probabilistic automata. Our goal is to test Uppaal SMC as an automatic

tool for the static security analysis of a simple but significant CPS exposed to a number of different

physics-based attacks with different impacts on the system under attack. Here, we wish to remark

that while we have kept our running example simple, it is actually non-trivial and designed to

describe a wide number of attacks, as will become clear below.

This paper extends and supersedes a preliminary conference version that appeared in [40]. All

the results presented in the current paper have been formally proven, although, due to lack of

space, proofs of minor statements can be found in the associated technical report [39]. The Uppaal

SMC models of our system and the attacks that we have found are available at the repository

https://bitbucket.org/AndreiMunteanu/cps_smc/src/.

3
Intuitively, attacks of classes weaker than C can do less with respect to attacks of class C .

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:5

1.4 Organisation
In Section 2, we give syntax and semantics of CCPSA. In Section 3, we provide our running example

and its formalisation in Uppaal SMC. In Section 4, we first define our threat model for physics-

based attacks, then we use Uppaal SMC to carry out a security analysis of our running example

when exposed to three different attacks, and, finally, we provide sufficient criteria for attack

tolerance/vulnerability. In Section 5, we estimate the impact of attacks on CPSs and prove that the

most powerful attack of a given class has the maximum impact with respect to all attacks of the same

class (or of a weaker one). In Section 6, we draw conclusions and discuss related and future work.

2 THE CALCULUS
In this section, we introduce our Calculus of Cyber-Physical Systems and Attacks, CCPSA, which
extends the Calculus of Cyber-Physical Systems, defined in our companion papers [38, 42], with

specific features to formalise and study attacks to physical devices.

Let us start with some preliminary notation.

2.1 Syntax of CCPSA
Notation 1. We use x ,xk for state variables (associated to physical states of systems), c,d for

communication channels, a,ak for actuator devices, and s, sk or sensors devices.
Actuator names are metavariables for actuator devices like valve, light, etc. Similarly, sensor names

are metavariables for sensor devices, e.g., a sensor thermometer that measures a state variable called
temperature, with a given precision.
Values, ranged over by v,v ′,w , are built from basic values, such as Booleans, integers and real

numbers; they also include names.
Given a generic set of names N , we write RN to denote the set of functions assigning a real value

to each name in N . For ξ ∈ RN , n ∈ N and v ∈ R, we write ξ [n 7→ v] to denote the function
ψ ∈ RN such that ψ (m) = ξ (m), for any m , n, and ψ (n) = v . Given two generic functions ξ1
and ξ2 with disjoint domains N1 and N2, respectively, we denote with ξ1 ∪ ξ2 the function such that
(ξ1 ∪ ξ2) (n) = ξ1 (n), if n ∈ N1, and (ξ1 ∪ ξ2) (n) = ξ2 (n), if n ∈ N2.

In general, a cyber-physical system consists of: (i) a physical component (defining state variables,
physical devices, physical evolution, etc.) and (ii) a cyber (or logical) component that interacts with
the physical devices (sensors and actuators) and communicates with other cyber components of

the same or of other CPSs.

Physical components in CCPSA are given by two sub-components: (i) the physical state, which is

supposed to change at runtime, and (ii) the physical environment, which contains static information.
4

Definition 1 (Physical state). Let X be a set of state variables, S be a set of sensors, andA be a
set of actuators. A physical state S is a triple ⟨ξx, ξs, ξa⟩, where:

• ξx ∈ R
X is the state function,

• ξs ∈ R
S is the sensor function,

• ξa ∈ R
A is the actuator function.

All functions defining a physical state are total.

The state function ξx returns the current value associated to each variable inX, the sensor function
ξs returns the current value associated to each sensor in S and the actuator function ξa returns the
current value associated to each actuator in A.

4
Actually, this information is periodically updated (say, every six months) to take into account possible drifts of the system.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

0:6 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Definition 2 (Physical environment). LetX be a set of state variables, S be a set of sensors, and
A be a set of actuators. A physical environment E is a 6-tuple ⟨evol,meas, inv, safe, ξw, ξe⟩, where:

• evol : RX × RA × RX → 2
RX is the evolution map,

• meas : RX × RS → 2
RS is the measurement map,

• inv ∈ 2R
X

is the invariant set,
• safe ∈ 2R

X

is the safety set,
• ξw ∈ R

X is the uncertainty function,
• ξe ∈ R

S is the sensor-error function.
All functions defining a physical environment are total functions.

The evolution map evol models the evolution law of the physical system, where changes made

on actuators may reflect on state variables. Given a state function, an actuator function, and an

uncertainty function, the evolution map evol returns the set of next admissible state functions. Since
we assume an uncertainty in our models, evol does not return a single state function but a set of

possible state functions.

The measurement map meas returns the set of next admissible sensor functions based on the

current state function. Since we assume error-prone sensors, meas does not return a single sensor

function but a set of possible sensor functions.

The invariant set inv represents the set of state functions that satisfy the invariant of the system.

A CPS that gets into a physical state with a state function that does not satisfy the invariant is in

deadlock. Similarly, the safety set safe represents the set of state functions that satisfy the safety

conditions of the system. Intuitively, if a CPS gets into an unsafe state, then its functionality may

get compromised.

The uncertainty function ξw returns the uncertainty (or accuracy) associated to each state variable.

Thus, given a state variable x ∈ X, ξw (x) returns the maximum distance between the real value of

x , in an arbitrary moment in time, and its representation in the model. For ξw, ξ
′
w
∈ RX , we will

write ξw ≤ ξ
′
w
if ξw (x) ≤ ξ

′
w
(x), for any x ∈ X. The evolution map evol is obviously monotone with

respect to uncertainty: if ξw ≤ ξ
′
w
then evol (ξx, ξa, ξw) ⊆ evol (ξx, ξa, ξ ′w).

Finally, the sensor-error function ξe returns the maximum error associated to each sensor in S.

Let us now define formally the cyber component of a CPS in CCPSA. Our (logical) processes build
on Hennessy and Regan’s Timed Process Language TPL [28], basically, CCS enriched with a discrete

notion of time. We extend TPL with two main ingredients:

• two constructs to read values detected at sensors and write values on actuators, respectively;

• special constructs to represent malicious activities on physical devices.

The remaining constructs are the same as those of TPL.

Definition 3 (Processes). Processes are defined as follows:

P ,Q ::= nil ��� tick.P
��� P ∥ Q

��� π .P
��� ϕ .P

��� ⌊µ .P⌋Q
��� if (b) {P } else {Q }

��� P\c
��� H ⟨w̃⟩

π ::= rcv c (x) ��� snd c⟨v⟩
ϕ ::= read s (x) ��� writea⟨v⟩
µ ::= sniff s (x) ��� dropa(x)

��� forgep⟨v⟩ .

We write nil for the terminated process. The process tick.P sleeps for one time unit and then

continues as P . We write P ∥ Q to denote the parallel composition of concurrent threads P and Q .
The process π .P denotes channel transmission. The construct ϕ .P denotes activities on physical
devices, i.e., sensor reading and actuator writing. The process ⌊µ .P⌋Q denotes MITM malicious

activities under timeout targeting physical devices (sensors and actuators). More precisely, we

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:7

support sensor sniffing, drop of actuator commands, and integrity attacks on data coming from sensors
and addressed to actuators. Thus, for instance, ⌊dropa(x).P⌋Q drops a command on the actuator a
supplied by the controller in the current time slot; otherwise, if there are no commands on a, it
moves to the next time slot and evolves into Q .

The process P\c is the channel restriction operator of CCS. We sometimes write P\{c1, c2, . . . , cn }
to mean P\c1\c2 · · · \cn . The process if (b) {P } else {Q } is the standard conditional, where b is a

decidable guard. In processes of the form tick.Q and ⌊µ .P⌋Q , the occurrence of Q is said to be

time-guarded. The process H ⟨w̃⟩ denotes (guarded) recursion.
We assume a set of process identifiers ranged over byH ,H1,H2. We writeH ⟨w1, . . . ,wk ⟩ to denote

a recursive process H defined via an equation H (x1, . . . ,xk) = P , where (i) the tuple x1, . . . ,xk
contains all the variables that appear free in P , and (ii) P contains only guarded occurrences of

the process identifiers, such as H itself. We say that recursion is time-guarded if P contains only

time-guarded occurrences of the process identifiers. Unless explicitly stated our recursive processes

are always time-guarded.

In the constructs rcv c (x).P , read s (x).P , ⌊sniff s (x).P⌋Q and ⌊dropa(x).P⌋Q the variable x is said

to be bound. This gives rise to the standard notions of free/bound (process) variables and α -conversion.
A term is closed if it does not contain free variables, and we assume to always work with closed

processes: the absence of free variables is preserved at run-time. As further notation, we write

T {v/x } for the substitution of all occurrences of the free variable x in T with the value v .
Everything is in place to provide the definition of cyber-physical systems expressed in CCPSA.

Definition 4 (Cyber-physical system). Fixed a set of state variables X, a set of sensors S, and a
set of actuators A, a cyber-physical system in CCPSA is given by two main components:
• a physical component consisting of
– a physical environment E defined on X, S, and A, and
– a physical state S recording the current values associated to the state variables in X, the
sensors in S, and the actuators in A;

• a cyber component P that interacts with the sensors in S and the actuators A, and can
communicate, via channels, with other cyber components of the same or of other CPSs.

We write E; S Z P to denote the resulting CPS, and useM and N to range over CPSs. Sometimes, when
the physical environment E is clearly identified, we write S Z P instead of E; S Z P . CPSs of the form
S Z P are called environment-free CPSs.

The syntax of our CPSs is slightly too permissive as a process might use sensors and/or actuators

that are not defined in the physical state. To rule out ill-formed CPSs, we use the following definition.

Definition 5 (Well-formedness). Let E = ⟨evol,meas, inv, safe, ξw, ξe⟩ be a physical environ-
ment, let S = ⟨ξx, ξs, ξa⟩ be a physical state defined on a set of physical variables X, a set of sensors S,
and a set of actuators A, and let P be a process. The CPS E; S Z P is said to be well-formed if: (i) any
sensor mentioned in P is in the domain of the function ξs; (ii) any actuator mentioned in P is in the
domain of the function ξa.

In the rest of the paper, we will always work with well-formed CPSs and use the following

abbreviations.

Notation 2. We write µ .P for the process defined via the equation Q = ⌊µ .P⌋Q , where Q does not
occur in P . Further, we write
• ⌊µ⌋Q as an abbreviation for ⌊µ .nil⌋Q ,
• ⌊µ .P⌋ as an abbreviation for ⌊µ .P⌋nil,
• snd c and rcv c , when channel c is used for pure synchronisation,

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

0:8 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Table 1. LTS for processes

(Inpp)

−

rcv c (x).P
cv
−−−−→ P {v/x }

(Outp)

−

snd c⟨v⟩.P
cv
−−−−→ P

(Com)

P
cv
−−−−→ P ′ Q

cv
−−−−→ Q ′

P ∥ Q
τ
−−−→ P ′ ∥ Q ′

(Par)

P
λ
−−−→ P ′ λ , tick

P ∥ Q
λ
−−−→ P ′ ∥ Q

(Read)

−

read s (x).P
s?v
−−−−−→ P {v/x }

(Write)

−

writea⟨v⟩.P
a!v
−−−−−→ P

(ESniffE)
−

⌊sniff s (x).P⌋Q
Es?v
−−−−−−−→ P {v/x }

(EDropE)
−

⌊dropa(x).P⌋Q
Ea?v
−−−−−−−→ P {v/x }

(EForgeE)
p ∈ {s,a}

⌊forgep⟨v⟩.P⌋Q
Ep!v
−−−−−−−→ P

(EActDropE)
P

a!v
−−−−−→ P ′ Q

Ea?v
−−−−−−−→ Q ′

P ∥ Q
τ
−−−→ P ′ ∥ Q ′

(ESensIntegrE)
P

Es !v
−−−−−−→ P ′ Q

s?v
−−−−−→ Q ′

P ∥ Q
τ
−−−→ P ′ ∥ Q ′

(Res)

P
λ
−−−→ P ′ λ < {cv, cv}

P\c
λ
−−−→ P ′\c

(Rec)

P {w̃/x̃ }
λ
−−−→ Q H (x̃) = P

H ⟨w̃⟩
λ
−−−→ Q

(Then)

JbK = true P
λ
−−−→ P ′

if (b) {P } else {Q }
λ
−−−→ P ′

(Else)

JbK = false Q
λ
−−−→ Q ′

if (b) {P } else {Q }
λ
−−−→ Q ′

(TimeNil)

−

nil
tick
−−−−−→ nil

(Sleep)

−

tick.P
tick
−−−−−→ P

(Timeout)

−

⌊µ .P⌋Q
tick
−−−−−→ Q

(TimePar)

P
tick
−−−−−→ P ′ Q

tick
−−−−−→ Q ′

P ∥ Q
tick
−−−−−→ P ′ ∥ Q ′

• tickk .P as a shorthand for tick . . . tick.P , where the prefix tick appears k ≥ 0 consecutive times.

Finally, letM = E; S Z P , we writeM ∥ Q for E; S Z (P ∥ Q), andM\c for E; S Z (P\c).

2.2 Labelled transition semantics
In this subsection, we provide the dynamics of CCPSA in terms of a labelled transition system (LTS)
in the SOS style of Plotkin. First, we give in Table 1 an LTS for logical processes, then in Table 2 we

lift transition rules from processes to environment-free CPSs.

In Table 1, the meta-variable λ ranges over labels in the set {tick,τ , cv, cv,a!v, s?v, Ep!v, Ep?v}.
Rules (Outp), (Inpp) and (Com) serve to model channel communication, on some channel c . Rules
(Read) and (Write) denote sensor reading and actuator writing, respectively. The following three rules

model three different MITM malicious activities: sensor sniffing, dropping of actuator commands,

and integrity attacks on data coming from sensors or addressed to actuators. In particular, rule

(EActDrop E) models a DoS attack to the actuator a, where the update request of the controller is
dropped by the attacker and it never reaches the actuator, whereas rule (ESensIntegr E) models an

integrity attack on sensor s , as the controller of s is supplied with a fake value v forged by the

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:9

Table 2. LTS for CPSs S Z P parametric on an environment E = ⟨evol,meas, inv, safe, ξw, ξe⟩

(Out)

S = ⟨ξx, ξs, ξa⟩ P
cv
−−−−→ P ′ ξx ∈ inv

S Z P
cv
−−−−→ S Z P ′

(Inp)

S = ⟨ξx, ξs, ξa⟩ P
cv
−−−−→ P ′ ξx ∈ inv

S Z P
cv
−−−−→ S Z P ′

(SensRead)

P
s?v
−−−−−→ P ′ ξs (s) = v P

Es !v
−−−−−−↛ ξx ∈ inv

⟨ξx, ξs, ξa⟩Z P
τ
−−−→ ⟨ξx, ξs, ξa⟩Z P ′

(ESensSniffE)
P

Es?v
−−−−−−−→ P ′ ξs (s) = v ξx ∈ inv

⟨ξx, ξs, ξa⟩Z P
τ
−−−→ ⟨ξx, ξs, ξa⟩Z P ′

(ActWrite)

P
a!v
−−−−−→ P ′ ξ ′

a
= ξa[a 7→ v] P

Ea?v
−−−−−−−↛ ξx ∈ inv

⟨ξx, ξs, ξa⟩Z P
τ
−−−→ ⟨ξx, ξs, ξ

′
a
⟩Z P ′

(EActIntegrE)
P

Ea!v
−−−−−−−→ P ′ ξ ′

a
= ξa[a 7→ v] ξx ∈ inv

⟨ξx, ξs, ξa⟩Z P
τ
−−−→ ⟨ξx, ξs, ξ

′
a
⟩Z P ′

(Tau)

P
τ
−−−→ P ′ ξx ∈ inv

⟨ξx, ξs, ξa⟩Z P
τ
−−−→ ⟨ξx, ξs, ξa⟩Z P ′

(Deadlock)

S = ⟨ξx, ξs, ξa⟩ ξx < inv

S Z P
deadlock
−−−−−−−−−−→ S Z P

(Time)

P
tick
−−−−−→ P ′ S = ⟨ξx, ξs, ξa⟩ S ′ ∈ next(E; S) ξx ∈ inv

S Z P
tick
−−−−−→ S ′ Z P ′

(Safety)

S = ⟨ξx, ξs, ξa⟩ ξx < safe ξx ∈ inv

S Z P
unsafe
−−−−−−−−→ S Z P

attack. Rule (Par) propagates untimed actions over parallel components. Rules (Res), (Rec), (Then)

and (Else) are standard. The following four rules (TimeNil), (Sleep), (TimeOut) and (TimePar)model the

passage of time. For simplicity, we omit the symmetric counterparts of the rules (Com), (EActDrop E),
(ESensIntegr E), and (Par).

In Table 2, we lift the transition rules from processes to environment-free CPSs of the form

S Z P for S = ⟨ξx, ξs, ξa⟩. The transition rules are parametric on a physical environment E. Except
for rule (Deadlock), all rules have a common premise ξx ∈ inv: a system can evolve only if the

invariant is satisfied by the current physical state. Here, actions, ranged over by α , are in the set

{τ , cv, cv, tick, deadlock, unsafe}. These actions denote: internal activities (τ); channel transmission

(cv and cv); the passage of time (tick); and two specific physical events: system deadlock (deadlock)
and the violation of the safety conditions (unsafe). Rules (Out) and (Inp) model transmission and

reception, with an external system, on a channel c . Rule (SensRead)models the reading of the current

data detected at a sensor s ; here, the presence of a malicious action Es!w would prevent the reading

of the sensor. We already said that rule (ESensIntegr E) of Table 1 models integrity attacks on a sensor

s . However, together with rule (SensRead), it also serves to implicitly model DoS attacks on a sensor
s , as the controller of s cannot read its correct value if the attacker is currently supplying a fake

value for it. Rule (ESensSniffE) allows the attacker to read the confidential value detected at a sensor

s . Rule (ActWrite) models the writing of a value v on an actuator a; here, the presence of an attack

capable of performing a drop action Ea?v prevents the access to the actuator by the controller.

Rule (EActIntegrE) models a MITM integrity attack to an actuator a, as the actuator is provided with

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

0:10 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

a value forged by the attack. Rule (Tau) lifts non-observable actions from processes to systems.

This includes communications channels and attacks’ accesses to physical devices. A similar lifting

occurs in rule (Time) for timed actions, where next(E; S) returns the set of possible physical states
for the next time slot. Formally, for E = ⟨evol,meas, inv, safe, ξw, ξe⟩ and S = ⟨ξx, ξs, ξa⟩, we define:

next(E; S)
def

=
{
⟨ξ ′

x
, ξ ′

s
, ξ ′

a
⟩ : ξ ′

x
∈ evol (ξx, ξa, ξw) ∧ ξ ′

s
∈ meas(ξ ′

x
, ξe) ∧ ξ ′

a
= ξa

}
.

Thus, by an application of rule (Time) a CPS moves to the next physical state, in the next time slot.

Rule (Deadlock) is introduced to signal the violation of the invariant. When the invariant is violated,

a system deadlock occurs and then, in CCPSA, the system emits a special action deadlock, forever.
Similarly, rule (Safety) is introduced to detect the violation of safety conditions. In this case, the

system may emit a special action unsafe and then continue its evolution.

Summarising, in the LTS of Table 2 we define transitions rules of the form S Z P
α
−−−→ S ′ Z P ′,

parametric on some physical environment E. As physical environments do not change at runtime,

S Z P
α
−−−→ S ′ Z P ′ entails E; S Z P

α
−−−→ E; S ′ Z P ′, thus providing the LTS for all CPSs in CCPSA.

Remark 1. Note that our operational semantics ensures that malicious actions of the form Es!v
(integrity/DoS attack on sensor s) or Ea?v (DoS attack on actuator a) have a pre-emptive power. These
attacks can always prevent the regular access to a physical device by its controller.

2.3 Behavioural semantics
Having defined the actions that can be performed by a CPS of the form E; S Z P , we can easily

concatenate these actions to define the possible execution traces of the system. Formally, given a

trace t = α1 . . . αn , we will write
t
−−−→ as an abbreviation for

α1

−−−−→ . . .
αn
−−−−→, and we will use the

function #tick(t) to get the number of occurrences of the action tick in t .
The notion of trace allows us to provide a formal definition of system soundness: a CPS is said

to be sound if it never deadlocks and never violates the safety conditions.

Definition 6 (System soundness). Let M be a well-formed CPS. We say that M is sound if
wheneverM

t
−−−→ M ′, for some t , the actions deadlock and unsafe never occur in t .

In our security analysis, we will always focus on sound CPSs.

We recall that the observable activities in CCPSA are: time passing, system deadlock, violation of

safety conditions, and channel communication. Having defined a labelled transition semantics, we

are ready to formalise our behavioural semantics, based on execution traces.

We adopt a standard notation for weak transitions: we write ==⇒ for (
τ
−−−→)∗, whereas

α
===⇒means

=⇒
α
−−−→=⇒, and finally

α̂
=⇒ denotes ==⇒ if α = τ and

α
=⇒ otherwise. Given a trace t = α1. . .αn , we

write

t̂
===⇒ as an abbreviation for

α̂1

====⇒ . . .
α̂n
====⇒.

Definition 7 (Trace preorder). We writeM ⊑ N if wheneverM
t
−−−→ M ′, for some t , there is N ′

such that N t̂
===⇒ N ′.

Remark 2. Unlike other process calculi, in CCPSA our trace preorder is able to observe (physical)
deadlock due to the presence of the rule (Deadlock) and the special action deadlock: wheneverM ⊑ N
thenM eventually deadlocks if and only if N eventually deadlocks (see Lemma 1 in the appendix).

Our trace preorder can be used for compositional reasoning in those contexts that don’t interfere

on physical devices (sensors and actuators) while they may interfere on logical components (via

channel communication). In particular, trace preorder is preserved by parallel composition of

physically-disjoint CPSs, by parallel composition of pure-logical processes, and by channel restriction.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:11

Intuitively, two CPSs are physically-disjoint if they have different plants but they may share logical

channels for communication purposes. More precisely, physically-disjoint CPSs have disjoint state

variables and disjoint physical devices (sensors and actuators). As we consider only well-formed

CPSs (Definition 5), this ensures that a CPS cannot physically interfere with a parallel CPS by

acting on its physical devices.

Formally, let Si = ⟨ξ
i
x
, ξ i

s
, ξ i

a
⟩ and Ei = ⟨evoli ,measi , invi , safei , ξ i

w
, ξ i

e
⟩ be physical states and

physical environments, respectively, associated to sets of state variables Xi , sets of sensors Si , and

sets of actuators Ai , for i ∈ {1, 2}. For X1 ∩ X2 = ∅, S1 ∩ S2 = ∅ and A1 ∩ A2 = ∅, we define:

• the disjoint union of the physical states S1 and S2, written S1 ⊎ S2, to be the physical state

⟨ξx, ξs, ξa⟩ such that: ξx = ξ
1

x
∪ ξ 2

x
, ξs = ξ

1

s
∪ ξ 2

s
, and ξa = ξ

1

a
∪ ξ 2

a
;

• the disjoint union of the physical environments E1 and E2, written E1 ⊎ E2, to be the physical

environment ⟨evol,meas, inv, safe, ξw, ξe⟩ such that:

(1) evol = evol1 ∪ evol2

(2) meas = meas1 ∪meas2

(3) S1 ⊎ S2 ∈ inv iff S1 ∈ inv1 and S2 ∈ inv2

(4) S1 ⊎ S2 ∈ safe iff S1 ∈ safe1 and S2 ∈ safe2

(5) ξw = ξ
1

w
∪ ξ 2

w

(6) ξe = ξ
1

e
∪ ξ 2

e
.

Definition 8 (Physically-disjoint CPSs). Let Mi = Ei ; Si Z Pi , for i ∈ {1, 2}. We say that M1

andM2 are physically-disjoint if S1 and S2 have disjoint sets of state variables, sensors and actuators.
In this case, we writeM1 ⊎M2 to denote the CPS defined as (E1 ⊎ E2); (S1 ⊎ S2) Z (P1 ∥ P2).

A pure-logical process is a process that may interfere on communication channels but it never

interferes on physical devices as it never accesses sensors and/or actuators. Basically, a pure-logical

process is a TPL process [28]. Thus, in a systemM ∥ Q , whereM is an arbitrary CPS, a pure-logical

process Q cannot interfere with the physical evolution ofM . A process Q can, however, definitely

interact withM via communication channels, and hence affect its observable behaviour.

Definition 9 (Pure-logical processes). A process P is called pure-logical if it never acts on
sensors and/or actuators.

Now, we can finally state the compositionality of our trace preorder ⊑ (the proof can be found in

the appendix).

Theorem 1 (Compositionality of ⊑). LetM and N be two arbitrary CPSs in CCPSA.
(1) M ⊑ N impliesM ⊎O ⊑ N ⊎O , for any physically-disjoint CPS O ;
(2) M ⊑ N impliesM ∥ P ⊑ N ∥ P , for any pure-logical process P ;
(3) M ⊑ N impliesM\c ⊑ N \c , for any channel c .

The reader may wonder whether our trace preorder ⊑ is preserved by more permissive contexts.

The answer is no. Suppose that in the second item of Theorem 1 we allowed a process P that can

also read on sensors. In this case, even ifM ⊑ N , the parallel process P might read a different value

in the two systems at the very same sensor s (due to the sensor error) and transmit these different

values on a free channel, breaking the congruence. Activities on actuators may also lead to different

behaviours of the compound systems:M and N may have physical components that are not exactly

aligned. A similar reasoning applies when composing CPSs with non physically-disjoint ones: noise

on physical devices may break the compositionality result.

As we are interested in formalising timing aspects of attacks, such as beginning and duration,

we propose a timed variant of ⊑ up to (a possibly infinite) discrete time intervalm..n, withm ∈ N+

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

0:12 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Engine

Ctrl

IDS

SensorActuator

st
cool

sync

Fig. 2. The main structure of the CPS Sys

and n ∈ N+ ∪∞. Intuitively, we writeM ⊑m ..n N if the CPS N simulates the execution traces ofM
in all time slots, except for those contained in the discrete time intervalm..n.

Definition 10 (Trace preorder up to a time interval). We write M ⊑m ..n N , form ∈ N+

and n ∈ N+ ∪ {∞}, withm ≤ n, if the following conditions hold:

• m is the minimum integer for which there is a trace t , with #tick(t)=m−1, s.t.M
t
−−−→ and N ̸ t̂===⇒;

• n is the infimum element of N+ ∪ {∞}, n ≥ m, such that wheneverM
t1
−−−→ M ′, with #tick(t1) =

n − 1, there is t2, with #tick(t1) = #tick(t2), such that N
t2
−−−→ N ′, for some N ′, andM ′ ⊑ N ′.

In Definition 10, the first item says that N can simulate the traces of M for at mostm−1 time

slots; whereas the second item says two things: (i) in time intervalm..n the simulation does not

hold; (ii) starting from the time slot n+1 the CPS N can simulate again the traces ofM . Note that

inf (∅) = ∞. Thus, ifM ⊑m ..∞ N , then N simulatesM only in the firstm − 1 time slots.

Theorem 2 (Compositionality of ⊑m ..n). LetM and N be two arbitrary CPSs in CCPSA.
(1) M ⊑m ..n N implies that for any physically-disjoint CPS there are m′,n′ ∈ N+ ∪ ∞, with

m′..n′ ⊆ m..n such thatM ⊎O ⊑m′ ..n′ N ⊎O ;
(2) M ⊑m ..n N implies that for any pure-logical process P there are m′,n′ ∈ N+ ∪ ∞, with

m′..n′ ⊆ m..n such thatM ∥ P ⊑m′ ..n′ N ∥ P ;
(3) M ⊑m ..n N implies that for any channel c there arem′,n′ ∈ N+ ∪∞, withm′..n′ ⊆ m..n such

thatM\c ⊑m′ ..n′ N \c .

The proof can be found in the appendix.

3 A RUNNING EXAMPLE
In this section, we introduce a running example to illustrate how we can precisely represent CPSs

and a variety of different physics-based attacks. In practice, we formalise a relatively simple CPS

Sys in which the temperature of an engine is maintained within a specific range by means of a

cooling system. We wish to remark here that while we have kept the example simple, it is actually

far from trivial and designed to describe a wide number of attacks. The main structure of the CPS

Sys is shown in Figure 2.

3.1 The CPS Sys
The physical state State of the engine is characterised by: (i) a state variable temp containing the

current temperature of the engine, and an integer state variable stress keeping track of the level of

stress of the mechanical parts of the engine due to high temperatures (exceeding 9.9 degrees); this
integer variable ranges from 0, meaning no stress, to 5, for high stress; (ii) a sensor st (such as a

thermometer or a thermocouple) measuring the temperature of the engine, (iii) an actuator cool to
turn on/off the cooling system.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:13

The physical environment of the engine, Env, is constituted by: (i) a simple evolution law evol that
increases (respectively, decreases) the value of temp by one degree per time unit, when the cooling

system is inactive (respectively, active), up to the uncertainty of the system; the variable stress is
increased each time the current temperature is above 9.9 degrees, and dropped to 0 otherwise; (ii) a
measurement map meas returning the value detected by the sensor st , up to the error associated to

the sensor; (iii) an invariant set saying that the system gets faulty when the temperature of the

engine gets out of the range [0, 50], (iv) a safety set to express that the system moves to an unsafe

state when the level of stress reaches the threshold 5, (v) an uncertainty function in which each

state variable may evolve with an uncertainty δ = 0.4 degrees, (vi) a sensor-error function saying

that the sensor st has an accuracy ϵ = 0.1 degrees.
Formally, State = ⟨ξx, ξs, ξa⟩ where:
• ξx ∈ R

{temp,stress }
and ξx (temp) = 0 and ξx (stress) = 0;

• ξs ∈ R
{st }

and ξs (st) = 0;

• ξa ∈ R
{cool }

and ξa (cool) = off; for the sake of simplicity, we can assume ξa to be a mapping

{cool} → {on, off} such that ξa (cool) = off if ξa (cool) ≥ 0, and ξa (cool) = on if ξa (cool) < 0;

and Env = ⟨evol,meas, inv, safe, ξw, ξe⟩ with:
• evol (ξ i

x
, ξ i

a
, ξw) is the set of functions ξ ∈ R

{temp,stress }
such that:

– ξ (temp) = ξ i
x
(temp) + heat (ξ i

a
, cool) + γ , with γ ∈ [−δ ,+δ] and heat (ξ i

a
, cool) = −1 if

ξ i
a
(cool) = on (active cooling), and heat (ξ i

a
, cool) = +1 if ξ i

a
(cool) = off (inactive cooling);

– ξ (stress) = min(5 , ξ i
x
(stress)+1) if ξ i

x
(temp) > 9.9; ξ (stress) = 0, otherwise;

• meas(ξ i
x
, ξe) =

{
ξ : ξ (st) ∈ [ξ

i
x
(temp) − ϵ , ξ i

x
(temp) + ϵ]

}
;

• inv = {ξ i
x
: 0 ≤ ξ i

x
(temp) ≤ 50};

• safe = {ξ i
x
: ξ i

x
(stress) < 5} (we recall that the stress threshold is 5);

• ξw ∈ R
{temp,stress }

, ξw (temp) = 0.4 = δ and ξw (stress) = 0;

• ξe ∈ R
{st }

and ξe (st) = 0.1 = ϵ .

For the cyber component of the CPS Sys, we define two parallel processes: Ctrl and IDS. The
former models the controller activity, consisting in reading the temperature sensor and in governing

the cooling system via its actuator, whereas the latter models a simple intrusion detection system that

attempts to detect and signal anomalies in the behaviour of the system [24]. Intuitively, Ctrl senses
the temperature of the engine at each time slot. When the sensed temperature is above 10 degrees,
the controller activates the coolant. The cooling activity is maintained for 5 consecutive time units.

After that time, the controller synchronises with the IDS component via a private channel sync,
and then waits for instructions, via a channel ins. The IDS component checks whether the sensed
temperature is still above 10. If this is the case, it sends an alarm of “high temperature”, via a specific

channel, and then tells Ctrl to keep cooling for 5 more time units; otherwise, if the temperature is

not above 10, the IDS component requires Ctrl to stop the cooling activity.

Ctrl = read st (x).if (x > 10) {Cooling} else {tick.Ctrl}
Cooling = write cool⟨on⟩.tick5.Check
Check = snd sync.rcv ins(y).if (y = keep_cooling) {tick5.Check} else {write cool⟨off⟩.tick.Ctrl}

IDS = rcv sync.read st (x).if (x > 10) {snd alarm⟨high_temp⟩.snd ins⟨keep_cooling⟩.tick.IDS}
else {snd ins⟨stop⟩.tick.IDS} .

Thus, the whole CPS is defined as:

Sys = Env; State Z (Ctrl ∥ IDS)\{sync, ins}

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

0:14 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

time

0 10 20 30 40 50
a
c
tu

a
l
te

m
p
e
ra

tu
re

 (
d
e
g
)

0

2

4

6

8

10

12

Fig. 3. Three possible evolutions of the CPS Sys

For the sake of simplicity, our IDS component is quite basic: for instance, it does not checkwhether

the temperature is too low. However, it is straightforward to replace it with a more sophisticated

one, containing more informative tests on sensor values and/or on actuators commands.

Figure 3 shows three possible evolutions in time of the state variable temp of Sys: (i) the first
one (in red), in which the temperature of the engine always grows of 1 − δ = 0.6 degrees per time

unit, when the cooling is off, and always decrease of 1 + δ = 1.4 degrees per time unit, when the

cooling is on; (ii) the second one (in blue), in which the temperature always grows of 1 + δ = 1.4
degrees per time unit, when the cooling is off, and always decreases of 1 − δ = 0.6 degrees per time

unit, when the cooling is on; (iii) and a third one (in yellow), in which, depending on whether the

cooling is off or on, at each time step the temperature grows or decreases of an arbitrary offset

lying in the interval [1 − δ , 1 + δ].
Our operational semantics allows us to formally prove a number of properties of our running

example. For instance, Proposition 1 says that the Sys is sound and it never fires the alarm.

Proposition 1. If Sys
t
−−−→ for some trace t = α1 . . . αn , then αi ∈ {τ , tick}, for any i ∈ {1, . . . ,n}.

Actually, we can be quite precise on the temperature reached by Sys before and after the cooling:
in each of the 5 rounds of cooling, the temperature will drop of a value lying in the real interval

[1−δ , 1+δ], where δ is the uncertainty.

Proposition 2. For any execution trace of Sys, we have:
• when Sys turns on the cooling, the value of the state variable temp ranges over (9.9, 11.5];
• when Sys turns off the cooling, the value of the variable temp ranges over (2.9, 8.5].

The proofs of the Propositions 1 and 2 can be found in the associated technical report [39]. In

the following section, we will verify the safety properties stated in these two propositions relying

on the statistical model checker Uppaal SMC [16].

3.2 A formalisation of Sys in Uppaal SMC
In this section, we formalise our running example in Uppaal SMC [16], the statistical extension of

the Uppaal model checker [7] supporting the analysis of systems expressed as composition of timed
and/or probabilistic automata. In Uppaal SMC, the user must specify two main statistical parameters

α and ϵ , ranging in the interval [0, 1], and representing the probability of false negatives and
probabilistic uncertainty, respectively. Thus, given a CTL property of the system under investigation,

the tool returns a probability estimate for that property, lying in a confidence interval [p − ϵ , p + ϵ],
for some probability p ∈ [0, 1], with an accuracy 1 − α . The number of necessary runs to ensure

the required accuracy is then computed by the tool relying on the Chernoff-Hoeffding theory [13].

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:15

Fig. 4. Uppaal SMC model for the physical component of Sys

Fig. 5. Uppaal SMC model for the network component of Sys

3.2.1 Model. The Uppaal SMC model of our use case Sys is given by three main components

represented in terms of parallel timed automata: the physical component, the network, and the logical
component.
The physical component, whose model is shown in Figure 4, consists of four automata: (i) the

Engine automaton that governs the evolution of the variable temp by means of the heat and cool
functions; (ii) the _Sensor_ automaton that updates the global variable sens at each measurement re-

quest; (iii) the _Actuator_ automaton that activates/deactivates the cooling system; (iv) the _Safety_
automaton that handles the integer variable stress, via the update_stress function, and the Boolean

variables safe and deadlocks, associated to the safety set safe and the invariant set inv of Sys, respec-
tively.

5
We also have a small automaton to model a discrete notion of time (via a synchronisation

channel tick) as the evolution of state variables is represented via difference equations.

The network, whose model is given in Figure 5, consists of two proxies: a proxy to relay actuator

commands between the actuator device and the controller, a second proxy to relay measurement

requests between the sensor device and the logical components (controller and IDS).

The logical component, whose model is given in Figure 6, consists of two automata: _Ctrl_ and
IDS to model the controller and the Intrusion Detection System, respectively; both of them

synchronise with their associated proxy copying a fresh value of sens into their local variables

(sens_ctrl and sens_ids, respectively). Under proper conditions, the _IDS_ automaton fires alarms

by setting a Boolean variable alarm.

3.2.2 Verification. We conduct our safety verification using a notebook with the following

set-up: (i) 2.8 GHz Intel i7 7700 HQ, with 16 GB memory, and Linux Ubuntu 16.04 operating system;

5
In Section 6.2, we explain why we need to implement an automaton to check for safety conditions rather than verifying a

safety property.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

0:16 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Fig. 6. Uppaal SMC model for the logical component of Sys

(ii) Uppaal SMC model-checker 64-bit, version 4.1.19. The statistical parameters of false negatives

(α) and probabilistic uncertainty (ϵ) are both set to 0.01, leading to a confidence level of 99%. As

a consequence, having fixed these parameters, for each of our experiments, Uppaal SMC run a

number of runs that may vary from a few hundreds to 26492 (cf. Chernoff-Hoeffding bounds).
We basically use Uppaal SMC to verify properties expressed in terms of time bounded CTL

formulae of the form □[t1,t2]eprop and ♢[0,t2]eprop
6
, where t1 and t2 are time instants according

to the discrete representation of time in Uppaal SMC. In practice, we use formulae of the form

□[t1,t2]eprop to compute the probability that a property eprop
7
holds in all time slots of the time

interval t1..t2, whereas with formulae of the form ♢[0,t2]eprop we calculate the probability that a

property eprop holds in a least one time slot of the time interval 0..t2.
Thus, instead of proving Proposition 1, we verify, with a 99% accuracy, that in all possible

executions that are at most 1000 time slots long, the system Sys results to be sound and alarm free,

with probability 0.99. Formally, we verify the following three properties:

• □[1,1000] (¬deadlocks), expressing that the system does not deadlock;

• □[1,1000] (safe), expressing that the system does not violate the safety conditions;

• □[1,1000] (¬alarm), expressing that the IDS does not fire any alarm.

Furthermore, instead of Proposition 2, we verify, with the same accuracy and for runs of the

same length (up to a short initial transitory phase lasting 5 time instants) that if the cooling system

is off, then the temperature of the engine lies in the real interval (2.9, 8.5], otherwise it ranges over
the interval (9.9, 11.5]. Formally, we verify the following two properties:

• □[5,1000] (Cooling_off =⇒ (temp > 2.9 ∧ temp ≤ 8.5))
• □[5,1000] (Cooling_on =⇒ (temp > 9.9 ∧ temp ≤ 11.5)).

The verification of each of the five properties above requires around 15 minutes. The Uppaal SMC

models of our system and the attacks discussed in the next section are available at the repository

https://bitbucket.org/AndreiMunteanu/cps_smc/src/.

Remark 3 (On upper-bound analysis). In our Uppaal SMC model we decided to represent both
uncertainty of physical evolution (in the functions heat and cool of _Engine_) and measurement noise
(in _Sensor_) in a probabilistic manner via random extractions. Here, the reader may wonder whether
it would have been enough to restrict our SMC analysis by considering only upper bounds on these two
quantities. Actually, this is not the case. In fact, suppose to consider only execution traces in which the
physical uncertainty is always either 0.4 or −0.4. Then, the reachable temperatures are always of the
6
The 0 in the left-hand side of the time interval is imposed by the syntax of Uppaal SMC.

7eprop is a side-effect free expression over variables (e.g., clock variables, location names and primitive variables) [7].

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:17

form n.k , for n,k ∈ N and k even (e.g., there is no way to reach the maximum admissible temperature
of 11.5 degrees).

4 PHYSICS-BASED ATTACKS
In this section, we use CCPSA to formalise a threat model of physics-based attacks, i.e., attacks that

can manipulate sensor and/or actuator signals in order to drive a sound CPS into an undesired

state [54]. An attack may have different levels of access to physical devices; for example, it might

be able to get read access to the sensors but not write access; or it might get write-only access to

the actuators but not read-access. This level of granularity is very important to model precisely

how physics-based attacks can affect a CPS [14].

In CCPSA, we have a syntactic way to distinguish malicious processes from honest ones.

Definition 11 (Honest system). A CPS E; S Z P is honest if P is honest, where P is honest if it
does not contain constructs of the form ⌊µ .P1⌋P2.

We group physics-based attacks in classes that describe both the malicious activities and the

timing aspects of the attack. Intuitively, a class of attacks provides information about which physical

devices are accessed by the attacks of that class, how they are accessed (read and/or write), when the

attack begins and when the attack ends. Thus, let I be the set of all possible malicious activities on

the physical devices of a system,m ∈ N+ be the time slot when an attack starts, and n ∈ N+ ∪ {∞}
be the time slot when the attack ends. We then say that an attackA is of classC ∈ [I → P (m..n)] if:
(1) all possible malicious activities of A coincide with those contained in I;

(2) the first of those activities may occur in themth
time slot but not before;

(3) the last of those activities may occur in the nth time slot but not after;

(4) for ι ∈ I, C (ι) returns a (possibly empty) set of time slots when A may read/tamper with the

device ι (this set is contained inm..n);
(5) C is a total function, i.e., if no attacks of classC can achieve the malicious activity ι ∈ I, then

C (ι) = ∅.

Definition 12 (Class of attacks). Let I = {Ep? : p ∈ S ∪ A} ∪ {Ep! : p ∈ S ∪ A} be the set of
all possible malicious activities on physical devices. Letm ∈ N+, n ∈ N+ ∪ {∞}, withm ≤ n. A class

of attacks C ∈ [I → P (m..n)] is a total function such that for any attack A of class C we have:

(i) C (ι) = {k : A
t
−−−→

ιv
−−−−→ A′ ∧ k = #tick(t) + 1}, for ι ∈ I,

(ii) m = inf { k : k ∈ C (ι) ∧ ι ∈ I },
(iii) n = sup{ k : k ∈ C (ι) ∧ ι ∈ I }.

Along the lines of [18], we can say that an attack A affects a sound CPS M if the execution of

the compound systemM ∥ A differs from that of the original systemM , in an observable manner.

Basically, a physics-based attack can influence the system under attack in at least two different ways:

• The system M ∥ A might deadlock when M may not; this means that the attack A affects

the availability of the system. We recall that in the context of CPSs, deadlock is a particular

severe physical event.

• The systemM ∥ Amight have non-genuine execution traces containing observables (viola-

tions of safety conditions or communications on channels) that can’t be reproduced byM ;

here the attack affects the integrity of the system behaviour.

Definition 13 (Attack tolerance/vulnerability). LetM be an honest and sound CPS. We say
thatM is tolerant to an attack A ifM ∥ A ⊑ M . We say thatM is vulnerable to an attack A if there
is a time intervalm..n, withm ∈ N+ and n ∈ N+ ∪ {∞}, such thatM ∥ A ⊑m ..n M .

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

0:18 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Thus, if a system M is vulnerable to an attack A of class C ∈ [I → P (m..n)], during the time

intervalm′..n′, then the attack operates during the intervalm..n but it influences the system under

attack in the time intervalm′..n′ (obviously, m′ ≥ m). If n′ is finite, then we have a temporary
attack, otherwise we have a permanent attack. Furthermore, ifm′ − n is big enough and n −m
is small, then we have a quick nasty attack that affects the system late enough to allow attack
camouflages [25]. On the other hand, ifm′ is significantly smaller than n, then the attack affects the

observable behaviour of the system well before its termination and the CPS has good chances of

undertaking countermeasures to stop the attack. Finally, ifM ∥ A
t
−−−→

deadlock
−−−−−−−−−→, for some trace t ,

then we say that the attackA is lethal, as it is capable to halt (deadlock) the CPSM . This is obviously

a permanent attack.

Note that, according to Definition 13, the tolerance (or vulnerability) of a CPS also depends on

the capability of the IDS component to detect and signal undesired physical behaviours. In fact, the

IDS component might be designed to detect abnormal physical behaviours going well further than

deadlocks and violations of safety conditions.

According to the literature, we say that an attack is stealthy if it is able to drive the CPS under

attack into an incorrect physical state (either deadlock or violation of the safety conditions) without

being noticed by the IDS component.

4.1 Three different attacks on the physical devices of the CPS Sys
In this subsection, we present three different attacks to the CPS Sys described in Section 3. The

formal proofs of the propositions stating the tolerance and/or the vulnerability of Sys with respect

to these three attacks can be found in the associated technical report [39]. Here, we use Uppaal SMC

to verify the models associated to the system under attack in order to detect deadlocks, violations

of safety conditions, and IDS failures.

Example 1. Consider the following DoS/Integrity attack on the the actuator cool, of class C ∈
[I → P (m..m)] with C (Ecool?) = C (Ecool !) = {m} and C (ι) = ∅, for ι < {Ecool?, Ecool !}:

Am = tickm−1.⌊drop cool (x).if (x=off) {forge cool⟨off⟩} else {nil}⌋ .

Here, the attackAm operates exclusively in themth
time slot, when it tries to drop an eventual cooling

command (on or off) coming from the controller, and fabricates a fake command to turn off the cooling
system. Thus, if the controller sends in the mth time slot a command to turn off the coolant, then
nothing bad happens as the attack will put the same message back. On the hand, if the controller sends
a command to turn the cooling on, then the attack will drop the command. We recall that the controller
will turn on the cooling only if the sensed temperature is greater than 10 (and hence temp > 9.9);
this may happen only ifm > 8. Since the command to turn the cooling on is never re-sent by Ctrl,
the temperature will continue to rise, and after only 4 time units the system may violate the safety
conditions emitting an action unsafe, while the IDS component will start sending alarms every 5 time
units, until the whole system deadlocks because the temperature reaches the threshold of 50 degrees.
Here, the IDS component of Sys is able to detect the attack with only one time unit delay.

Proposition 3. Let Sys be our running example and Am be the attack defined in Example 1. Then,
• Sys ∥ Am ⊑ Sys, for 1 ≤ m ≤ 8,
• Sys ∥ Am ⊑m+4..∞ Sys, form > 8.

In order to support the statement of Proposition 3 we verify our Uppaal SMC model of Sys in
which the communication network used by the controller to access the actuator is compromised.

More precisely, we replace the _Proxy_Actuator_ automaton of Figure 5 with a compromised one,

provided in Figure 7, that implements the malicious activities of the MITM attackerAm of Example 1.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:19

Fig. 7. Uppaal SMC model for the attacker Am of Example 1

Wehave done our analysis, with a 99% accuracy, for execution traces that are atmost 1000 time units

long and restricting the attack timem in the time interval 1..300. The results of our analysis are:

• whenm ∈ 1..8, the attack is harmless as the system results to be safe, deadlock free and

alarm free, with probability 0.99;
• whenm ∈ 9..300, we have the following situation:
– the probability that at the attack timem the controller sends a command to activate the

cooling system (thus, triggering the attacker that will drop the command) can be obtained

by verifying the property ♢[0,m] (Cooling_on ∧ дlobal_clock ≥ m); as shown in Figure 8,

whenm grows in the time interval 1..300, the resulting probability stabilises around the

value 0.096;
– up to the m+3th time slot the system under attack remains safe, i.e., both properties

□[1,m+3] (safe) and □[1,m+3] (¬deadlock) hold with probability 0.99;

– up to them+4th time slot no alarms are fired, i.e., the property □[1,m+4] (¬alarm) holds
with probability 0.99 (no false positives);

– in them+4th time slot the system under attack might become unsafe as the probability, for

m ∈ 9..300, that the property ♢[0,m+4] (¬safe) is satisfied stabilises around the value 0.095;8

– in them+5th time slot the IDS may fire an alarm as the probability, form ∈ 9..300, that the
property ♢[0,m+5] (alarm) is satisfied stabilises around the value 0.094;9

– the system under attack may deadlock as the property ♢[0,1000] (deadlocks) is satisfied with
probability 0.096.10

Example 2. Consider the following DoS/Integrity attack to the sensor st, of class C ∈ [I →

P (2..∞)] such that C (Est?) = {2}, C (Est!) = 2..∞ and C (ι) = ∅, for ι < {Est!, Est?}. The attack begins

is activity in the time slotm, withm > 8, and then never stops:

Am = tickm−1.A
A = ⌊sniff st (x).if (x ≤ 10) {B⟨x⟩} else {tick.A}⌋

B (y) = ⌊forge st⟨y⟩.tick.B⟨y⟩⌋B⟨y⟩ .

Here, the attack Am behaves as follows. It sleeps form − 1 time slots and then, in the following time
slot, it sniffs the current temperature at sensor st. If the sensed temperature v is greater than 10, then it
moves to the next time slot and restarts sniffing; otherwise from that time on it will keep sending the
same temperature v to the logical components (controller and IDS). Actually, once the forgery activity
starts, the process Ctrl will always receive a temperature below 10 and will never activate the cooling
8
Since this probability coincides with that of ♢

[0,m]
(Cooling_on ∧ дlobal_clock ≥ m), it appears very likely that the

activation of the cooling system in themth
time slot triggers the attacker whose activity drags the system into an unsafe

state with a delay of 4 time slots.

9
As the two probabilities are pretty much the same, and □

[1,m+3] (safe) and □
[1,m+4] (¬alarm) hold, the IDS seems to be

quite effective in detecting the violations of the safety conditions in them+4th time slot, with only one time slot delay.

10
Since the probabilities are still the same, we argue that when the system reaches an unsafe state then it is not able to

recover and it is doomed to deadlock.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

0:20 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

0 8 50 100 150 200 250
Attack time

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty

Fig. 8. Probability results of ♢
[0,m]

(Cooling_on ∧ дlobal_clock ≥ m) by varyingm in 1..300

Fig. 9. Uppaal SMC model for the attacker Am of Example 2

system (and consequently the IDS). As a consequence, the system under attack Sys ∥ A will first move
to an unsafe state until the invariant will be violated and the system will deadlock. Indeed, in the worst
execution scenario, already in them+1th time slot the temperature may exceed 10 degrees, and after 4
tick-actions, in them+5th time slot, the system may violate the safety conditions emitting an unsafe
action. Since the temperature will keep growing without any cooling activity, the deadlock of the CPS
cannot be avoided. This is a lethal attack, as it causes a shut down of the system; it is also a stealthy
attack as it remains undetected because the IDS never gets into action.

Proposition 4. Let Sys be our running example and Am , for m > 8, be the attack defined in
Example 2. Then Sys ∥ Am ⊑m+5..∞ Sys.

Here, we verify the Uppaal SMC model of Sys in which we assume that its sensor device is

compromised (we recall that our MITM forgery attack on sensors or actuators can be assimilated

to device compromise). In particular, we replace the _Sensor_ automaton of Figure 4 with a compro-

mised one, provided in Figure 9, and implementing the malicious activities of the MITM attacker

Am of Example 2.

We have done our analysis, with a 99% accuracy, for execution traces that are at most 1000

time units long and restricting the attack timem in the integer interval 9..300. The results of our
analysis are:

• up to them+4th time slot the system under attack remains safe, deadlock free, and alarm

free, i.e., all three properties □[1,m+4] (safe), □[1,m+4] (¬deadlock), and □[1,m+4] (¬alarm) hold
with probability 0.99;
• in them+5th time slot the system under attack might become unsafe as the probability, for

m ∈ 9..300, that the property ♢[0,m+5] (¬safe) is satisfied stabilises around 0.104;
• the system under attack will eventually deadlock not later that 80 time slots after the attack

timem, as the property □[m+80,1000] (deadlocks) is satisfied with probability 0.99;
• finally, the attack is stealthy as the property □[1,1000] (¬alarm) holds with probability 0.99.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:21

Fig. 10. Uppaal SMC model for the attacker An of Example 3

Now, let us examine a similar but less severe attack.

Example 3. Consider the following DoS/Integrity attack to sensor st, of class C ∈ [I → P (1..n)],
with C (Est!) = C (Est?) = 1..n and C (ι) = ∅, for ι < {Est!, Est?}:

An = ⌊sniff st (x).⌊forge st⟨x−4⟩.tick.An−1⌋An−1⌋An−1, for n > 0

A0 = nil .

In this attack, for n consecutive time slots, An sends to the logical components (controller and IDS)
the current sensed temperature decreased by an offset 4. The effect of this attack on the system depends
on the duration n of the attack itself: (i) for n ≤ 8, the attack is harmless as the variable temp may not
reach a (critical) temperature above 9.9; (ii) for n = 9, the variable temp might reach a temperature
above 9.9 in the 9th time slot, and the attack would delay the activation of the cooling system of one
time slot; as a consequence, the system might get into an unsafe state in the time interval 14..15, but
no alarm will be fired; (iii) for n ≥ 10, the system may get into an unsafe state in the time slot 14 and
in the following n + 11 time slots; in this case, this would not be stealthy attack as the IDS will fire the
alarm with a delay of at most two time slots later, rather this is a temporary attack that ends in the
time slot n + 11.

Proposition 5. Let Sys be our running example and An be the attack defined in Example 3. Then:
• Sys ∥ An ⊑ Sys, for n ≤ 8,
• Sys ∥ An ⊑14..15 Sys, for n = 9,
• Sys ∥ An ⊑14..n+11 Sys, for n ≥ 10.

Here, we verify the Uppaal SMC model of Sys in which we replace the _Proxy_Sensor_ automaton

of Figure 5 with a compromised one, provided in Figure 10, and implementing the MITM activities

of the attacker An of Example 3.

We have done our analysis, with a 99% accuracy, for execution traces that are at most 1000 time

units long, and assuming that the duration of the attack n may vary in the integer interval 1..300.
The results of our analysis are:

• whenn ∈ 1..8, the system under attack remains safe, deadlock free, and alarm free, i.e., all three

properties □[1,1000] (safe), □[1,1000] (¬deadlock), and □[1,1000] (¬alarm) hold with probability

0.99;
• when n = 9, we have the following situation:

– the system under attack is deadlock free, i.e., the property □[1,1000] (¬deadlock) holds with
probability 0.99;

– the system remains safe and alarm free, except for the time interval 14..15, i.e., all the
following properties □[1,13] (safe), □[1,13] (¬alarm), □[16,1000] (safe), and □[16,1000] (¬alarm)
hold with probability 0.99;

– in the time interval 14..15, we may have violations of safety conditions, as the property

♢[0,14] (¬safe ∧ дlobal_clock ≥ 14) is satisfied with a probability 0.62, while the property
♢[0,15] (¬safe ∧ дlobal_clock ≥ 15) is satisfied with probability 0.21; both violations are

stealthy as the property □[14,15] (¬alarm) holds with probability 0.99;

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

0:22 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

• when n ≥ 10, we have the following situation:

– the system is deadlock free, i.e., the property□
[1,1000] (¬deadlock) holds with probability 0.99;

– the system remains safe except for the time interval 14..n+11, i.e., the two properties

□[1,13] (safe) and □[n+12,1000] (safe) hold with probability 0.99;
– the system is alarm free except for the time interval n+1..n+11, i.e., the two properties

□[0,n] (¬alarm) and □[n+12,1000] (¬alarm) hold with probability 0.99;

– in the 14
th
time slot the system under attack may reach an unsafe state as the probability,

for n ∈ 10..300, that the property ♢[0,14] (¬safe ∧ дlobal_clock ≥ 14) is satisfied stabilises

around 0.548;
– once the attack has terminated, in the time interval n+1..n+11, the system under attack has

good chances to reach an unsafe state as the probability, for n ∈ 10..300, that the property
♢[0,n+11] (¬safe ∧ n+1 ≤ дlobal_clock ≤ n+11) is satisfied stabilises around 0.672;

– the violations of the safety conditions remain completely stealthy only up to the duration n
of the attack (we recall that□[0,n] (¬alarm) is satisfied with probability 0.99); the probability,
for n ∈ 10..300, that the property ♢[0,n+11] (alarm) is satisfied stabilises around 0.13; thus,
in the time interval n+1..n+11, only a small portion of violations of safety conditions are

detected by the IDS while a great majority of them remains stealthy.

4.2 A technique for proving attack tolerance/vulnerability
In this subsection, we provide sufficient criteria to prove attack tolerance/vulnerability to attacks of

an arbitrary class C . Actually, we do more than that: we provide sufficient criteria to prove attack

tolerance/vulnerability to all attacks of any class C ′ that is somehow “weaker” than a given class C .

Definition 14. Let Ci ∈ [I → P (mi ..ni)], for i ∈ {1, 2}, be two classes of attacks, withm1..n1 ⊆
m2..n2. We say that C1 is weaker than C2, written C1 ⪯ C2, if C1 (ι) ⊆ C2 (ι) for any ι ∈ I.

Intuitively, if C1 ⪯ C2 then: (i) the attacks of class C1 might achieve fewer malicious activities

than any attack of class C2 (formally, there may be ι ∈ I such that C1 (ι) = ∅ and C2 (ι) , ∅); (ii) for
those malicious activities ι ∈ I achieved by the attacks of both classesC1 andC2 (i.e.,C1 (ι) , ∅ and
C2 (ι) , ∅), if they may be perpetrated by the attacks of class C1 at some time slot k ∈m1..n1 (i.e.,
k ∈ C1 (ι)) then all attacks of class C2 may do the same activity ι at the same time k (i.e., k ∈ C2 (ι)).

The next objective is to define a notion ofmost powerful attack (also called top attacker) of a given
classC , such that, if a CPSM tolerates the most powerful attack of classC then it also tolerates any
attack of class C ′, with C ′ ⪯ C . We will provide a similar condition for attack vulnerability: letM
be a CPS vulnerable to Top(C) in the time intervalm1..n1; then, for any attack A of class C ′, with
C ′ ⪯ C , ifM is vulnerable to A then it is so for a smaller time intervalm2..n2 ⊆ m1..n1.

Our notion of top attacker has two extra ingredients with respect to the physics-based attacks

seen up to now: (i) nondeterminism, and (ii) time-unguarded recursive processes. This extra power

of the top attacker is not a problem as we are looking for sufficient criteria.

For what concerns nondeterminism, we assume a generic procedure rnd () that given an arbitrary

setZ returns an element ofZ chosen in a nondeterministic manner. This procedure allows us to ex-

press nondeterministic choice, P⊕Q , as an abbreviation for the process if (rnd ({true, false})) {P }else{Q }.
Thus, let ι ∈ {Ep? : p ∈ S ∪ A} ∪ {Ep! : p ∈ S ∪ A},m ∈ N+, n ∈ N+ ∪ {∞}, withm ≤ n, and
T ⊆ m..n, we define the attack process Att (ι,k,T)11 as the attack which may achieve the mali-

cious activity ι, at the time slot k , and which tries to do the same in all subsequent time slots of T .

11
In case of sensor sniffing, we might avoid to add this specific attack process as our top attacker process can forge any

possible value without need to read sensors.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:23

Fig. 11. Uppaal SMC model for the top attacker Top(Cm) of Example 4

Formally,

Att (Ea?,k,T) = if (k ∈ T) {(⌊dropa(x).Att (Ea?,k,T)⌋Att (Ea?,k+1,T)) ⊕ tick.Att (Ea?,k+1,T)}
else {if (k < sup(T)) {tick.Att (Ea?,k+1,T)} else {nil}}

Att (Es?,k,T) = if (k ∈ T) {(⌊sniff s (x).Att (Es?,k,T)⌋Att (Es?,k+1,T)) ⊕ tick.Att (Es?,k+1,T)}
else {if (k < sup(T)) {tick.Att (Es?,k+1,T)} else {nil}}

Att (Ep!,k,T) = if (k ∈ T) {(⌊forgep⟨rnd (R)⟩.Att (Ep!,k,T)⌋Att (Ep!,k+1,T)) ⊕ tick.Att (Ep!,k+1,T)}
else {if (k < sup(T)) {tick.Att (Ep!,k+1,T)} else {nil}} .

Note that, for T = ∅, we assume sup(T) = −∞. We can now use the definition above to formalise

the notion of most powerful attack of a given class C .

Definition 15 (Top attacker). Let C ∈ [I → P (m..n)] be a class of attacks. We define

Top(C) =
∏
ι∈I

Att (ι, 1,C (ι))

as the most powerful attack, or top attacker, of class C .

The following theorem provides soundness criteria for attack tolerance and attack vulnerability.

Theorem 3 (Soundness criteria). Let M be an honest and sound CPS, C an arbitrary class of
attacks, and A an attack of a class C ′, with C ′ ⪯ C .
• IfM ∥ Top(C) ⊑ M thenM ∥ A ⊑ M .
• IfM ∥ Top(C) ⊑m1 ..n1

M then eitherM ∥ A ⊑ M orM ∥ A ⊑m2 ..n2
M , withm2..n2 ⊆ m1..n1.

Corollary 1. LetM be an honest and sound CPS, and C a class of attacks. If Top(C) is not lethal
for M then any attack A of class C ′, with C ′ ⪯ C , is not lethal for M . If Top(C) is not a permanent
attack forM , then any attack A of class C ′, with C ′ ⪯ C , is not a permanent attack forM .

The following example illustrates howTheorem 3 could be used to infer attack tolerance/vulnerability

with respect to an entire class of attacks.

Example 4. Consider our running example Sys and a class of attacks Cm , form ∈ N, such that
Cm (Ecool?) = Cm (Ecool !) = {m} and Cm (ι) = ∅, for ι < {Ecool?, Ecool !}. Attacks of class Cm may
tamper with the actuator cool only in the time slotm (i.e., in the time intervalm..m). The attack Am
of Example 1 is of class Cm .

In the following analysis in Uppaal SMC of the top attacker Top(Cm), we will show that both the

vulnerability window and the probability of successfully attacking the system represent an upper

bound for the attack Am of Example 1 of class Cm . Technically, we verify the Uppaal SMC model

of Sys in which we replace the _Proxy_Actuator_ automaton of Figure 5 with a compromised one,

provided in Figure 11, and implementing the activities of the top attacker Top(Cm). We carry out

our analysis with a 99% accuracy, for execution traces that are at most 1000 time slots long, limiting

the attack timem to the integer interval 1..300.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

0:24 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Fig. 12. Results of ♢
[0,m+3] (deadlock ∧ global_clock ≥ m + 1) by varying the attack timem

Fig. 13. Results of ♢
[0,1000] (deadlock ∧ global_clock ≥ m + 4) by varying the attack timem

To explain our analysis further, let us provide details on how Top(Cm) affects Sys when compared

to the attacker Am of class Cm seen in the Example 1.

• In the time interval 1..m, the attacked system remains safe, deadlock free, and alarm free.

Formally, the three properties□[1,m] (safe),□[1,m] (¬deadlock) and□[1,m] (¬alarm) hold with
probability 0.99. Thus, in this time interval, the top attacker is harmless, as well as Am .

• In the time intervalm+1..m+3, the system exposed to the top attackermay deadlockwhenm ∈
1..8; form > 8 the system under attack is deadlock free (see Figure 12). This is because the top

attacker, unlike the attacker Am , can forge in the first 8 time slots cool-on commands turning

on the cooling and dropping the temperature below zero in the time intervalm+1..m+3. Note
that no alarms or unsafe behaviours occur in this case, as neither the safety process nor the

IDS check whether the temperature drops below a certain threshold. Formally, the properties

□[m+1,m+3] (safe) and □[m+1,m+3] (¬alarm) hold with probability 0.99, as already seen for the

attacker Am .

• In the time intervalm+4..1000, the top attacker has better chances to deadlock the system

when compared with the attacker Am (see Figure 13). For what concerns safety and alarms,

the top attacker and the attacker Am have the same probability of success (the properties

□[m+4,1000] (safe) and □[m+4,1000] (¬alarm) return the same probability results).

This example shows how the verification of a top attacker Top(C) provides an upper bound

of the effectiveness of the entire class of attacks C , in terms of both vulnerability window and

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:25

probability of successfully attack the system. Of course, the accuracy of such approximation cannot

be estimated a priori.

5 IMPACT OF AN ATTACK
In the previous section, we have grouped physics-based attacks by focussing on the physical

devices under attack and the timing aspects of the attack (Definition 12). Then, we have provided a

formalisation of when a CPS should be considered tolerant/vulnerable to an attack (Definition 13).

In this section, we show that these two formalisations are important not only to demonstrate

the tolerance (or vulnerability) of a CPS with respect to certain attacks, but also to evaluate the

disruptive impact of those attacks on the target CPS [22, 44].

The goal of this section is to provide a formal metric to estimate the impact of a successful attack
on the physical behaviour of a CPS. In particular, we focus on the ability that an attack may have to

drag a CPS out of the correct behaviour modelled by its evolution map, with the given uncertainty.

Recall that evol is monotone with respect to the uncertainty. Thus, as stated in Proposition 6, an

increase of the uncertainty may translate into a widening of the range of the possible behaviours

of the CPS. In the following, given the physical environment E = ⟨evol,meas, inv, safe, ξw, ξe⟩, we
write E[ξw ← ξ ′

w
] as an abbreviation for ⟨evol,meas, inv, safe, ξ ′

w
, ξe⟩; similarly, for M = E; S Z P

we writeM[ξw ← ξ ′
w
] for E[ξw ← ξ ′

w
]; S Z P .

Proposition 6 (Monotonicity). Let M be an honest and sound CPS with uncertainty ξw. If
ξw ≤ ξ

′
w
andM

t
−−−→ M ′ thenM[ξw ← ξ ′

w
]

t
−−−→ M ′[ξw ← ξ ′

w
].

However, a wider uncertainty in the model does not always correspond to a widening of the

possible behaviours of the CPS. In fact, this depends on the intrinsic tolerance of a CPS with respect

to changes in the uncertainty function. In the following, we will write ξw+ξ
′
w
to denote the function

ξ ′′
w
∈ RX such that ξ ′′

w
(x) = ξw (x) + ξ

′
w
(x), for any x ∈ X.

Definition 16 (System ξ -tolerance). An honest and sound CPSM with uncertainty ξw is said
ξ -tolerant, for ξ ∈ RX and ξ ≥ 0, if

ξ = sup

{
ξ ′ : M[ξw ← ξw + η] ⊑ M, for any 0 ≤ η ≤ ξ ′

}
.

Intuitively, if a CPSM has been designed with a given uncertainty ξw, butM is actually ξ -tolerant,
with ξ > 0, then the uncertainty ξw is somehow underestimated: the real uncertainty ofM is given

by ξw + ξ . This information is quite important when trying to estimate the impact of an attack

on a CPS. In fact, if a systemM has been designed with a given uncertainty ξw, butM is actually

ξ -tolerant, with ξ > 0, then an attack has (at least) a “room for manoeuvre” ξ to degrade the whole

CPS without being observed (and hence detected).

Let Sys be our running example. In the rest of the section, with an abuse of notation, we will write

Sys[δ ← γ] to denote Sys where the uncertainty δ of the variable temp has been replaced with γ .

Example 5. The CPS Sys is 1

20
-tolerant as sup

{
ξ ′ : Sys[δ ← δ+η] ⊑ Sys, for 0 ≤ η ≤ ξ ′

}
is equal

to 1

20
. Since δ + ξ = 8

20
+ 1

20
= 9

20
, then this statement relies on the following proposition whose proof

can be found in the associated technical report [39].

Proposition 7. We have

• Sys[δ ← γ] ⊑ Sys, for γ ∈ (8

20
, 9

20
),

• Sys[δ ← γ] @ Sys, for γ > 9

20
.

Now everything is in place to define our metric to estimate the impact of an attack.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

0:26 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Definition 17 (Impact). LetM be an honest and sound CPS with uncertainty ξw. We say that an
attack A has definitive impact ξ on the systemM if

ξ = inf

{
ξ ′ : ξ ′ ∈ RX ∧ ξ ′>0 ∧ M ∥ A ⊑ M[ξw ← ξw + ξ

′
]

}
.

It has pointwise impact ξ on the systemM at timem if

ξ= inf
{
ξ ′ : ξ ′ ∈ RX ∧ ξ ′>0 ∧ M ∥ A ⊑m ..n M[ξw ← ξw + ξ

′
],n ∈ N+ ∪ {∞}

}
.

Intuitively, the impact of an attacker A on a systemM measures the perturbation introduced by

the presence of the attacker in the compound system M ∥ A with respect to the original system

M . With this definition, we can establish either the definitive (and hence maximum) impact of the

attack A on the system M , or the impact at a specific timem. In the latter case, by definition of

⊑m ..n , there are two possibilities: either the impact of the attack keeps growing after timem, or in

the time intervalm+1, the system under attack deadlocks.

The impact of Top(C) provides an upper bound for the impact of all attacks of class C ′, C ′ ⪯ C ,
as shown in the following theorem (proved in the appendix).

Theorem 4 (Top attacker’s impact). Let M be an honest and sound CPS, and C an arbitrary
class of attacks. Let A be an arbitrary attack of class C ′, with C ′ ⪯ C .
• The definitive impact of Top(C) onM is greater than or equal to the definitive impact of A onM .
• If Top(C) has pointwise impact ξ onM at timem, and A has pointwise impact ξ ′ onM at time
m′, withm′ ≤ m, then ξ ′ ≤ ξ .

In order to help the intuition on the impact metric defined in Definition 17, we give a couple of

examples. Here, we focus on the role played by the size of the vulnerability window.

Example 6. Let us consider the attack An of Example 3, for n ∈ {8, 9, 10}. Then,
• A8 has definitive impact 0 on Sys,
• A9 has definitive impact 0.23 on Sys,
• A10 has definitive impact 0.4 on Sys.

Formally, the impacts of these three attacks are obtained by calculating

inf {ξ ′ : ξ ′ > 0 ∧ Sys ∥ An ⊑ Sys[δ ← δ + ξ ′]} ,

for n ∈ {8, 9, 10}. Attack A9 has a very low impact on Sys as it may drag the system into a temporary

unsafe state in the time interval 14..15, whereas A10 has a slightly stronger impact as it may induce a
temporary unsafe state during the larger time interval 14..21. Technically, since δ +ξ = 0.4+0.4 = 0.8,
the calculation of the impact of A10 relies on the following proposition whose proof can be found in the
associated technical report [39].

Proposition 8. Let A10 be the attack defined in Example 3. Then:
• Sys ∥ A10 @ Sys[δ ← γ], for γ ∈ (0.4, 0.8),
• Sys ∥ A10 ⊑ Sys[δ ← γ], for γ > 0.8.

On the other hand, the attack provided in Example 2, driving the system to a (permanent) deadlock
state, has a much stronger impact on the CPS Sys than the attack of Example 3.

Example 7. Let us consider the attack Am of Example 2, form > 8. As already discussed, this is a
stealthy lethal attack that has a very severe and high impact. In fact, it has a definitive impact of 8.5
on the CPS Sys. Formally,

8.5 = inf

{
ξ ′ : ξ ′ > 0 ∧ Sys ∥ Am ⊑ Sys[δ ← δ + ξ ′]

}
.

Technically, since δ +ξ = 0.4+8.5 = 8.9, what stated in this example relies on the following proposition
whose proof can be found in the associated technical report [39].

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:27

Proposition 9. Let Am be the attack defined in Example 2. Then:
• Sys ∥ Am @ Sys[δ ← γ], for γ ∈ (0.4, 8.9),
• Sys ∥ Am ⊑ Sys[δ ← γ], for γ > 8.9.

Thus, Definition 17 provides an instrument to estimate the impact of a successful attack on a CPS

in terms of the perturbation introduced both on its physical and on its logical processes. However,

there is at least another question that a CPS designer could ask: “Is there a way to estimate the

chances that an attack will be successful during the execution of my CPS?” To paraphrase in a

more operational manner: how many execution traces of my CPS are prone to be attacked by a

specific attack? As argued in the future work, we believe that probabilistic metrics might reveal to

be very useful in this respect [41].

6 CONCLUSIONS, RELATED AND FUTUREWORK
6.1 Summary
We have provided theoretical foundations to reason about and formally detect attacks to physical

devices of CPSs. A straightforward utilisation of these methodologies is for model-checking or

monitoring in order to be able to formally analyse security properties of CPSs either before system

deployment or, when static analysis is not feasible, at runtime to promptly detect undesired

behaviours. To that end, we have proposed a hybrid process calculus, called CCPSA, as a formal

specification language to model physical and cyber components of CPSs as well as MITM physics-

based attacks. Note that our calculus is general enough to represent Supervisory Control And Data
Acquisition (SCADA) systems as cyber components which can easily interact with controllers

and IDSs via channel communications. SCADA systems are the main technology used by system

engineers to supervise the activities of complex CPSs.

Based on CCPSA and its labelled transition semantics, we have formalised a threat model for CPSs

by grouping physics-based attacks in classes, according to the target physical devices and two timing

parameters: begin and duration of the attacks. Then, we developed two different compositional
trace semantics for CCPSA to assess attack tolerance/vulnerability with respect to a given attack.

Such a tolerance may hold ad infinitum or for a limited amount of time. In the latter case, the CPS

under attack is vulnerable and the attack affects the observable behaviour of the system only after

a certain point in time, when the attack itself may already be achieved or still working.

Along the lines of GNDC [18], we have defined a notion of top attacker, Top(C), of a given class of

attacks C , which has been used to provide sufficient criteria to prove attack tolerance/vulnerability

to all attacks of class C (and weaker ones).

Then, we have provided a metric to estimate themaximum impact introduced in the system under

attack with respect to its genuine behaviour, according to its evolution law and the uncertainty

of the model. We have proved that the impact of the most powerful attack Top(C) represents an
upper bound for the impact of any attack A of class C (and weaker ones).

Finally, we have formalised a running example in Uppaal SMC [16], the statistical extension of

the Uppaal model checker [7]. Our goal was to test Uppaal SMC as an automatic tool for the static
security analysis of a simple but significant CPS exposed to a number of different physics-based

attacks with different impacts on the system under attack. Here, it is important to note that, although

we have verified most of the properties stated in the paper, we have not been able to capture time

properties on the responsiveness of the IDS to violations of the safety conditions. Examples of such

properties are: (i) there are time slotsm and k such that the system may have an unsafe state at

some time n > m, and the IDS detects this violation with a delay of at least k time slots (k being a

lower bound of the reaction time of the IDS), or (ii) there is a time slot n in which the IDS fires an

alarm but neither an unsafe state nor a deadlock occurs in the time interval n−k ..n+k : this would

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

0:28 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

provide a tolerance of the occurrence of false positive. Furthermore, Uppaal SMC does not support

the verification of nested formulae. Thus, although from a designer’s point of view it would have

been much more practical to verify a logic formula of the form ∃♢(□[t,t+5]temp > 9.9) to check

safety and invariant conditions, in Uppaal SMC we had to implement a _Safety_ automaton that is

not really part of our CPS (for more details see the discussion of related work).

6.2 Related work
A number of approaches have been proposed for modelling CPSs using hybrid process algebras [8,
15, 21, 52, 56]. Among these approaches, our calculus CCPSA shares some similarities with the

ϕ-calculus [52]. However, unlike CCPSA, in the ϕ-calculus, given a hybrid system (E, P), the process
P can dynamically change the evolution law in E. Furthermore, the ϕ-calculus does not have a
representation of physical devices and measurement law, which are instead crucial for us to model

physics-based attacks that operate in a timely fashion on sensors and actuators. More recently,

Galpin et al. [21] have proposed a process algebra in which the continuous part of the system

is represented by appropriate variables whose changes are determined by active influences (i.e.,

commands on actuators).

Many good surveys on the security of cyber-physical systems have been published recently

(see, e.g., [3, 24, 61, 62]), including a survey of surveys [23]. In particular, the surveys [61, 62]

provide a systematic categorisation of 138 selected papers on CPS security. Among those 138

papers, 65 adopt a discrete notion of time similar to ours, 26 a continuous one, 55 a quasi-static

time model, and the rest use a hybrid time model. This study encouraged us in adopting a discrete

time model for physical processes rather than a continuous one. Still, one might wonder what is

actually lost when one adopts a discrete rather than a continuous time model, in particular when

the attacker has the possibility to move in a continuous time setting. A continuous time model

is, of course, more expressive; for instance, Kanovich et al. [33] identified a novel vulnerability in

the context of cryptographic protocols for CPSs in which the attacker works in a continuous-time

setting to fool discrete-time verifiers. However, we believe that, for physics-based attacks, little is
lost by adopting a discrete time model. In fact, sensor measurements and actuator commands are

elaborated within controllers, which are digital devices with an intrinsic discrete notion of time. In

particular, for what concerns dropping of actuator commands and forging of sensor measurements,

there are no differences between discrete-time and continuous-time attackers given that to achieve

those malicious activities the attacker has to synchronise with the controller. Thus, there remain

only two potential malicious activities: sensor sniffing and forging of actuator commands. Can a

continuous-time attacker, able to carry out these two malicious activities, be more disruptive than

a similar attacker adopting a discrete-time model? This would only be the case when dealing with

very rare physical processes changing their physical state in an extremely fast way, faster than

the controller which is the one dictating the discrete time of the CPS. However, we believe that

CPSs of this kind would hardly be controllable as they would pose serious safety issues even in the

absence of any attacker.

The survey [24] provides an exhaustive review of papers on physics-based anomaly detection

proposing a unified taxonomy, whereas the survey [3] presents the main solutions in the estimation

of the consequences of cyber-attacks, attacks modelling and detection, and the development of

security architecture (the main types of attacks and threats against CPSs are analysed and grouped

in a tree structure).

Huang et al. [31] were among the first to propose threat models for CPSs. Along with [34, 35],

they stressed the role played by timing parameters on integrity and DoS attacks.

Gollmann et al. [25] discussed possible goals (equipment damage, production damage, compliance
violation) and stages (access, discovery, control, damage, cleanup) of physics-based attacks. In this

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:29

article, we focused on the “damage” stage, where the attacker already has a rough idea of the

plant and the control architecture of the target CPS. As we remarked in Section 1, we here focus

on an attacker who has already entered the CPS, without considering how the attacker gained

access to the system, which could have happened in several ways, for instance by attacking an

Internet-accessible controller or one of the communication protocols.

Almost all papers discussed in the surveys mentioned above [3, 24, 62] investigate attacks on

CPSs and their protection by relying on simulation test systems to validate the results, rather than

formal methodologies. We are aware of a number of works applying formal methods to CPS security,
although they apply methods, and most of the time have goals, that are quite different from ours.

We discuss the most significant ones on the following.

Burmester et al. [12] employed hybrid timed automata to give a threat framework based on the

traditional Byzantine faults model for crypto-security. However, as remarked in [54], physics-based

attacks and faults have inherently distinct characteristics. Faults are considered as physical events

that affect the system behaviour where simultaneous events don’t act in a coordinated way, whereas

cyber attacks may be performed over a significant number of attack points and in a coordinated way.

In [58], Vigo presented an attack scenario that addresses some of the peculiarities of a cyber-

physical adversary, and discussed how this scenario relates to other attack models popular in the

security protocol literature. Then, in [59] Vigo et al. proposed an untimed calculus of broadcasting

processes equipped with notions of failed and unwanted communication. These works differ quite

considerably from ours, e.g., they focus on DoS attacks without taking into consideration timing

aspects or impact of the attack.

Cómbita et al. [14] and Zhu and Basar [63] applied game theory to capture the conflict of goals

between an attacker who seeks to maximise the damage inflicted to a CPS’s security and a defender

who aims to minimise it [43].

Rocchetto and Tippenhaur [51] introduced a taxonomy of the diverse attacker models proposed

for CPS security and outline requirements for generalised attacker models; in [50], they then

proposed an extended Dolev-Yao attacker model suitable for CPSs. In their approach, physical layer

interactions are modelled as abstract interactions between logical components to support reasoning

on the physical-layer security of CPSs. This is done by introducing additional orthogonal channels.

Time is not represented.

Nigam et al. [46] worked around the notion of Timed Dolev-Yao Intruder Models for Cyber-Physical
Security Protocols by bounding the number of intruders required for the automated verification of

such protocols. Following a tradition in security protocol analysis, they provide an answer to the

question: How many intruders are enough for verification and where should they be placed? They

also extend the strand space model to CPS protocols by allowing for the symbolic representation of

time, so that they can use the tool Maude [47] along with SMT support. Their notion of time is

however different from ours, as they focus on the time a message needs to travel from an agent to

another. The paper does not mention physical devices, such as sensors and/or actuators.

There are a few approaches that carry out information flow security analysis on discrete/continuous
models for CPSs. Akella et al. [2] proposed an approach to perform information flow analysis,

including both trace-based analysis and automated analysis through process algebra specification.

This approach has been used to verify process algebra models of a gas pipeline system and a smart

electric power grid system. Bodei et al. [10] proposed a process calculus supporting a control flow

analysis that safely approximates the abstract behaviour of IoT systems. Essentially, they track

how data spread from sensors to the logics of the network, and how physical data are manipulated.

In [9], the same authors extend their work to infer quantitative measures to establish the cost of

possibly security countermeasures, in terms of time and energy. Another discrete model has been

proposed by Wang [60], where Petri-net models have been used to verify non-deducibility security

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

0:30 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

properties of a natural gas pipeline system. More recently, Bohrer and Platzer [11] introduced dHL,

a hybrid logic for verifying cyber-physical hybrid-dynamic information flows, communicating

information through both discrete computation and physical dynamics, so security is ensured even

when attackers observe continuously-changing values in continuous time.

Huang et al. [30] proposed a risk assessment method that uses a Bayesian network to model the

attack propagation process and infers the probabilities of sensors and actuators to be compromised.

These probabilities are fed into a stochastic hybrid system (SHS) model to predict the evolution of

the physical process being controlled. Then, the security risk is quantified by evaluating the system

availability with the SHS model.

As regards tools for the formal verification of CPSs, we remark that we tried to verify our case

study using model-checking tools for distributed systems such as PRISM [37], Uppaal [6], Real-Time

Maude [47], and prohver within the MODEST TOOLSET [27]. In particular, as our example adopts a

discrete notion of time, we started looking at tools supporting discrete time. PRISM, for instance,

relies on Markov decision processes or discrete-time Markov chains, depending on whether one is

interested in modelling nondeterminism or not. It supports the verification of both CTL and LTL

properties (when dealing with nonprobabilistic systems). This allowed us to express the formula

∃♢(□[t,t+5]temp > 9.9) to verify violations of the safety conditions, avoiding the implementation

of the _Safety_ automaton. However, using integer variables to represent state variables with a

fixed precision requires the introduction of extra transitions (to deal with nondeterministic errors),

which significantly complicates the PRISM model. In this respect, Uppaal appears to be more

efficient than PRISM, as we have been able to concisely express the error occurring in integer

state variables thanks to the select() construct, in which the user can fix the granularity adopted to

approximate a dense interval. This discrete representation provides an under-approximation of the

system behaviour; thus, a finer granularity translates into an exponential increase of the complexity

of the system, with obvious consequences on the verification performance. Then, we tried to model

our case study in Real-Time Maude, a completely different framework for real-time systems, based

on rewriting logic. The language supports object-like inheritance features that are quite helpful to
represent complex systems in a modular manner. We use communication channels to implement our

attacks on the physical devices. Furthermore, we used rational variables for a more concise discrete

representation of state variables. We have been able to verify LTL and T-CTL properties, although

the verification process resulted to be quite slow due to a proliferation of rewriting rules when fixing

a reasonable granularity to approximate dense intervals. As the verification logic is quite powerful,

there is no need to implement an ad-hoc process to check for safety. Finally, we also tried to model

our case study in the safety model checker prohverwithin the MODEST TOOLSET. We specified our case

study in the high-level language HMODEST, supporting: (i) differential inclusion to model linear CPSs

with constant bounded derivatives; (ii) linear formulae to express nondeterministic assignments

within a dense interval; (iii) a compositional programming style inherited from process algebra;

(iv) shared actions to synchronise parallel components. However, we faced the same performance

limitations encountered in Uppaal. Thus, we decided to move to statistical model checking.

Finally, this article extends the preliminary conference version [40] in the following aspects: (i) the

calculus has been slightly redesigned by distinguishing physical state and physical environment,

adding specifying constructs to sniff, drop and forge packets, and removing, for simplicity, protected

physical devices; (ii) the two trace semantics have been proven to be compositional, i.e., preserved

by properly defined contexts; (iii) both our running example Sys and the attacks proposed in

Examples 1, 2, 3 and 4 have been implemented and verified in Uppaal SMC.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:31

6.3 Future work
While much is still to be done, we believe that our paper provides a stepping stone for the develop-

ment of formal and automated tools to analyse the security of CPSs. We will consider applying,

possibly after proper enhancements, existing tools and frameworks for automated security protocol

analysis, resorting to the development of a dedicated tool if existing ones prove not up to the

task. We will also consider further security properties and concrete examples of CPSs, as well

as other kinds of physics-based attacks, such as delays in the communication of measurements

and/or commands, and periodic attacks, i.e., attacks that operate in a periodic fashion inducing

periodic physical effects on the targeted system that may be easily confused by engineers with

system malfunctions. This will allow us to refine the classes of attacks we have given here (e.g., by

formalising a type system amenable to static analysis), and provide a formal definition of when

a CPS is more secure than another so as to be able to design, by progressive refinement, secure

variants of a vulnerable CPSs.

We also aim to extend the behavioural theory of CCPSA by developing suitable probabilistic
metrics to take into consideration the probability of a specific trace to actually occur. We have

already done some progress in this direction for a variant of CCPSA with no security features in

it, by defining ad hoc compositional bisimulation metrics [42]. In this manner, we believe that our

notion of impact might be refined by taking into account quantitative aspects of an attack such

as the probability of being successful when targeting a specific CPS. A first attempt on a (much)

simpler IoT setting can be found in [41].

Finally, for what concerns automatic approximations of the impact, while we have not yet fully

investigated the problem, we believe that we can transform it into a “minimum problem”. For

instance, if the environment uses linear functions, then, by adapting techniques developed for

linear hybrid automata (see, e.g., [4]), the set of all traces with length at most n (for a fixed n) can
be characterised by a system of first degree inequalities, so the measure of the impact could be

translated into a linear programming problem.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful and careful reviews.

REFERENCES
[1] Guide to increased security in industrial information and control systems. Swedish Civil Contigencies Agency, 2014.

[2] R. Akella, H. Tang, and B. M. McMillin. Analysis of information flow security in cyber-physical systems. IJCIP,
3(3-4):157–173, 2010.

[3] R. M. Alguliyev, Y. Imamverdiyev, and L. Sukhostat. Cyber-physical systems and their security issues. Computers in
Industry, 100:212–223, 2018.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The

algorithmic analysis of hybrid systems. TCS, 138(1):3–34, 1995.
[5] E. Bartocci, J. V. Deshmukh, A. Donzé, G. E. Fainekos, O. Maler, D. Nickovic, and S. Sankaranarayanan. Specification-

based monitoring of cyber-physical systems: A survey on theory, tools and applications. In Lectures on Runtime
Verification - Introductory and Advanced Topics, volume 10457 of LNCS, pages 135–175. Springer, 2018.

[6] G. Behrmann, A. David, L. K. G., J. Håkansson, P. Pettersson, W. Yi, and M. Hendriks. UPPAAL 4.0. In QEST 2006,
pages 125–126. IEEE Computer Society, 2006.

[7] G. Behrmann, A. David, and K. Larsen. A tutorial on Uppaal. In International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM-RT 2004. Revised Lectures, pages 200–236, 2004.

[8] J. A. Bergstra and C. A. Middleburg. Process algebra for hybrid systems. TCS, 335(2-3):215–280, 2005.
[9] C. Bodei, S. Chessa, and L. Galletta. Measuring security in IoT communications. TCS, to appear.

[10] C. Bodei, P. Degano, G. Ferrari, and L. Galletta. Tracing where IoT data are collected and aggregated. Logical Methods
in Computer Science, 13(3):1–38, 2017.

[11] B. Bohrer and A. Platzer. A Hybrid, Dynamic Logic for Hybrid-Dynamic Information Flow. In LICS, pages 115–124.
ACM, 2018.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

0:32 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

[12] M. Burmester and E. Magkos. Modeling security in cyber-physical systems. IJCIP, 5(3-4):118–126, 2012.
[13] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals

of Mathematical Statistics, 23(4):493–507, 12 1952.
[14] L. F. Cómbita, J. Giraldo, A. A. Cárdenas, and N. Quijano. Response and reconfiguration of cyber-physical control

systems: A survey. In CCAC, pages 1–6. IEEE, 2015.
[15] P. Cuijpers and M. Reniers. Hybrid process algebra. JLAP, 62(2):191–245, 2005.
[16] A. David, K. G. Larsen, A. Legay, M. Mikuăionis, and D. B. Poulsen. Uppaal SMC tutorial. STTT, 17(4):397–415, 2015.
[17] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on information theory, (2):198–208,

1983.

[18] R. Focardi and F. Martinelli. A Uniform Approach for the Definition of Security Properties. In FM, volume 1708 of

LNCS, pages 794–813. Springer, 1999.
[19] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. STTT, 10(3):263–279, 2008.
[20] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler. SpaceEx:

Scalable Verification of Hybrid Systems. In CAV, volume 6806 of LNCS, pages 379–395. Springer, 2011.
[21] V. Galpin, L. Bortolussi, and J. Hillston. HYPE: Hybrid modelling by composition of flows. FOAC, 25(4):503–541, 2013.
[22] B. Genge, I. Kiss, and P. Haller. A system dynamics approach for assessing the impact of cyber attacks on critical

infrastructures. Int. J. Critical Infrastructure Protection, 10:3–17, 2015.
[23] J. Giraldo, E. Sarkar, A. A. Cárdenas, M. Maniatakos, and M. Kantarcioglu. Security and Privacy in Cyber-Physical

Systems: A Survey of Surveys. IEEE Design & Test, 34(4):7–17, 2017.
[24] J. Giraldo, D. I. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O. Tippenhauer, H. Sandberg, and R. Candell. A

Survey of Physics-Based Attack Detection in Cyber-Physical Systems. ACM Comput. Surv., 51(4):76:1–76:36, 2018.
[25] D. Gollmann, P. Gurikov, A. Isakov, M. Krotofil, J. Larsen, and A. Winnicki. Cyber-Physical Systems Security:

Experimental Analysis of a Vinyl Acetate Monomer Plant. In ACM CCPS, pages 1–12, 2015.
[26] D. Gollmann and M. Krotofil. Cyber-Physical Systems Security. In The New Codebreakers - Essays Dedicated to David

Kahn on the Occasion of His 85th Birthday, volume 9100 of LNCS, pages 195–204. Springer, 2016.
[27] A. Hartmanns and H. Hermanns. The Modest Toolset: An Integrated Environment for Quantitative Modelling and

Verification. In TACAS 2014, volume 8413 of LNCS, pages 593–598. Springer, 2014.
[28] M. Hennessy and T. Regan. A process algebra for timed systems. Information and Computation, 117(2):221–239, 1995.
[29] T. A. Henzinger, P. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid systems. STTT, 1(1-2):110–122, 1997.
[30] K. Huang, C. Zhou, Y. Tian, S. Yang, and Y. Qin. Assessing the Physical Impact of Cyberattacks on Industrial Cyber-

Physical Systems. IEEE Trans. Industrial Electronics, 65(10):8153–8162, 2018.
[31] Y. Huang, A. A. Cárdenas, S. Amin, Z. Lin, H. Tsai, and S. Sastry. Understanding the physical and economic consequences

of attacks on control systems. IJCIP, 2(3):73–83, 2009.
[32] ICS-CERT. Cyber-Attack Against Ukrainian Critical Infrastructure. https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-

056-01.

[33] M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, and C. L. Talcott. Discrete vs. Dense Times in the Analysis of

Cyber-Physical Security Protocols. In POST, volume 9036 of LNCS, pages 259–279. Springer, 2015.
[34] M. Krotofil and A. A. Cárdenas. Resilience of Process Control Systems to Cyber-Physical Attacks. In NordSec, volume

8208 of LNCS, pages 166–182. Springer, 2013.
[35] M. Krotofil, A. A. Cárdenas, J. Larsen, and D. Gollmann. Vulnerabilities of cyber-physical systems to stale data -

Determining the optimal time to launch attacks. Int. J. Critical Infrastructure Protection, 7(4):213–232, 2014.
[36] D. Kushner. The real story of STUXnet. IEEE Spectrum, 50(3):48 – 53, 2013.

[37] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time systems. In CAV,
volume 6806 of LNCS, pages 585–591. Springer, 2011.

[38] R. Lanotte and M. Merro. A Calculus of Cyber-Physical Systems. In LATA, volume 10168 of LNCS, pages 115–127.
Springer, 2017.

[39] R. Lanotte, M. Merro, A. Munteanu, and L. Viganò. A Formal Approach to Physics-Based Attacks in Cyber-Physical

Systems (Exended Version). CoRR, abs/1902.04572, 2019.
[40] R. Lanotte, M. Merro, R. Muradore, and L. Viganò. A Formal Approach to Cyber-Physical Attacks. In CSF, pages

436–450. IEEE Computer Society, 2017.

[41] R. Lanotte, M. Merro, and S. Tini. Towards a Formal Notion of Impact Metric for Cyber-Physical Attacks. In IFM,

volume 11023 of LNCS, pages 296–315. Springer, 2018.
[42] R. Lanotte, M. Merro, and S. Tini. A Probabilistic Calculus of Cyber-Physical Systems. I&C, 2019.
[43] M. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and J.-P. Hubaux. Game theory meets network security and privacy. ACM

Computer Surveys, 45(3):25, 2013.
[44] J. Milosevic, D. Umsonst, H. Sandberg, and K. H. Johansson. Quantifying the Impact of Cyber-Attack Strategies for

Control Systems Equipped With an Anomaly Detector. In ECC, pages 331–337. IEEE, 2018.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:33

[45] A. F. Murillo-Piedrahita, V. Gaur, J. Giraldo, A. A. Cárdenas, and S. J. Rueda. Virtual incident response functions in

control systems. Computer Networks, 135:147–159, 2018.
[46] V. Nigam, C. Talcott, and A. A. Urquiza. Towards the Automated Verification of Cyber-Physical Security Protocols:

Bounding the Number of Timed Intruders. In ESORICS, volume 9879 of LNCS, pages 450–470. Springer, 2016.
[47] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-TimeMaude. Higher-Order and Symbolic Computation,

20(1-2):161–196, 2007.

[48] A. Platzer. Logical Foundations of Cyber-Physical Systems. Springer, 2018.
[49] J. Quesel, S. Mitsch, S. M. Loos, N. Arechiga, and A. Platzer. How to model and prove hybrid systems with KeYmaera:

a tutorial on safety. STTT, 18(1):67–91, 2016.
[50] M. Rocchetto and N. O. Tippenhauer. CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions. In

ICFEM, volume 10009 of LNCS, pages 175–192, 2016.
[51] M. Rocchetto and N. O. Tippenhauer. On Attacker Models and Profiles for Cyber-Physical Systems. In ESORICS,

volume 9879 of LNCS, pages 427–449. Springer, 2016.
[52] W. C. Rounds and H. Song. The ϕ-calculus: A language for distributed control of reconfigurable embedded systems. In

HSCC, volume 2623 of LNCS, pages 435–449. Springer, 2003.
[53] J. Slay and M. Miller. Lessons Learned from the Maroochy Water Breach. In Critical Infrastructure Protection, volume

253 of IFIP, pages 73–82. Springer, 2007.
[54] A. Teixeira, I. Shames, J. Sandberg, and K. H. Johansson. A secure control framework for resource-limited adversaries.

Automatica, 51:135–148, 2015.
[55] U.S. Chemical Safety and Hazard Investigation Board, T2 Laboratories Inc. Reactive Chemical Explosion: Final

Investigation Report. Report No. 2008-3-I-FL, 2009.

[56] D. van Beek, K. Man, M. Reniers, J. Rooda, and R. Schiffelers. Syntax and consistent equation semantics of hybrid chi.

The Journal of Logic and Algebraic Programming, 68(1âĂŞ2):129–210, 2006.
[57] P. Vasilikos, F. Nielson, and H. R. Nielson. Secure Information Release in Timed Automata. In POST, volume 10804 of

Lecture Notes in Computer Science, pages 28–52. Springer, 2018.
[58] R. Vigo. The Cyber-Physical Attacker. In SAFECOMP, volume 7613 of LNCS, pages 347–356. Springer, 2012.
[59] R. Vigo, F. Nielson, and H. Riis Nielson. Broadcast, denial-of-service, and secure communication. In IFM, volume 7940

of LNCS, pages 412–427. Springer, 2013.
[60] J. Wang and H. Yu. Analysis of the Composition of Non-Deducibility in Cyber-Physical Systems. Applied Mathematics

& Information, 8:3137–3143, 2014.
[61] Y. Zacchia Lun, A. D’Innocenzo, I. Malavolta, and M. D. Di Benedetto. Cyber-Physical Systems Security: a Systematic

Mapping Study. CoRR, abs/1605.09641, 2016.
[62] Y. Zacchia Lun, A. D’Innocenzo, F. Smarra, I. Malavolta, and M. D. Di Benedetto. State of the art of cyber-physical

systems security: An automatic control perspective. Journal of Systems and Software, 149:174–216, 2019.
[63] Q. Zhu and T. Basar. Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems:

games-in-games principle for optimal cross-layer resilient control systems. IEEE Control Systems, 35(1):46–65, 2015.

A PROOFS
As already stated in Remark 2, our trace preorder ⊑ is deadlock-sensitive. Formally,

Lemma 1. Let M and N be two CPSs in CCPSA such that M ⊑ N . Then, M satisfies its system
invariant if and only if N satisfies its system invariant.

Proof. This is because CPSs that don’t satisfy their invariant can only fire deadlock actions. □

Proof of Theorem 1. We prove the three statements separately.

(1) Let us prove thatM ⊎O
t
−−−→ M ′ ⊎O ′ entails N ⊎O

t̂
===⇒ N ′ ⊎O ′. The proof is by induction

on the length of the traceM ⊎O
t
−−−→ M ′ ⊎O ′.

As M ⊑ N , by an application of Lemma 1 it follows that either both M and N satisfy their

respective invariants or they both don’t. In the latter case, the result would be easy to prove

as the systems can only fire deadlock actions. Similarly, if the system invariant of O is not

satisfied, thenM⊎O and N ⊎O can perform only deadlock actions and again the result would

follow easily. Thus, let us suppose that the system invariants ofM , N and O are satisfied.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

0:34 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Base case.We supposeM = E1; S1 Z P1, N = E2; S2 Z P2, and O = E3; S3 Z P3. We proceed by

case analysis on whyM ⊎O
α
−−−→ M ′ ⊎O ′, for some action α .

• α = cv . SupposeM ⊎O
cv
−−−−→ M ′ ⊎O ′ is derived by an application of rule (Out). We have

two possible cases:

– either P1 ∥ P3
cv
−−−−→ P1 ∥ P

′
3
, because P3

cv
−−−−→ P ′

3
, for some P ′

3
,O ′ = S3 Z P ′

3
, andM ′ = M ,

– or P1 ∥ P3
cv
−−−−→ P ′

1
∥ P3, because P1

cv
−−−−→ P ′

1
, for some P ′

1
, andM = S1 Z P ′

1
and O ′ = O .

In the first case, by an application of rule (Par) we derive P2 ∥ P3
cv
−−−−→ P2 ∥ P

′
3
. Since both

system invariants of N and O are satisfied, we can derive the required trace N ⊎O
cv
−−−−→

N ⊎O ′ by an application of rule (Out). In the second case, since P1
cv
−−−−→ P ′

1
and the invariant

of M is satisfied, by an application of rule (Out) we can derive M
cv
−−−−→ M ′. As M ⊑ N ,

there exists a trace N
ĉv
====⇒ N ′, for some system N ′. Thus, by several applications of rule

(Par) we can easily derive N ⊎O
ĉv
====⇒ N ′ ⊎O = N ′ ⊎O ′, as required.

• α = cv . SupposeM ⊎O
cv
−−−−→ M ′ ⊎O ′ is derived by an application of rule (Inp). This case

is similar to the previous one.

• α = τ . Suppose M ⊎ O
τ
−−−→ M ′ ⊎ O ′ is derived by an application of rule (SensRead). We

have two possible cases:

– either P1 ∥ P3
s?v
−−−−−→ P1 ∥ P

′
3
because P3

s?v
−−−−−→ P ′

3
, for some P ′

3
, P1 ∥ P3

Es !v
−−−−−−↛ (and

hence P3
Es !v
−−−−−−↛),M ′ = M and O ′ = S3 Z P ′

3
,

– or P1 ∥ P3
s?v
−−−−−→ P ′

1
∥ P3 because P1

s?v
−−−−−→ P ′

1
, for some P ′

1
, P1 ∥ P3

Es !v
−−−−−−↛ (and hence

P1
Es !v
−−−−−−↛) andM ′ = S1 Z P ′

1
and O ′ = O .

In the first case, by an application of rule (Par) we derive P2 ∥ P3
s?v
−−−−−→ P2 ∥ P

′
3
. Moreover

from P3
Es !v
−−−−−−↛ and since the sets of sensors are always disjoint, we can derive P2 ∥

P3
Es !v
−−−−−−↛ . Since both invariants of N andO are satisfied, we can derive N ⊎O

τ
−−−→ N ⊎O ′

by an application of rule (SensRead), as required. In the second case, since P1
s?v
−−−−−→ P ′

1
and

the invariant ofM is satisfied, by an application of rule (SensRead) we can deriveM
τ
−−−→ M ′

withM ′ = S1 Z P ′
1
. AsM ⊑ N , there exists a derivation N

τ̂
===⇒ N ′, for some N ′. Thus, we

can derive the required trace N ⊎O
τ̂
===⇒ N ′ ⊎O by an application of rule (Par).

• α = τ . Suppose thatM ⊎O
τ
−−−→ M ′ ⊎O ′ is derived by an application of rule (ESensSniff E).

This case is similar to the previous one.

• α = τ . Suppose that M ⊎ O
τ
−−−→ M ′ ⊎ O ′ is derived by an application of rule (ActWrite).

This case is similar to the case (SensRead).

• α = τ . Suppose thatM ⊎O
τ
−−−→ M ′ ⊎O ′ is derived by an application of rule (EAcIntegr E).

This case is similar to the case (ESensSniff E).

• α = τ . Suppose thatM ⊎O
τ
−−−→ M ′ ⊎O ′ is derived by an application of rule (Tau). We have

four possible cases:

– P1 ∥ P3
τ
−−−→ P ′

1
∥ P ′

3
by an application of rule (Com). We have two sub-cases: either

P1
cv
−−−−→ P ′

1
and P3

cv
−−−−→ P ′

3
, or P1

cv
−−−−→ P ′

1
and P3

cv
−−−−→ P ′

3
, for some P ′

1
and P ′

3
. We

prove the first case, the second one is similar. As the invariant of M is satisfied, by an

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:35

application of rule (Out) we can derive M
cv
−−−−→ M ′. As M ⊑ N , there exists a trace

N
τ̂
===⇒

cv
−−−−→

τ̂
===⇒ N ′, for some N ′ = E2; S

′
2
Z P ′

2
. As P3

cv
−−−−→ P ′

3
, by several applications

of rule (Par) and one of rule (Com) we derive N ⊎O
ĉv
====⇒ N ′ ⊎O ′, as required.

– P1 ∥ P3
τ
−−−→ P1 ∥ P

′
3
or P1 ∥ P3

τ
−−−→ P ′

1
∥ P3 by an application of (Par). This case is easy.

– P1 ∥ P3
τ
−−−→ P ′

1
∥ P ′

3
by an application of either rule (EActDrop E) or rule (ESensIntegr E).

This case does not apply as the sets of actuators ofM and O are disjoint.

– P1 ∥ P3
τ
−−−→ P ′

1
∥ P ′

3
by the application of on rule among (Res), (Rec), (Then) and (Else).

This case does not apply to parallel processes.

• α = deadlock. Suppose thatM ⊎O
deadlock
−−−−−−−−−→ M ′ ⊎O ′ is derived by an application of rule

(Deadlock). This case is not admissible as the invariants ofM , N and O are satisfied.

• α = tick. Suppose thatM⊎O
tick
−−−−−→ M ′⊎O ′ is derived by an application of rule (Time). This

implies P1 ∥ P3
tick
−−−−−→ P ′

1
∥ P ′

3
, for some P ′

1
and P ′

3
, M ′ = E1; S

′
1
Z P ′

1
and O = E3; S

′
3
Z P ′

3
,

with S ′
1
∈ next(E1; S1) and S ′

3
∈ next(E3; S3). As P1 ∥ P3

tick
−−−−−→ P ′

1
∥ P ′

3
can only be

derived by an application of rule (TimePar), it follows that P1
tick
−−−−−→ P ′

1
and P3

tick
−−−−−→

P ′
3
. Since the invariant of M is satisfied, by an application of rule (Time) we can derive

M
tick
−−−−−→ M ′ withM ′ = E1; S

′
1
Z P ′

1
. AsM ⊑ N , there exists a derivation N

τ̂
===⇒ N ′′

tick
−−−−−→

N ′′′
τ̂
===⇒ N ′, for some N ′ = E2; S

′
2
Z P ′

2
, N ′′ = E2; S

′′
2
Z P ′′

2
, N ′′′ = E2; S

′′′
2
Z P ′′′

2
, with

S ′′′
2
∈ next(E2; S

′′
2
). By several applications of rule (Par)we can derive thatN⊎O

τ̂
===⇒ N ′′⊎O

and N ′′′ ⊎ O ′
τ̂
===⇒ N ′ ⊎ O ′. In order to conclude the proof, it is sufficient to prove

N ′′ ⊎O
tick
−−−−−→ N ′′′ ⊎O ′. By the definition of rule (Time), from N ′′

tick
−−−−−→ N ′′′ it follows

that P ′′
2

tick
−−−−−→ P ′′′

2
. As P3

tick
−−−−−→ P ′

3
, by an application of rule (TimePar) it follows that

P ′′
2
∥ P3

tick
−−−−−→ P ′′′

2
∥ P ′

3
. Since S ′′′

2
∈ next(E2; S

′′
2
) and S ′

3
∈ next(E3; S3) we can derive

that S ′′′
2
⊎ S ′

3
∈ next(E2; S

′′
2
) ∪ next(E3; S3). By an application of rule (Time) we have

N ′′ ⊎O
tick
−−−−−→ N ′′′ ⊎O ′ and hence N ⊎O

t̂ick
=====⇒ N ′ ⊎O ′, as required.

• α = unsafe. Suppose that M ⊎ O
unsafe
−−−−−−−→ M ′ ⊎ O ′ is derived by an application of rule

(Safety). This is similar to the case α = cv by considering the fact that ξx < safe implies that

ξx ∪ ξx
′ < safe ∪ safe′, for any ξx ′ and any safe′.

Inductive case. We have to prove that M ⊎ O = M0 ⊎ O0

α1

−−−−→ · · ·
αn
−−−−→ Mn ⊎ On implies

N ⊎O = N0 ⊎O0

α̂1

====⇒ · · ·
α̂n
====⇒ Nn ⊎On . We can use the inductive hypothesis to easily deal

with the first n − 1 actions and resort to the base case to handle the nth action.
(2) We have to prove thatM ⊑ N impliesM ∥ P ⊑ N ∥ P , for any pure-logical process P . This is

a special case of (1) asM ∥ P = M ⊎ (∅; ∅Z P) and N ∥ P = N ⊎ (∅; ∅Z P), where ∅; ∅Z P is

a CPS with no physical process in it, only logics.

(3) We have to prove that M ⊑ N implies M\c ⊑ N \c , for any channel c . For any derivation

M\c
t
−−−→ M ′\c we can easily derive thatM

t
−−−→ M ′ with c not occurring in t . SinceM ⊑ N ,

it follows that N
t̂
===⇒ N ′, for some N ′. Since c does not appear in t , we can easily derive that

N \c
t̂
===⇒ N ′\c , as required.

□

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

0:36 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

In order to prove Theorem 2 we adapt to CCPSA two standard lemmata used in process calculi

theory to compose and decompose the actions performed by a compound system.

Lemma 2 (Decomposing system actions). LetM and N be two CPSs in CCPSA. Then,

• ifM ⊎ N
tick
−−−−−→ M ′ ⊎ N ′, for someM ′ and N ′, thenM

tick
−−−−−→ M ′ and N

tick
−−−−−→ N ′;

• ifM ⊎ N
deadlock
−−−−−−−−−→ M ⊎ N , thenM

deadlock
−−−−−−−−−→ M or N

deadlock
−−−−−−−−−→ N ;

• ifM⊎N
τ
−−−→ M ′⊎N ′, for someM ′ and N ′, due to a channel synchronisation betweenM and N ,

then eitherM
cv
−−−−→ M ′ and N

cv
−−−−→ N ′, orM

cv
−−−−→ M ′ and N

cv
−−−−→ N ′, for some channel c ;

• if M ⊎ N
α
−−−→ M ′ ⊎ N ′, for some M ′ and N ′, α , tick, not due to a channel synchronisation

betweenM and N , then eitherM
α
−−−→ M and N = N ′, or N

α
−−−→ N andM = M ′.

Lemma 3 (Composing system actions). LetM and N be two CPSs of CCPSA. Then,

• IfM
tick
−−−−−→ M ′ and N

tick
−−−−−→ N ′, for someM ′ and N ′, thenM ⊎ N

tick
−−−−−→ M ′ ⊎ N ′;

• If N
deadlock
−−−−−−−−−↛ and M

α
−−−→ M ′, for some M ′ and α , tick, then M ⊎ N

α
−−−→ M ′ ⊎ N and

N ⊎M
α
−−−→ N ⊎M ′.

Proof of Theorem 2. Here, we prove case (1) of the theorem. The proofs of cases (2) and (3)

are similar to the corresponding ones of Theorem 1.

We prove thatM ⊑m ..n N implies that there arem′,n′ ∈ N+ ∪∞, withm′..n′ ⊆ m..n such that

M ⊎O ⊑m′ ..n′ N ⊎O . We prove separately thatm′ ≥ m and n′ ≤ n.

• m′ ≥ m. We recall thatm,m′ ∈ N+. Ifm = 1, then we trivially havem′ ≥ 1 =m. Otherwise,

sincem is the minimum integer for which there is a trace t , with #tick(t) =m − 1, such that

M
t
−−−→ and N ̸

t̂
===⇒, then for any trace t , with #tick(t) < m − 1 and such thatM

t
−−−→, it holds

that N
t̂
===⇒. As done in the proof of case (1) of Theorem 1, we can derive that for any trace t ,

with #tick(t) < m − 1 and such that M ⊎O
t
−−−→ it holds that N ⊎O

t̂
===⇒. This implies the

required condition,m′ ≥ m.

• n′ ≤ n. We recall that n is the infimum element of N+ ∪ {∞}, n ≥ m, such that whenever

M
t1
−−−→ M ′, with #tick(t1) = n− 1, there is t2, with #tick(t1) = #tick(t2), such that N

t2
−−−→ N ′,

for some N ′, andM ′ ⊑ N ′. Now, ifM ⊎O
t
−−−→ M ′⊎O ′, with #tick(t) = n− 1, by Lemma 2 we

can split the trace t by extracting the actions performed byM and those performed byO . Thus,

there exist two traces M
t1
−−−→ M ′ and O

t3
−−−→ O ′, with #tick(t1) = #tick(t3) = n − 1 whose

combination has generated the traceM ⊎O
t
−−−→ M ′ ⊎O ′. AsM ⊑m ..n N , fromM

t1
−−−→ M ′

we know that there is a trace t2, with #tick(t1) = #tick(t2), such that N
t2
−−−→ N ′, for some N ′,

andM ′ ⊑ N ′. Since N
t2
−−−→ N ′ and O

t3
−−−→ O ′, by an application of Lemma 3 we can build a

trace N ⊎O
t ′
−−−→ N ′ ⊎O ′, for some t ′ such that #tick(t) = #tick(t ′) = n − 1. AsM ′ ⊑ N ′, by

Theorem 1 we can derive thatM ′ ⊎O ′ ⊑ N ′ ⊎O ′. This implies that n′ ≤ n.

□

In order to prove Theorem 3, we introduce the following lemma.

Lemma 4. LetM be an honest and sound CPS, C an arbitrary class of attacks, and A an attack of a

classC ′ ⪯ C . WheneverM ∥ A
t
−−−→ M ′ ∥ A′, thenM ∥ Top(C) t̂

===⇒ M ′ ∥
∏

ι∈I Att (ι, #tick(t)+1,C (ι)).

Proof. Let us define Toph (C) as the attack process

∏
ι∈I Att (ι,h,C (ι)). Then, Top1 (C) = Top(C).

The proof is by mathematical induction on the length k of the trace t .
Base case. k = 1. This means t = α , for some action α . We proceed by case analysis on α .

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:37

• α = cv . As the attacker A does not use communication channels, fromM ∥ A
cv
−−−−→ M ′ ∥ A′

we can derive that A = A′ andM
cv
−−−−→ M ′. Thus, by applications of rules (Par) and (Out) we

deriveM ∥ Top(C)
cv
−−−−→ M ′ ∥ Top1 (C) = M ′ ∥ Top(C).

• α = cv . This case is similar to the previous one.

• α = τ . There are five sub-cases.
– LetM ∥ A

τ
−−−→ M ′ ∥ A′ be derived by an application of rule (SensRead). Since the attacker

A performs only malicious actions, from M ∥ A
τ
−−−→ M ′ ∥ A′ we can derive that A = A′

and P
s?v
−−−−−→ P ′ for some process P and P ’ such thatM = E; S Z P andM ′ = E; S Z P ′. By

considering rnd ({true, false}) = false for any process Att (ι, 1,C (ι)), we have that Top(C)

can only perform a tick action, and Top(C)
Es !v
−−−−−−↛ . Hence, by an application of rules (Par)

and (SensRead) we deriveM ∥ Top(C)
τ
−−−→ M ′ ∥ Top1 (C) = M ′ ∥ Top(C).

– LetM ∥ A
τ
−−−→ M ′ ∥ A′ be derived by an application of rule (ActWrite). This case is similar

to the previous one.

– Let M ∥ A
τ
−−−→ M ′ ∥ A′ be derived by an application of rule (ESensSniff E). Since M

is sound it follows that M = M ′ and A
Es?v
−−−−−−→ A′. This entails 1 ∈ C ′(Es?) ⊆ C (Es?).

By assuming rnd ({true, false}) = true for the process Att (Es?, 1,C (Es?)), it follows that

Top(C)
Es?v
−−−−−−→ Top1 (C) = Top(C). Hence, by applying the rules (Par) and (ESensRead E) we

deriveM ∥ Top(C)
τ
−−−→ M ′ ∥ Top1 (C) = M ′ ∥ Top(C).

– Let M ∥ A
τ
−−−→ M ′ ∥ A′ be derived by an application of rule (EActIntgr E). Since M is

sound it follows that M = M ′ and A
Ea!v
−−−−−−→ A′. As a consequence, 1 ∈ C ′(Ea!) ⊆ C (Ea!).

By assuming rnd ({true, false})=true and rnd (R) = v for the process Att (Ea!, 1,C (Ea!)),

it follows that Top(C)
Ea!v
−−−−−−→ Top1 (C) = Top(C). Thus, by applying the rules (Par) and

(EActIntegr E) we deriveM ∥ Top(C)
τ
−−−→ M ′ ∥ Top1 (C) = M ′ ∥ Top(C).

– Let M ∥ A
τ
−−−→ M ′ ∥ A′ be derived by an application of rule (Tau). Let M = E; S Z P and

M ′ = E ′; S Z P ′. First, we consider the case when P ∥ A
τ
−−−→ P ′ ∥ A′ is derived by an

application of either rule (ESensIntegr E) or rule (EActDrop E). Since M is sound and A can

perform only malicious actions, we have that: (i) either P
s?v
−−−−−→ P ′ and A

Es !v
−−−−−−→ A′ (ii) or

P
a!v
−−−−−→ P ′ and A

Ea?v
−−−−−−→ A′. We focus on the first case as the second one is similar.

Since A
Es !v
−−−−−−→ A′, we derive 1 ∈ C ′(Es!) ⊆ C (Es!), and Top(C)

Es !v
−−−−−−→ Top1 (C) = Top(C),

by assuming rnd ({true, false}) = true and rnd (R) = v for the process Att (Es!, 1,C (Es!)).
Thus, by applying the rules (ESensIntegr E) and (Tau) we derive M ∥ Top(C)

τ
−−−→ M ′ ∥

Top1 (C) = M ′ ∥ Top(C), as required.
To conclude the proof we observe that if P ∥ A

τ
−−−→ P ′ ∥ A′ is derived by an application

of a rule different from (ESensIntegr E) and (EActDrop E), then by inspection of Table 1 and

by definition of attacker, it follows that A can’t perform a τ -action since A does not use

channel communication and performs only malicious actions. Thus, the only possibility is

that the τ -action is performed by P in isolation. As a consequence, by applying the rules

(Par) and (Tau), we deriveM ∥ Top(C)
τ
−−−→ M ′ ∥ Top1 (C) = M ′ ∥ Top(C).

• α = tick. In this case the transitionM ∥ A
tick
−−−−−→ M ′ ∥ A′ is derived by an application of rule

(Time) because M
tick
−−−−−→ M ′ and A

tick
−−−−−→ A′. Hence, it suffices to prove that Top(C)

tick
−−−−−→

Top2 (C). We consider two cases: 1 ∈ C (ι) and 1 < C (ι). If 1 ∈ C (ι), then the transition

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

0:38 R. Lanotte, M. Merro, A. Munteanu, L. Viganò

Att (ι, 1,C (ι))
tick
−−−−−→ Att (ι, 2,C (ι)) can be derived by assuming rnd ({true, false}) = false.

Moreover, since rnd ({true, false}) = false the process Att (ι, 1,C (ι)) can only perform a tick
action. If 1 < C (ι), then the process Att (ι, 1,C (ι)) can only perform a tick action. As a

consequence,Att (ι, 1,C (ι))
tick
−−−−−→ Att (ι, 2,C (ι)) and Top(C)

tick
−−−−−→ Top2 (C). By an application

of rule (Time), we deriveM ∥ Top(C)
tick
−−−−−→ M ′ ∥ Top2 (C).

• α = deadlock. This case is not admissible because M ∥ A
deadlock
−−−−−−−−−→ M ′ ∥ A′ would entail

M
deadlock
−−−−−−−−−→ M ′. However,M is sound and it can’t deadlock.

• α = unsafe. Again, this case is not admissible becauseM is sound.

Inductive case (k > 1). We have to prove that M ∥ A
t
−−−→ M ′ ∥ A′ implies M ∥ Top(C) t̂

===⇒ M ′ ∥
Top#tick(t)+1 (C). Since the length of t is greater than 1, it follows that t = t ′α , for some trace t ′

and some action α . Thus, there exist M ′′ and A′′ such that M ∥ A
t ′
−−−→ M ′′ ∥ A′′

α
−−−→ M ′ ∥ A′.

By inductive hypothesis, it follows that M ∥ Top(C) t̂ ′
===⇒ M ′′ ∥ Top#tick(t

′)+1 (C). To conclude

the proof, it is enough to show that M ′′ ∥ A′′
α
−−−→ M ′ ∥ A′ implies M ′′ ∥ Top#tick(t

′)+1 (C)
α̂
===⇒

M ′ ∥ Top#tick(t)+1 (C). The reasoning is similar to that followed in the base case, except for actions

α = deadlock and α = unsafe that need to be treated separately. We prove the case α = deadlock
as the case α = unsafe is similar.

LetM = E; S Z P . The transitionM ′′ ∥ A
deadlock
−−−−−−−−−→ M ′ ∥ A′ must be derived by an application

of rule (Deadlock). This implies that M ′′ = M ′, A′′ = A′ and the state function of M is not in the

invariant set inv. Thus, by an application of rule (Deadlock) we derive

M ′′ ∥ Top#tick(t
′)+1 (C)

deadlock
−−−−−−−−−→ M ′ ∥ Top#tick(t

′)+1 (C).

Since #tick(t) + 1 = #tick(t ′) + #tick(deadlock) + 1 = #tick(t ′) + 1, it follows, as required, that

M ′′ ∥ Top#tick(t
′)+1 (C)

deadlock
−−−−−−−−−→ M ′ ∥ Top#tick(t)+1 (C) .

□

Everything is finally in place to prove Theorem 3.

Proof of Theorem 3. We have to prove that eitherM ∥ A ⊑ M orM ∥ A ⊑m2 ..n2
M , for some

m2 and n2 such that m2..n2 ⊆ m1..n1 (m2 = 1 and n2 = ∞ if the two systems are completely

unrelated). The proof proceeds by contradiction. Suppose thatM ∥ A @ M andM ∥ A ⊑m2 ..n2
M ,

withm2..n2 ⊈m1..n1. We distinguish two cases: either n1 = ∞ or n1 ∈ N
+
.

If n1 = ∞, then it must bem2 < m1. Since M ∥ A ⊑m2 ..n2
M , by Definition 10 there is a trace t ,

with #tick(t) =m2−1, such thatM ∥ A
t
−−−→ andM ̸

t̂
===⇒. By Lemma 4, this entailsM ∥ Top(C) t̂

===⇒.

SinceM ̸
t̂
===⇒ and #tick(t) =m2−1 < m2 < m1, this contradictsM ∥ Top(C) ⊑m1 ..n1

M .

If n1 ∈ N
+
, thenm2 < m1 and/or n1 < n2, and we reason as in the previous case. □

Proof of Theorem 4. We consider the two parts of the statement separately.

Definitive impact. By an application of Lemma 4 we have thatM ∥ A
t
−−−→ entailsM ∥ Top(C) t̂

===⇒.

This impliesM ∥ A ⊑ M ∥ Top(C). Thus, ifM ∥ Top(C) ⊑ M[ξw ← ξw+ξ], for ξ ∈ R
ˆX
, ξ > 0, then,

by transitivity of ⊑, it follows thatM ∥ A ⊑ M[ξw ← ξw+ξ].

Pointwise impact. The proof proceeds by contradiction. Suppose ξ ′ > ξ . Since Top(C) has a
pointwise impact ξ at timem, it follows that ξ is given by:

inf

{
ξ ′′ : ξ ′′∈R

ˆX ∧ M ∥ Top(C) ⊑m ..n M[ξw ← ξw+ξ
′′
],n ∈ N+ ∪∞

}
.

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

A Formal Approach to Physics-Based Attacks in Cyber-Physical Systems 0:39

Similarly, since A has a pointwise impact ξ ′ at timem′, it follows that ξ ′ is given by

inf

{
ξ ′′ : ξ ′′∈R

ˆX ∧ M ∥ A ⊑m′ ..n M[ξw ← ξw+ξ
′′
],n ∈ N+ ∪∞

}
.

Now, ifm =m′, then ξ ≥ ξ ′ becauseM ∥ A
t
−−−→ entailsM ∥ Top(C) t̂

===⇒ due to an application of

Lemma 4. This is contradiction with the fact that ξ < ξ ′. Thus, it must bem′ < m. Now, since both

ξ and ξ ′ are the infimum functions and since ξ ′ > ξ , there are ξ and ξ ′, with ξ≤ξ≤ξ ′≤ξ ′ such that:

(i)M ∥ Top(C) ⊑m ..n M[ξw ← ξw+ξ], for some n; (ii)M ∥ A ⊑m′ ..n′ M[ξw ← ξw+ξ ′], for some n′.

FromM ∥ A ⊑m′ ..n′ M[ξw ← ξw+ξ ′] it follows that there exists a trace t with #tick(t) =m′ − 1

such thatM ∥ A
t
−−−→ andM[ξw ← ξw+ξ ′] ̸

t̂
===⇒. Since ξ ≤ ξ ′, by monotonicity (Proposition 6), we

deduce thatM[ξw ← ξw+ξ] ̸
t̂
===⇒. Moreover, by Lemma 4M ∥ A

t
−−−→ entailsM ∥ Top(C) t̂

===⇒.

Summarising, there exists a trace t ′ with #tick(t ′) = m′ − 1 such that M ∥ Top(C)
t ′
−−−→ and

M[ξw ← ξw+ξ] ̸
t̂ ′
===⇒. However, this, together withm′ < m, is in contradiction with the fact (i)

above saying that M ∥ Top(C) ⊑m ..n M[ξw ← ξw+ξ], for some n. As a consequence it must be

ξ ′ ≤ ξ andm′ ≤ m. This concludes the proof. □

Received XYZ 2019; revised XYZ; accepted XYZ

ACM Transactions on Privacy and Security, Vol. 0, No. 0, Article 0. Publication date: 2019.

	Abstract
	1 Introduction
	1.1 Context and motivation
	1.2 Background
	1.3 Contributions
	1.4 Organisation

	2 The Calculus
	2.1 Syntax of CCPSA
	2.2 Labelled transition semantics
	2.3 Behavioural semantics

	3 A Running Example
	3.1 The CPS Sys
	3.2 A formalisation of Sys in Uppaal SMC

	4 Physics-based Attacks
	4.1 Three different attacks on the physical devices of the CPS Sys
	4.2 A technique for proving attack tolerance/vulnerability

	5 Impact of an attack
	6 Conclusions, related and future work
	6.1 Summary
	6.2 Related work
	6.3 Future work

	Acknowledgments
	References
	A Proofs

