
Federico De Meo

A Formal and Automated
Approach to Exploiting
Multi-Stage Attacks of Web
Applications

Ph.D. Thesis

November 5, 2018

Università degli Studi di Verona
Dipartimento di Informatica

Advisor:
Prof. Luca Viganò
Dipartimento di Informatica
Università degli Studi di Verona
Strada le Grazie 15, 37134 Verona
Italia
and
Department of Informatics
King’s College London
UK

Series N◦: ????

Università degli Studi di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italia

Abstract. The complexity of modern web applications, due to the imple-
mentation of new services, has rapidly increased the need of new automatic
security analysis methods and tools. Today, the leading methodology for the
security analysis of web applications is a combination of vulnerability assess-
ment and penetration testing. Vulnerability assessment has received much
attention and several tools have been proposed to identify vulnerabilities. On
the other hand, penetration testing has been left to the experience of the
security analyst.

In this thesis, I address this problem by proposing a formal, model-based
testing approach for the security analysis of web applications that can support
the penetration testing phase. The approach I propose is based on the formal
definition of web applications and their vulnerabilities which allow one to
(i) reason about vulnerabilities of web applications and (ii) combine multiple
vulnerabilities for the identification of complex, multi-stage attacks. I have
developed WAFEx, an automated tool that implements my approach and I
show its efficiency by applying it to real-world case studies. WAFEx was able
to find previously unknown attacks, which are witness to the fact that WAFEx
can generate, and exploit, attacks that, to the best of my knowledge, no other
tool for the security analysis of web applications can find.

Contents

1 Introduction . 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Publications related to this thesis . 4
1.4 Synopsis . 4

Part I: State of the art

2 Web applications security . 9
2.1 Database related vulnerabilities . 9

2.1.1 Boolean-based blind SQLi . 10
2.1.2 Time-Based SQLi . 11
2.1.3 Error-Based SQLi . 11
2.1.4 UNION Query-Based SQLi . 12
2.1.5 Second-Order SQLi . 12
2.1.6 Stacked Queries SQLi . 13
2.1.7 Prevention techniques . 13

2.2 File-system related vulnerabilities . 14
2.2.1 Directory Traversal (a.k.a. Path Traversal) 15
2.2.2 SQLi . 15
2.2.3 File Inclusion . 16
2.2.4 Forced Browsing (a.k.a. Direct Request) 17
2.2.5 Unrestricted File Upload . 18
2.2.6 Prevention techniques . 19

2.3 Client-side related vulnerabilities . 19
2.3.1 Cross-Site Scripting (XSS) . 20
2.3.2 Cross-Site Request Forgery (CSRF) 25
2.3.3 Prevention techniques . 27

2.4 Conclusions . 29

ii Contents

3 Software analysis . 31
3.1 Static analysis . 32

3.1.1 Model Checking . 32
3.1.2 The AVANTSSAR platform . 33

3.1.2.1 ASLan connector . 34
3.1.2.2 The formal language ASLan++ 35
3.1.2.3 From ASLan++ to ASLan 40
3.1.2.4 Validators . 42

3.2 Dynamic analysis . 43
3.2.1 Penetration Testing . 43

3.2.1.1 Penetration testing methodologies 44
3.2.1.2 Anatomy of a penetration test 45
3.2.1.3 Toolkit . 47

3.2.2 Model-Based Testing . 48
3.2.3 The SPaCIoS tool . 49

3.3 Conclusions . 51

Part II: Model-based Security Testing Framework (MobSTer)

4 MobSTer . 55
4.1 Modeling web applications for MobSTer . 56

4.1.1 Users, data and knowledge . 57
4.1.2 The behavior of web applications . 59
4.1.3 Security Mechanisms & Testing-Related Information . . . 60
4.1.4 States of the transition system . 62
4.1.5 Actions . 62
4.1.6 Security goals . 63
4.1.7 The Alloy language . 65

4.1.7.1 Signatures and Relations 65
4.1.7.2 Facts . 66
4.1.7.3 Predicates . 66
4.1.7.4 Assertion . 66

4.1.8 Model definitions in Alloy . 66
4.1.8.1 Users, data and knowledge 67

4.2 Evaluation . 68
4.2.1 Implementation . 70

4.2.1.1 Initial Phase . 70
4.2.1.2 Browsing Phase . 70
4.2.1.3 Attack Phase . 72
4.2.1.4 Check Phase . 72

4.2.2 Results of the tests . 73
4.2.2.1 Access-control flaws . 74
4.2.2.2 AJAX security . 75
4.2.2.3 Cross-Site Scripting (XSS) 75

Contents iii

4.2.2.4 Injection flaws . 76
4.3 Related work . 77
4.4 Conclusions . 78

Part III: Multi-stage analysis of web applications

5 The formalization . 83
5.1 Data types . 84
5.2 The communication model . 84
5.3 The Web Attacker . 88
5.4 The File-system . 89

5.4.1 File-system content . 90
5.4.2 File-system operations . 90
5.4.3 Reading and writing behavior . 91

5.5 The Database . 92
5.5.1 Database content . 96
5.5.2 The behavior of queries . 97

5.6 The Web Application . 99
5.6.1 The HTTP protocol . 99
5.6.2 Client communication . 99
5.6.3 File-system and database communication. 101
5.6.4 Sessions . 101
5.6.5 Remote code execution . 102

5.7 The honest client . 102
5.8 Security properties . 105
5.9 Multi Stage case study . 105

5.9.1 The specification . 107
5.10 Conclusions . 110

6 WAFEx . 113
6.1 Model creator . 113
6.2 Concretization . 115
6.3 Experimental results . 118

6.3.1 Case study: the Multi-Stage web application 118
6.3.1.1 The abstract attack traces 119
6.3.1.2 Concretization . 122

6.3.2 Case study: Cittadiverona . 123
6.3.2.1 The specification . 123
6.3.2.2 The analysis of Cittadiverona 131
6.3.2.3 Concretization . 137

6.4 Conclusions . 138

iv Contents

7 Related work . 139
7.1 Combination of vulnerability assessment and penetration

testing . 139
7.2 Model-based testing . 140

8 Summary of contributions . 143

9 Future work . 145

References . 147

A Appendix . 153
A.1 Modeling DVWA, WebGoat and Gruyere 153
A.2 Exploiting a vulnerability . 155

List of Figures

1.1 Workflow of my approach (and of the WAFEx tool). 3

2.1 Example of a search engine displaying back the value of a
search text . 22

2.2 Example of a search engine vulnerable to reflected Cross-Site
Scripting (XSS) displaying a JavaScript alert 23

2.3 Anatomy of a Reflected XSS attack . 24
2.4 Anatomy of a stored XSS attack . 25
2.5 Anatomy of a Cross-Site Request Forgery attack 28

3.1 The AVANTSSAR validation platform . 34
3.2 General representation of a Model-Based Testing approach 49
3.3 The SPaCIoS tool and its main components 51

4.1 A high-level view of the MobSTer framework 56
4.2 Execution workflow of the MobSTer framework 69

5.1 The communication model between the honest client, the web
application, the file-system and the database 85

5.2 Example of an entity-relationship model composed of one
table and six attributes . 96

5.3 The MSCs of the Multi-Stage case study . 111

6.1 WAFEx model creator: button for selecting requests and
responses to process . 116

6.2 WAFEX model creator: main interface area 117
6.3 Abstract Attack Trace (AAT) #1 for accessing the database

in the Multi-Stage case study . 119
6.4 AAT #2 for accessing the database in the Multi-Stage case

study . 120
6.5 AAT #3 for accessing the database in the Multi-Stage case

study . 121
6.6 AAT #4 for accessing the database in the Multi-Stage case

study . 122

vi List of Figures

6.7 AAT #1 for accessing the database in Cittadiverona 133
6.8 AAT #2 for accessing the database in Cittadiverona 133
6.9 AAT #3 for accessing the database in Cittadiverona 134
6.10 AAT #4 for accessing the database in Cittadiverona 136
6.11 AAT #5 for accessing the database in Cittadiverona 137

A.1 Anatomy of exploiting a vulnerability of web applications with
WAFEx . 156

List of Tables

2.1 Main problematic characters that could be used to perform
XSS attacks and their corresponding HTML-encoding 28

3.1 Channel types supported by ASLan++ . 38
3.2 Subset of the Linear Temporal Logic (LTL) operators

supported by ASLan++ . 40

4.1 Definition of the Login action . 63
4.2 Results of the tests performed on the case studies 74

6.1 Vulnerabilities identified in the Cittadiverona case study 132

1

Introduction

In the early days of the Internet, the World Wide Web consisted only of
static web pages that essentially were information repositories for sharing
content with other users. The term “web site” is used to describe a collection
of many web pages hosted on the same domain that could be browsed with
a web browser. Today, the World Wide Web is almost unrecognizable from
its early form and the term “web application” is often used instead of “web
site” to describe a new type of content accessible on the web that is capable
of delivering complex features compared to the ones provided by desktop
software applications. The majority of web based content that we access today
is delivered in form of a web application and we use web applications to deal
with many different services such as bank accounts, social networks and health
care. There is thus no doubt that web applications play an important role in
our everyday life and have become the default technology choice adopted
by many companies when deploying fast new software to the public. The
ubiquity of web applications has inevitably attracted the attention of attackers
who wanted to profit from the widespread of such a technology. Ensuring
the security of web applications is thus an important task that must not be
overlooked in the process of delivering web applications.

A number of different approaches have been proposed to test the security
of web applications (web applications, for short), ranging from vulnerability as-
sessment [83] and penetration testing [15], which are the two main approaches
that security analysts typically undertake when assessing the security of a web
application and other systems under analysis (see also [21, 35, 73, 32]), to the
more formal model-based testing [81, 33] that has been steadily maturing into
a viable alternative and/or complementary approach.

Vulnerability assessment and penetration testing do not have universally
accepted definitions. I now briefly describe the two approaches in the context
of this thesis and the correlation between them. A vulnerability assessment
encompasses the use of automatic scanning tools to search for common vul-
nerabilities of the system under analysis. This approach gives a superficial
overview of the security of a system and does not require many technical skills

2 1 Introduction

as the automatic tools are in charge of taking care of the analysis. However,
it is well known [29] that state-of-the-art automatic scanners do not detect
vulnerabilities linked to the logical flaws of web applications. This means that
even if a vulnerability is found, no tool can link it to logical flaws leading to the
violation of a security property. The result of the vulnerability assessment is
thus used to perform a second and more complicated step: during a penetra-
tion test (pentest), the security analyst defines an attack goal and manually
attempts to exploit the discovered vulnerabilities to determine whether the
attack goal he defined can actually be achieved. A pentest is meant to show
the real damage on a specific system under analysis resulting from the ex-
ploitation of one or more vulnerabilities.

1.1 Motivation

Consider the following example, which is simple but also fundamental to un-
derstand the motivation for the analysis that I propose. Trustwave Spider-
Labs found a SQL injection vulnerability in Joomla! [43], a popular Content
Management System (CMS). In [79], Trustwave researchers show two things:
the code vulnerable to SQL injection and how the injection could have been
exploited for obtaining full administrative access. The description of the vul-
nerable code clearly highlights an inadequate filtering of data when executing
a SQL query. The description of the damage resulting from the exploitation
of the SQL injection shows that an attacker might be able to perform a ses-
sion hijacking by stealing session values stored as plain-text in the database.
The result of this analysis points out two problems: Joomla! is failing in (1)
properly filtering data used when performing a SQL query and (2) securely
storying session values. Problem (1) could have been identified by vulnerabil-
ity scanners (e.g., sqlmap is able to identify the vulnerability), but no auto-
matic vulnerability scanner can identify problem (2) as it depends on how the
web application handles sessions and thus only a manual pentesting session is
effective.

However, manual pentesting relies on the security analyst’s expertise and
skills, making the entire pentesting phase easily prone to errors. An analyst
might underestimate the impact of a certain vulnerability leaving the entire
web application exposed to attackers. This is why it is important to develop
new approaches capable of automatically identifying complex attacks to web
applications.

1.2 Contributions

My main contributions are two-fold. First, I propose a formalization to rep-
resent the behavior of the most dangerous vulnerabilities of web applications:

1.2 Contributions 3

Model Creation

ASLan++
skeleton

Concretization

AATsCL-AtSe

AAT
concretizationHTTP

recording

1

6

BurpProxy Model Creator
Plugin

WAFEx

7

Concretization
details

Interaction

Input

Output

2

4
5

3

Fig. 1.1: Workflow of my approach (and of the WAFEx tool).

SQL injection (SQLi), XSS, Cross-Site Request Forgery (CSRF) and file-
system related vulnerabilities [61]). (But note that my formalization can be
fairly easily extended to consider other vulnerabilities as well.) In particular,
I show how the canonical Dolev-Yao (DY) attacker model [27] can be used
to search for multi-stage attacks where multiple vulnerabilities are combined
together to violate security properties of web applications. A number of for-
mal approaches based on the DY attacker model have been developed for the
security analysis of web applications, e.g., [3, 6, 18, 24, 70, 84], but combina-
tions of multiple vulnerabilities have never been taken into consideration by
formal approaches before. It is crucial to point out that my approach does not
search for payloads that can be used to exploit a particular vulnerability, but
rather I propose an approach capable of automatically exploit vulnerabilities
of web applications.

Second, to show that my formalization can effectively generate multi-stage
attacks where multiple vulnerabilities are exploited, I have developed a proto-
type tool called WAFEx (Web Application Formal Exploiter [86]). As shown
in Figure 1.1 (that I will discuss in detail in Chapter 6), WAFEx follows
the canonical model-based testing approach and is capable of generating au-
tomatically different attack traces that violate the same security property.
More importantly, WAFEx is capable of generating, and exploiting, complex
attacks that, to the best of my knowledge, no other state-of-the-art-tool for
the security analysis of web applications can find.

4 1 Introduction

I tested WAFEx on well-known vulnerable web applications used to test
the skills of pentesters (specifically WebGoat, DVWA and Gruyere) and
WAFEx was able to identify all the vulnerabilities covered by my formal-
ization. I then applied WAFEx to two real-world case studies: Multi-Stage
(a web application that I wrote for testing) and Cittadiverona (a public web
application provided by Virtuopolitan S.r.l.), and WAFEx was able to iden-
tify previously unknown attacks to Cittadiverona, which I disclosed to the
provider before writing them up in this thesis.

Finally, I also contributed to the development of the Model-based Security
Testing Framework (MobSTer). Specifically, I worked on the definition of ac-
tions, a means to represent web applications, and I performed comparative
tests to evaluate the effectiveness of MobSTer against state-of-the-art tools
for the secure analysis of web applications.

1.3 Publications related to this thesis

Published papers:

1. Federico De Meo, Marco Rocchetto and Luca Viganò. “Formal Analysis
of Vulnerabilities of Web Applications Based on SQL Injection” . In the
proceedings of Security and Trust Management (STM) (2016) [24].

2. Federico De Meo and Luca Viganò. “A formal approach to exploiting
multi-stage attacks based on file-system vulnerabilities of web applica-
tions”. In the proceedings of Engineering Secure Software and Systems
(ESSoS) (2017) [25].

3. Michele Peroli, Federico De Meo, Luca Viganò and Davide Guardini.
“MobSTer: A Model-based Security Testing Framework for Web Appli-
cations” . In Software Testing, Verification and Reliability [66].

Submitted papers:

1. Federico De Meo and Luca Viganò. “A Formal and Automated Approach
to Exploiting Multi-Stage Attacks of Web Applications”. Currently under
submission [26].

1.4 Synopsis

Part I — State of the art:

• Chapter 2 gives an overview of the most dangerous vulnerabilities of web
applications that I formalized in my research.

• Chapter 3 gives an overview of the approaches used nowadays for analyz-
ing the security of web applications.

1.4 Synopsis 5

Part II — Model-based Security Testing Framework (MobSTer):

• Chapter 4 describes the MobSTer framework that is used to test vulnerable
entry points of web applications.

Part III — Multi-stage analysis of web applications:

• Chapter 5 introduces my formalization for exploiting multiple vulnerabil-
ities of web applications.

• Chapter 6 describes the details of my tool WAFEx and the experimental
results of applying WAFEx to some real-world case studies.

• Chapter 7 discusses related works.
• Chapter 8 summarizes the contributions of this thesis.
• Chapter 9 discusses some possible future work.

Appendix A:

• Appendix A describes the formal model of three case studies (DVWA,
WebGoat and Gruyere) that I used to test the implementation of WAFEx.

Part I

State of the art

2

Web applications security

This chapter gives an overview of the main security issues relevant to the
security of web applications with particular emphasis to some classes of vul-
nerabilities which I closely studied and that characterize my research. I do not
give a specific order to the vulnerabilities that I present but I rather collect
them in three categories representing three components of web applications:
database , file-system and client. This categorization aims at giving a coherent
and uniform starting point to reason about vulnerabilities of web applications
that will also be used later on in Chapter 5 where I present the main contri-
bution of this thesis For each category, I describe relevant vulnerabilities that
aim at compromise their security. More specifically, I consider two security
properties of interest for the collection of the vulnerabilities:

• Authentication bypass: the attacker has access to a restricted area without
providing valid credentials.

• Confidentiality breach: the attacker has access to content stored in the
web application’s file-system that is not meant to be publicly available.

Along with relevant vulnerabilities, I describe mitigation techniques to
ensure a safe interaction with each component. Finally, the vulnerabilities
collected in the this chapter can also be found in well known classification
such as the OWASP Top Ten project [61] which aims at collecting the ten
most critical vulnerabilities of web applications by providing a description,
examples and guidance on how to avoid them.

2.1 Database related vulnerabilities

Databases are employed by almost every web application to store and orga-
nize information delivered to users. The most used language employed by web
applications to query the content of a database is Structured Query Language
(SQL). SQL is an interpreted language that can be used to perform a variety

10 2 Web applications security

of operations on a database such as read, insert, update and delete. Developers
commonly implement the interaction with a database by writing SQL state-
ments as concatenation of SQL commands and user-supplied data. However,
user-supplied data, if used maliciously, might contain additional SQL com-
mands that will change the behavior of the resulting SQL statement leading
to a SQLi vulnerability.

SQLi is one of the most widespread security vulnerabilities of the web: ac-
cording to the Open Web Application Security Project (OWASP), SQLi is the
most critical threat for the security of web applications [61], and the MITRE
corporation lists improper SQLi neutralization as the most dangerous mis-
take in web application’s development [22]. The first definition of SQLi dates
back to 1998, when Jeff Forristal wrote about this technique in the Phrack
ezine [34]. After 20 years, also due to the increasing complexity of modern
web applications, SQLi is still widely exploited and can be very difficult to
detect. A variety of SQLi scanners, such as sqlmap [74] and sqlninja [75], have
been proposed in recent years to search for SQLi injection points and pay-
loads and a number of general classifications based on the payloads of the
SQLi (and the scenario in which they are exploited) have been put forth, e.g.,
in [38, 61]. In this section, I describe the five main different categories of SQLi
techniques needed to understand my formalization: (i) Boolean-Based Blind,
(ii) Time-Based, (iii) Error-Based, (iv) Union Query, (v) Second-Order and
(vi) Stacked Queries.

2.1.1 Boolean-based blind SQLi

In this type of SQLi, an attacker inserts into an HTTP parameter, which
is used by a web application to write a SQL query, one or more valid SQL
statements that make the WHERE clause of the query evaluate to true or false.1
By interacting multiple times with the web application and comparing the
responses, the attacker can understand whether or not the injection was suc-
cessful.

As an example, consider a web application that shows a page login.php for
performing the login. Once the user submits hes credentials (username and
password), the web application searches in the database a tuple that matches
the given username and password by using the query SELECT * FROM users
WHERE users.username=’username’ AND user.password=’password’. As-
sume that the web application replies with page login.php if no tuples are
returned by the database and with another page, dashboard.php, if a tuple
is returned. Hence, if the attacker injects a payload such as ’ OR users.
username=’admin’ in one of the fields of the form and is redirected to dash-
board.php, then he will know that admin is a valid value in the database for
column username.
1 Since all the state-of-the-art databases (SQL Server, SQLlite, MySQL, Post-
gresSQL and Oracle) are vulnerable to SQLi, I don’t distinguish between different
SQL dialects and simply write “SQL query”.

2.1 Database related vulnerabilities 11

2.1.2 Time-Based SQLi

This injection is quite similar to Boolean-Based blind but does not need the
web application to have a Boolean behavior. This injection technique is usu-
ally exploited in scenarios where there is no (trivial) way for the attacker to
understand whether, after the SQLi, the database has produced any tuples
as a response of a query. To overcome this lack of information from the web
application, the attacker appends a timing function to the validity value of
a Boolean clause. In this way, the attacker tricks the database into waiting,
after the submission of the query by the web application, for a predefined
amount of time if there is a tuple as a response to the query. The attacker can
then infer whether the value of the query was true (i.e., observing a delay in
the response) or false (i.e., no delay is observed).

As an example, consider a web application that replies with a page
search.php independently on whether a tuple is returned by the database.
Whatever the input provided by an attacker, he will always receive the same
page. The attacker might now try to use a temporal operator provided by SQL
in order to distinguish the behavior of the query. Hence, the attacker might
inject a payload such as OR IF(username=admin)WAIT 60s and, if admin is a
valid value in the database column username, the attacker will observe a delay
of around 60 seconds before getting any answer from the web application. The
attacker can then infer that admin is actually a valid value.

In real case scenarios, a Boolean-Based blind is preferred whenever possible
because it is faster than a Time-based.

2.1.3 Error-Based SQLi

During the development and testing phases of a web application, it can be
useful for developers to be able to inspect errors returned by the database
within the web application itself. This common practice, while very helpful,
should be limited to a testing environment and the error pages should be
removed, or errors should be limited to standard error messages, once the web
application moves to deploy. When error pages are not removed and, instead,
exposed to the Internet, some error messages provided by the database could
be exposed, thus giving to an attacker the possibility of exploiting Error-based
SQLi. In this type of injection, the attacker tricks a database into performing
operations that result in an error and then he gains information from the error
messages produced by the database itself. The attacker induces the generation
of an error that contains some pieces of information stored in the database
and, with subsequent interrogations, he will eventually gain all the data stored
in the database.

As an example, consider an attacker who wants to find out the first user-
name in the table usernames. The attacker might inject, in a login form, a
payload that tricks the web application into evaluating the query SELECT *
FROM (SELECT username FROM usernames LIMIT 1), which generates the

12 2 Web applications security

error Error:table adminUsername unknown because an invalid table is se-
lected (resulting from the inner query SELECT username FROM usernames
LIMIT 1), where adminUsername is the first username found in the table
usernames.

2.1.4 UNION Query-Based SQLi

This is a particular type of SQLi where the attacker injects a SQL UNION
operator to join the original query with a malicious one. The UNION operator
only applies to SELECT queries and is used by the attacker to override the result
of the original query. Since the attack overwrites the result of the original
query, this kind of injection requires the web application to print the result of
the query within the returned HTML page. This behavior allows the attacker
to actually gain information from the database by reading them within the
web application itself.

As an example, consider the query SELECT nickname FROM users WHERE
id=?. An attacker can inject 1 UNION ALL SELECT creditCardNumber
FROM CreditCardTable as the value of id which forces the query to return
the credit card numbers.

2.1.5 Second-Order SQLi

This injection doesn’t have a direct effect when submitted but is exploited in
a second stage of the attack. More specifically, in some cases a web application
may correctly handle and store a SQL statement whose value depends on user
input. Afterwards, another part of the web application that doesn’t implement
a control against SQLi might use the previously stored SQL statement to
execute a different query and thus expose the web application to a SQLi. This
attack is quite complex and requires the attacker to have a deep knowledge
of how data are stored and used in the web application. Automated web
application security scanners generally fail to detect this type of SQLi (e.g.,
[75] does not support second-order) or may need to be manually instructed
to check for evidence that an injection has been attempted (e.g. [74] provides
the option –-second-order used to specify the resulting URL page to search
for second-order attempt).

As an example, consider a web application that allows users to register
new accounts and lets assume that a user with username admin is already
registered in the web application and that the registration page implements
proper countermeasures against SQLi. An attacker can then register a new
user with username admin’# (where # is the comment delimiter character).
The web application will then store in the database a new entry where the
value for the username would be admin’#. At this point, the attacker can log
in as admin’# and change his password, meaning changing the password of
the user admin’#. If the query that handles the update is unsafe, meaning

2.1 Database related vulnerabilities 13

does not validate its values, it might look something like UPDATE users SET
password=’newpassword’ WHERE username=’admin’#’. The database will

interpret the WHERE clause as username=’admin’ (because everything after
the # character is considered a comment), so that the attacker is actually
changing the password of the user admin and not of user admin’#.

2.1.6 Stacked Queries SQLi

This injection allows the attacker, whenever he finds an injection point, to
execute an arbitrary query completely different from the original one. In SQL,
the semicolon character ; is used to mark the end of an SQL statement and the
beginning of a new one. An attacker might exploit the semicolon character
and force the execution of a completely new query. This type of SQLi is
probably the most powerful one as, when applicable, it allows the attacker to
completely change the injected query. However, it is important to highlight
some limitation of when Stacked-queries can be executed. In fact, most of
the time it is not possible to exploit this SQLi technique since the database
or the framework used to interact with the database might not support the
execution of multiple queries.

As an example, consider the query SELECT title, description FROM
articles WHERE id=id. An attacker might inject the statement 1;DROP
TABLE articles causing the execution of a drop table query which erases the
entire table articles.

2.1.7 Prevention techniques

Despite all the different techniques that can be used to exploit a SQLi entry
point, avoiding SQLi attacks is theoretically quite straightforward. In fact,
to avoid these attacks, developers can use sanitization functions or prepared
statements. The general idea behind the prevention of SQLi attack is to not
evaluate the injected string as a SQL command.

A sanitization function takes the input provided by the user and modifies it
in such a way to remove the threat posed by those characters that can be used
to alter a SQL statement. Whenever one of these characters is detected in user-
supplied input, a sanitization function alters the input by either encoding the
character, so to avoid it being interpreted as a SQL command, or deleting it.
Sanitization functions are not the best option when dealing with SQLi when
compared with Prepared statement. This because the application of such a
function might be useless when the function is not properly implemented or
does not consider some cases. However, they are an applicable option when
prepared statements are not provided by the language.

Prepared statements (also known as parameterized statement), on the
other hand, are the best option for preventing a SQL statement to be ex-
posed to SQLi. They are mainly used to execute the same query repeatedly
maintaining efficiency over time but, because of the inner execution principle

14 2 Web applications security

of prepared statements, they are immune to SQLi attacks. The execution of a
prepared statement consists mainly in two steps: preparation and execution.
In the preparation step, the query is evaluated and compiled, waiting for the
parameters for the instantiation. During the execution step, the parameters
are submitted to the query and handled as data and thus they cannot be in-
terpreted as SQL commands anymore. However, it is important to point out
that also prepared statements might be susceptible to SQLi if wrongly used
within the web application. Consider the PHP code in Listing 2.1 showing a
simple example of a wrongly implemented usage of prepared statement. The
variable $pdo is initialized to open a connection with the database (line 1).
Variables $setStr and $id are initialized by taking value from user supplied
GET queries (lines 2-3). Finally, a prepared statement is executed where the
variable $setStr is concatenated to the SQL statement, thus used incorrectly
as it can be used to inject SQL commands, while the variable $id is correctly
used as a parameter of the prepared statement (line 4).

Listing 2.1: PHP code showing a wrong use of prepared statements
1 $pdo = new PDO(’mysql : dbname=t e s t ; host=l o c a l h o s t ’ , ’

root ’ , ’ ’) ;
2 $ s e tS t r = $_GET[’name ’] ;
3 $ id = $_GET[’ id ’] ;
4 $pdo−>prepare ("UPDATE use r s SET name=’ $ s e tS t r ’ WHERE

id = : id ")−>execute ($ id) ;

2.2 File-system related vulnerabilities

Modern web applications make intensive use of functionalities for reading and
writing content from the web application’s file-system (i.e., the file-system of
the web server that hosts the web application). Reading from and writing to
the file-system are routine operations that web applications perform for many
different tasks. For instance, the possibility of dynamically loading resources
based on runtime needs is commonly adopted by developers to structure the
web application’s source code for better and stronger re-usability. Similarly,
for what concerns writing, an increasing number of web applications allow
users to upload (write) content that can be shared with other users or can
be available from a web browser as in a cloud service. Reading and writing
functionalities are offered by most server-side programming languages for de-
veloping web applications such as PHP [67], JSP [57] or ASP [48]. Modern
database APIs also provide a convenient way to interact with the file-system
(e.g., backup or restore functionalities), but such APIs also increase the at-
tack surface an attacker could exploit. Whenever an attacker finds a way to
exploit vulnerabilities that allow him to gain access to the web application’s
file-system, the security of the whole web application is put at high risk. In-
deed, both OWASP [61] and MITRE [22] list vulnerabilities that compromise

2.2 File-system related vulnerabilities 15

the file-system among the most common and dangerous vulnerabilities that
afflict the security of modern software.2

Some classifications about file-system related vulnerabilities have been
given in the past [60, 59], but classifying vulnerabilities based on the security
property that is violated (e.g., authentication) rather than the functionality
being exploited (e.g., file-system functionality). I have identified five main
categories of interest, which are described below.

2.2.1 Directory Traversal (a.k.a. Path Traversal)

Reading and writing operations performed by a web application are intended
to occur in a restricted directory where the web application actually resides.
This location is referred to as the root directory of the web application. A Di-
rectory Traversal vulnerability refers to a lack of authorization controls when
an attacker attempts to access a location that is intended to identify a file
or directory stored in a restricted area outside of the web application’s root
directory. Whenever the access permissions of a web application are not re-
stricted in such a way that they only allow authorized users to access specific
files, an attacker might be able to craft a payload that allows him to access
restricted files located outside the web application’s root directory. Directory
Traversal payloads make use of special characters such as the double dots “..”
and the forward slash “/” separator, which, when combined, allow the attacker
to specify arbitrary locations that can escape outside the root directory of a
web application. Directory Traversal attacks can be further divided in Rela-
tive and Absolute, depending on whether the payload refers to a relative or
an absolute path. Since a Directory Traversal vulnerability refers to a lack of
authorization permissions, to actually exploit it, it is necessary for an attacker
to find an entry point that allows him to send input to the web application
that is then used to create a file-location string. This means that a Direc-
tory Traversal vulnerability is always exploited in combination with another
vulnerability that provides such an entry point to the attacker. For exam-
ple, imagine that index.php?load=file refers to a web page index.php that
dynamically loads the file specified by the value of load. An attacker might
modify this value and use it as input vector to exploit a Directory Traversal
vulnerability.

2.2.2 SQLi

Web applications make use of databases in order to store data. This allows
for functionalities such as blog posting, forum discussions, etc. As described
2 The Top 10 compiled by OWASP is a general classification and it does not include
a specific category named “file-system vulnerability”; however, “Injections”, “Bro-
ken Authentication and session Management”, “Security misconfiguration” (just
to name a few) can all lead to a vulnerability related to the file-system.

16 2 Web applications security

in § 2.1, querying a database is performed using the SQL language and when-
ever a query is created using user-supplied data, SQLi attacks could be pos-
sible. Most modern databases provide APIs that extend the expressiveness of
SQL by allowing SQL code to access a web application’s file-system for read-
ing and writing purposes. Reading APIs allow developers to produce code that
can retrieve content stored in the web application’s file-system and load it in
the database. This is particularly convenient when a web application needs
to load bulks of data into the database, e.g., as part of an initialization or
restoring process. Writing APIs allow developers to produce code that can
save content from the database to the web application’s file-system. This is
also particularly convenient for features such as backup or upload function-
alities. When an attacker finds an SQLi entry point, he can inject arbitrary
SQL syntax that modifies the behavior of the original query. Attackers mainly
exploit SQLi to bypass authentication mechanisms or to extract data from the
database, but, as there is no limit on the SQL syntax that could be injected,
it might also be possible to exploit reading and writing APIs to access the
underlying file-system [23].

As an example, consider the MySQL database [55], which has the built-in
API LOAD_FILE() for reading text or binary files from the file-system [56].
In the case of a UNION query-based SQLi, an attacker might inject the pay-
load 1 UNION ALL SELECT 1,LOAD_FILE(’/etc/passwd’),3,4 FROM mysql
.user-- that will give him reading access to the file /etc/passwd. Similarly,
MySQL provides APIs for writing to the file-system with the SELECT ...
INTO statement, which enables the result of a SELECT query to be written to
a file.

2.2.3 File Inclusion

All programing languages for the development of web applications support
functionalities for structuring code into separate files so that the same code can
be reused at runtime by dynamically including files whenever required. A File
Inclusion vulnerability refers to a lack of proper sanitization of user-supplied
data during the creation of a file location string that will be used to locate a
resource meant to be included in a web page. When the file location depends
on user-supplied data, an attacker can exploit it and force the inclusion of
files different from the ones intended by the developers. File Inclusion might
allow an attacker to access arbitrary resources stored on the file-system and
to execute code. File inclusion attacks can be further divided in Local file
inclusion and Remote file inclusion, which are respectively used to force the
inclusion of files stored in the local server or to include file stored in a remote
location.

As an example, consider the PHP code in Listing 2.2. Line 1 gets a user-
supplied parameter $_GET[’user’] and stores it into the variable $username
that is then used to create a file location in line 2, which is in turn used to
include a resource in the current page in line 3. If an attacker injects the

2.2 File-system related vulnerabilities 17

payload .htaccess as the value for the parameter user, he might be able to
access the file .htaccess, which contains configuration specific for the current
directory [4].

Listing 2.2: PHP code vulnerable to file inclusion
1 $username = $_GET[’ user ’] ;
2 $ f i l epathname = "/var /www/html/" . $username ;
3 include $f i l epathname ;

File inclusion can be combined with Directory Traversal vulnerability,
allowing an attacker to gain access to resources stored on the web appli-
cation’s file-system but outside the web application’s root folder. Consider
again Listing 2.2 and suppose that the web server hosting the web appli-
cation is a unix server. The attacker might then inject a malicious pay-
load such as ../../../../etc/passwd, where /etc/passwd is the com-
mon location pointing to a text-based database listing the users of the
system. Assuming that the root directory of the web application is lo-
cated at /var/www/html/site/, the PHP code will try to include the file
/var/www/html/site/../../../../etc/passwd, and the path is translated
into /etc/passwd, forcing the web application to include the file and thus
giving the attacker access to the list of users for the web server.

2.2.4 Forced Browsing (a.k.a. Direct Request)

This vulnerability refers to a lack of authorization controls when a resource
is directly accessed via URLs. This lack of authorization might allow an at-
tacker to enumerate and access resources that are not referenced by the web
application (thus not directly displayed to the users through the web applica-
tion) or that are intended to be accessed only as a result of previous HTTP
requests. By making an appropriate HTTP request, an attacker could access
resources with a direct request rather than by following the intended path.
The lack of authorization controls comes from the erroneous assumption that
resources can only be reached through a given navigation path. This wrong
assumption leads developers to implement authorization mechanisms only at
certain points along the way for accessing a resource, leaving no controls when
a resource is directly accessed.

As an example, consider a web application where the URL http://
vuln.com/admin/index.php points to the login page and http://vuln.com/
admin/admin.php points to the administration page accessible once the login
has succeeded. When Forced Browsing is possible, an attacker might be able to
directly access the administration page by requesting the URL http://vuln.
com/admin/admin.php without first logging in. If the admin.php page does
not verify whether the request is made by an authorized user, the attacker has
skipped the login process provided by http://vuln.com/admin/index.php.

Another example is a development environment that is supposed to
be accessible only by developers. Developers usually erroneously assume

18 2 Web applications security

that since the development environment is not directly accessible from the
main website, users have no means to access this area. However, an at-
tacker might try to guess the name of the development environment (e.g.,
http://vuln.com/dev/) and increase the chance of having unauthorized ac-
cess to the web application.

2.2.5 Unrestricted File Upload

A widespread feature provided by web applications is the possibility of up-
loading files that will be stored on the web application’s file-system. An Un-
restricted File Upload vulnerability refers to a lack of proper file sanitization
when a web application allows for uploading files. The consequences can vary,
ranging from complete takeover with remote arbitrary code execution to sim-
ple defacement, where the attacker is able to modify the content shown to
users by the web application.

As an example, consider a web application that allows users to upload
images (e.g., an avatar to customize the user’s profile). Listing 2.3 gives the
HTML code of the file upload form while Listing 2.4 gives the PHP code that
performs the upload. With refer to Listing 2.4, lines 1-2 define the location
where the file will be uploaded and line 3 performs the actual upload. However,
line 3 does not perform any control over the type of file being uploaded, paving
the way to Unrestricted File Upload Attacks.

Listing 2.3: HTML code that shows a file upload form
1 <form enctype="mult ipart /form−data" action="uploader

. php" method="POST">
2 Choose a f i l e to upload : <input name=" up l o ad ed f i l e "

type=" f i l e " />

3 <input type="submit" value="Upload F i l e " /> </form>

Listing 2.4: PHP code for uploading a file
1 $path="uploads /" ;
2 $target_path = $target_path .basename($_FILES [’

up l o ad ed f i l e ’] [’name ’]) ;
3 i f (move_uploaded_file ($_FILES [’ up l o ad ed f i l e ’] [’

tmp_name ’] , $target_path)) {
4 echo " f i l e uploaded ! " ;
5 } else {
6 echo " e r r o r uploading f i l e ! " ;
7 }

Unrestricted File Upload can also be used in combination with Directory
Traversal, allowing the attacker to overwrite arbitrary files stored in the web
server. However, modern web application programming languages (like PHP)
perform a sanitization on the uploaded file path string by removing any special

2.3 Client-side related vulnerabilities 19

characters such as “..” and “/” used to change the current path, making the
exploitation of a Directory Traversal less likely to happen.

2.2.6 Prevention techniques

The most effective solution to avoid undesired access to the file-system is to
not use user-submitted input directly in reading and writing operations. This
might not always be possible, or convenient, so to restrict access to the file-
system it is suggested to implement a mapping between identifiers and files,
and use identifiers when performing requests. Such a mapping, when properly
implemented, ensures that users cannot submit an arbitrary file name and
have access to it. Moreover, it is always important to implement the right
credentials to all the files and folders within the scope of the web application.
When the server of the web application is running, the user running the server
should be restricted in accessing only the files required to properly run the
web application.

2.3 Client-side related vulnerabilities

Users interact with a web application by means of a web browser and thus
an important aspects that needs to be taken into consideration when dealing
with the security of web applications is the interaction with the web browser.
In this section, I describe two aspects of web applications that increase the
attack surface an attacker can exploit: HTTP cookies and client-side scripting.

The HTTP protocol was developed as a stateless protocol for transferring
text messages across a network of computers. The general idea behind it is
pretty simple, an HTTP request is made by a client and an HTTP response is
generated by a server to answer the request. Each pair of request-response is
an independent transaction that is not related to any previously made request-
response. The independencebetween one pair of request-response and another
does not allow a server to know if the same client is performing consecutive
requests, meaning that it is not possible to deliver an user experience where,
for example, an user Bob performs one HTTP request and then another HTTP
request and the web application remembers that Bob performed two HTTP
requests. HTTP Cookies were designed to circumvent the stateless nature
of HTTP and deliver a more stateless experience. An HTTP Cookie is a
piece of information that is transmitted from the web application to the web
browser and used to implement the concept of session. A session allows a web
application to remember when a certain user performed a certain request.
When a request is made to a web page that creates a session, the web page
allocates a memory area and assigns to that area an identifier. The identifier
is then sent back to the client as an HTTP Cookie within the response for
that request. When the browser receives an HTTP Cookie, it stores it in its
internal memory and associate that Cookie with the domain that generated

20 2 Web applications security

it. Whenever the browser generates a new request to a domain for which a
Cookie has been saved, the web browser automatically sends the Cookie back
to the web application. The web application receives the Cookie containing
the session identifier and uses it to retrieve the information stored within the
associated memory area thus implementing a stateful browsing experience.

To further improve the way users interact with web applications, new tech-
nologies where proposed for creating a more appealing experience. These new
technologies take advantages of the user’s browsers and allow developers to
delivery content such as floating menus, draggable windows, fade in or fade
out images with the intent of creating more friendly and beautiful user in-
terfaces. Technologies such as JavaScript [52], ActiveX [47], Silverlight [49],
Flash [2], to name a few, were proposed, however only one survived and is
today the most relevant and widely adopted. JavaScript is a client-side inter-
preted programming language capable of integrating with HTML code and
providing great interactive content to users.

Both HTTP Cookies and client-side scripting languages opened the path
to attacks that could be carried out on web applications. There is, however,
an important difference to highlight with the vulnerabilities I presented so far
and the one I discuss in this section. The attacks described in §2.1 and in §2.2
are performed by an attacker who is directly targeting the web application by
exploiting a false sense of trust from the web application on the data received
by users. The vulnerabilities I describe in this section, on the other hand,
involve the interaction with clients, where the attacker exploits a false sense
of trust from the clients on the data received from a web application.

2.3.1 Cross-Site Scripting (XSS)

XSS vulnerabilities are a type of injection vulnerabilities that force a web
application into displaying malicious code that is then sent and executed by
web browsers; thus, the web application hosts the payload while the main tar-
get is the web browser. For an attack to be successful, a user has to visit an
infected page containing malicious JavaScript, which is then executed by the
web browser of the user.3 In the past, XSS was considered a not serious vul-
nerabilities since it does not directly target the web application ([76, p. 433]).
However, XSS can be quite dangerous and both the OWASP Top 10 and [61]
and MITRE [22] list XSS as a common and high risk vulnerability. In fact,
when an XSS vulnerability can be exploited, for example, it can be used to get
access to information stored on the client’s web browser. As already stated,
browsers store information such as session cookies that can be retrieved by
an XSS attack to perform a so called Session Hijacking attack. An attacker
that steals the session cookie of an user, can interact with the web applica-
tion pretending to be that user. However, XSS can be used to perform many
3 JavaScript is the most used language for exploiting XSS since it is widely sup-
ported by all modern web browsers, but any supported client-side language could
be used.

2.3 Client-side related vulnerabilities 21

other nefarious actions that sometimes go overlooked. Some of the common
malicious actions that can be carried out by an XSS attack includes, but are
not limited to:

• redirecting the navigation of a user by forcing the browser into loading a
different page;

• stealing the history of an user that can be used to conduct phishing at-
tacks;

• getting information on the local intranet of a user;
• performing post scanning.

There are different scenarios that lead a web application to become the
unintended host of malicious client-side code that can be generalized in the
two main categories under which XSS vulnerabilities are divided: Reflected
XSS and Stored XSS.

A Reflected XSS happens when a web application implements a dynamic
page that takes user-supplied input and simply displays it in a web page.
User supplied input might contain malicious client-side code that is thus ex-
ecuted by the browser. This behavior can be found in many different type
of web pages. Consider for example the URL http://127.0.0.1/mysearch.
php?search=hello+world where a request to a search engine is performed
looking of the text hello+world. The result displayed by the browser might
look like the one shown in Figure 2.1 where the text hello+world was dis-
played back in the response web page. An attacker might exploit this behavior
and insert a valid HTML tag enclosing JavaScript code causing the execution
of arbitrary client-side code. Consider a similar request where hello+world
is replaced by <script>alert(’xss’);</script>. The web page displaying
the result of the search will display the text being searched back to the user
causing the browser to execute the JavaScript code as shown in Figure 2.2.

To better understand reflected XSS and the difference with the vulnerabil-
ities discussed so far, Figure2.3 shows the anatomy of a reflected XSS attack.
A reflected XSS vulnerability can be represented in in five main steps:

1. The user logs in the web application;
2. The attacker sends a crafted URL containing malicious JavaScript to the

user who logged in. This steps involve a communication between the at-
tacker and the user which include, but is not limited to, phishing email;

3. The user performs a request to the URL received from the attacker;
4. The web application processes the request and responds to the user by

reflecting the malicious JavaScript in the response;
5. The user receives the response from the web application which causes the

browser to execute the embedded JavaScript;
6. Finally, the JavaScript code performs a malicious actions in the user’s

browser.

In a stored XSS attack, the attacker sends a request containing malicious
client-side code to a web application, the web application stores (typically in

22 2 Web applications security

Fig. 2.1: Example of a search engine displaying back the value of a search text

the database) the value received in the request, and then, when other users are
browsing the web application, the malicious content is retrieved and delivered
to users. Consider for example a forum that allows users to communicate with
each other. Forums are generally divided in threads where users can create
new topics. When a new topic is created by a user, the web application stores
in the database the messages submitted by the users so to make them available
to other users. If the web application is vulnerable to a stored XSS attack, it
might be possible for an attacker to submit malicious client-side code that will
be stored within a topic and then executed by every user browsing that topic.
A key difference distinguish between reflected and stored XSS: in the former,
the attacker has to find a way to force the user into performing a request to
a crafted URL while in latter, it is required to force the web application into
accepting a malicious input that will be displayed as a response to request
performed by another user. This make stored XSS potentially more deadly as
it might spread faster and target more users. The anatomy of a stored XSS
can be summarized with seven main steps as shown in Figure 2.4:

1. The attacker sends a request to the web application containing a malicious
JavaScript code;

2.3 Client-side related vulnerabilities 23

Fig. 2.2: Example of a search engine vulnerable to reflected XSS displaying a
JavaScript alert

2. The web application receives the request coming from the attacker and
stores (typically in the database) the malicious JavaScript code;

3. The user starts a communication with the web application and logs in it;
4. The user browses the web application and eventually accesses the content

that was stored by the attacker;
5. The web application answers to the user by displaying the malicious

JavaScript code within an HTML page:
6. The user receives the response from the web application which causes the

browser to execute the JavaScript code embedded in the HTML page;
7. Finally, the JavaScript code performs a malicious actions in the user’s

browser.

As a final note, it is worthmentioning a third attack technique used to
exploit JavaScript code that, thanks to its increased popularity, has gained
a category of its own. DOM Based XSS is an attack where the payload is
executed in the Document Object Model (DOM) and not in the HTML code.
In this particular type of XSS, the payload will not be found in the response
to an HTTP request but can only be observed at runtime or by investigating
the DOM.

24 2 Web applications security

1

2

3
4

5
6

Fig. 2.3: Anatomy of a Reflected XSS attack

Consider a request to page http://127.0.0.1/xss.html containing the
HTML code in Listing 2.5. Line 4 takes the value of document.baseURI
and writes it in the DOM of the web page. If an attacker sends a request
like http://127.0.0.1/xss.html#<script>alert(’xss’);</script>, the
JavaScript line 4 in Listing 2.5 will get executed resulting in the string
<script>alert(’xss’);</script> being written in the DOM of the web
page which in turns will show a pop-up window like the on in Figure 2.2.

Listing 2.5: Example of a code vulnerable to DOM Based XSS
1 <html>
2 <head>
3 <script>
4 document . wr i t e ("URL:" + document . baseURI) ;
5 </ script>
6 </head>
7 </html>

is executed in the web browser as the result of modifying the Document
Object Model (DOM).

2.3 Client-side related vulnerabilities 25

1

2

3

4
5

6 7

Fig. 2.4: Anatomy of a stored XSS attack

2.3.2 Cross-Site Request Forgery (CSRF)

In CSRF the attacker takes advantage of another user’s session by forcing that
user into performing arbitrary HTTP requests to the web application. Recall
that web applications run over the HTTP protocol that, by its own nature,
is a stateless protocol. HTTP Cookies have been implemented to circumvent
the stateless nature of HTTP and allow developers to create web applications
capable of remembering when a user performs an action (such as logging in).
HTTP Cookies are automatically managed by web browsers and whenever a
new request is performed to a web application that generated a cookie, the
browser sends the cookie along with the request. A CSRF attack exploits the
trust of a web application believing that the request it received was indeed
willingly generated by the user who performed the request.

The exploitation of a CSRF attack can be very similar to the exploitation
of a reflected XSS where the attacker sends a crafted URL to the user. In
general, however, it can be very different. Consider a web application that
implements an administrative area where only authorized users can create
new users. The HTTP request for creating a new user is shown in Listing 2.6.
The HTTP request is a POST request to the page /admin/createUser.php
(line 1) and contains an HTTP Cookie identified by PHPSESSID (line 3) and
the username and password of the user to create (line 8). It is important
to notice the value of the HTTP header Referer which shows the page
that generated the request and, in this case, the request was generated by
the page located at http://vuln.com/admin/createUser.php (line 3). The
credentials bob and bobpasswd are user-supplied input while the value of

26 2 Web applications security

the HTTP Cookie 8299BE6B260193DA076383A2385B07B9 is automatically in-
cluded in the request by the web browser (line 4).

Listing 2.6: Example of an HTTP request for creating a new user
POST /admin/createUser.php HTTP /1.1
Host: vuln.com
Referer: http :// vuln.com/admin/createUser.php
Cookie: PHPSESSID =8299 BE6B260193DA076383A2385B07B9
Content -Type: application/x-www -form -urlencoded
Content -Length: 83

username=bob&password=bobpasswd

Imagine now that the attacker creates a malicious web page capable of forg-
ing a similar HTTP request and stores it at http://evil.com/csrf.html.
Consider the HTML code in Listing 2.7 where there is a form pointing
to http://vuln.com/admin/createUser.php (line 3) with two hidden field
named username with value charlie (line 4) and password with value
letmein (line 5). Finally, a piece of JavaScript automatically submit the form
without need of user interaction (line 8). If a user, who previously logged
in to http://vuln.com with administrative credentials, loads the malicious
page located at http://evil.com/csrf.html, will be forced in generating
the HTTP request shown in Listing 2.8. The request is performed to the
page /admin/createUser.php (line 1) using the same value for the HTTP
Cookie that was used in the previous HTTP request (line 4). The credentials
sent within the request are, for the username charlie and for the password
letmein (line 8). An important difference between the request in Listing 2.6
and the on in Listing 2.8 is the value of the header field Referer which, in
this new request, assumes the value http://evil.com/csrf.html (line 3).4

Listing 2.7: Example of an HTML code capable of forging a POST request
1 <html>
2 <body>
3 <form action="http :// vuln . com/admin/ createUser . php

" method="POST">
4 <input type="hidden" name="username" value="

ch a r l i e ">
5 <input type="hidden" name="password" value="

letme in ">
6 </form>
7 <script>
8 document . forms [0] . submit () ;
9 </ script>
10 </body>
4 Note that the HTTP header Referer can, in genera, be forged and should not be
considered trusted for preventing CSRF.

2.3 Client-side related vulnerabilities 27

11 </html>

Listing 2.8: Example of a CSRF HTTP request for creating a new user
POST /admin/createUser.php HTTP /1.1
Host: vuln.com
Referer: http :// evil.com/csrf.html
Cookie: PHPSESSID =8299 BE6B260193DA076383A2385B07B9
Content -Type: application/x-www -form -urlencoded
Content -Length: 83

username=charlie&password=lermein

The overview of the anatomy of a CSRF attack is shown in Figure 2.5:

1. The attacker creates a malicious HTML page capable of forging an HTTP
request (like the one in Listing 2.7);

2. The user logs in the web application using legitimate credentials;
3. The user, during his browsing on the internet, ends up loading the mali-

cious page created by the attacker. This step can be achieved, similarly
to reflected XSS, with an interaction between attacker and client which
include, but is not limited to, phishing email;

4. The malicious HTML page is then sent back to the user;
5. Finally, the malicious HTML page causes the forging of a request towards

the web application the user is currently logged in.

2.3.3 Prevention techniques

The most effective defense against XSS attacks is to never display user-
supplied data without proper validation and sanitization. To eliminate both
reflected and stored XSS vulnerabilities, developers have to identify all in-
puts that is then copied into a response and sent back to the user and imple-
ment proper data validation.In particular, the web application should HTML-
encoding problematic characters when sending user-supplied data. HTML-
encoding ensures that browsers handle potentially malicious characters in a
safe way, treating them as part of the content of the HTML document and
not as part of its structure. Table 2.1 shows the main problematic characters
with the corresponding HTML-encoding.

On CSRF attacks, the problem arises because browsers automatically sub-
mit HTTP Cookies back to the web application that issued them with a sub-
sequent request. The most effective defense against CSRF attacks is to include
an additional piece of information to supplement HTTP Cookies. In partic-
ular, random tokens are generated and transmitted to users as hidden fields
in the response of an HTTP request. When a new request is submitted, the
browser has to send the random token together with the HTTP Cookie. The
web application, in addition to validating the session by checking the HTTP

28 2 Web applications security

1

2

3

4

5

Fig. 2.5: Anatomy of a Cross-Site Request Forgery attack

Cookie, verifies that the correct token was sent within the request. Assuming

Table 2.1: Main problematic characters that could be used to perform XSS
attacks and their corresponding HTML-encoding

Character HTML-encoding
" "
’ '
& &
< <
> >

2.4 Conclusions 29

the attacker can’t determine the value of the token received by the user, he
also can’t forge the correct request that is accepted by the web application.

2.4 Conclusions

In this chapter, I have described the most dangerous vulnerabilities afflicting
the security of web applications. All the vulnerabilities described in this sec-
tion can be used to violate two security properties of interest: authentication
bypass and confidentiality breach. For each vulnerability, I have described the
exploitation techniques and the prevention techniques.

3

Software analysis

It is highly difficult to design and write software that does not contain bugs
that might affect the intended execution of the software itself. Bugs in software
may result in unexpected behaviors that can open the way to vulnerabilities
that, as already described in Chapter 2, ultimately lead to compromise a sys-
tem. Software analysis has thus become a crucial step in software development
process to analyze the presence of known vulnerabilities. Software analysis can
be divided in two main categories: static analysis and dynamic analysis.

Static analysis refers to the process of collecting information about a soft-
ware without actually executing it. The information that are collected dur-
ing the analysis depend on the requirements of the analysis itself and range
from the identification of code that is never executed (also referred to as
dead blocks) to the identification of tainted inputs that will inevitably result
in injections vulnerabilities. Since the software is never really executed, the
analysis does not depend on a specific input and thus the extracted proper-
ties are true for every execution of the software. However, a static analysis
might not always terminate, or might require an a-priori unknown long time
to terminate, due to the complexity of the analysis itself. Examples of static
analysis techniques are:

• Abstract interpretation
• Model checking
• Symbolic execution
• Taint analysis

Opposed to static analysis, dynamic analysis is a type of software analysis
where a software is executed on specific inputs and properties of the software
are extracted by analyzing its output. In contrast with static analysis, the
properties derived from a dynamic analysis are true only for the particular
execution being observed. Dynamic analysis requires a large set of test cases
to use as input for the software in order to cover all (or at least the majority)
of the implemented behaviors. Examples of dynamic analysis techniques are:

32 3 Software analysis

• Unit testing
• Penetration testing
• Model-based testing

In the contest of this thesis, I will describe static and dynamic analysis
techniques that are closely related to my research and that inspired the anal-
ysis I propose. More specifically, I will describe model checking as a static
analysis technique and penetration testing and model-based testing as dy-
namic analysis techniques.

3.1 Static analysis

In this section I describe Model checking for statically analysing software and I
describe the AVANTSSAR platform [6] which I use as back end of the analysis
I propose in this thesis.

3.1.1 Model Checking

Model checking is a formal verification technique for assessing whether a prop-
erty holds on system. A model checking analysis requires a formal specifica-
tion of the system (called system model) along with a property of interest that
should be analyzed on the system. The system model describes how the sys-
tem behaves while the property of interest describes what the system model
should do or what it should not do. The system model can be automatically
generated from the source codeof a software written in certain programming
languages like C or Java or can be generated by hands when automatic gen-
eration cannot be applied. Properties to analyze depend on the requirements
on the system itself, for example: can Alice authenticate Bob and vice versa,
agreeing on two secret nonces? The system model and the property of interest
are then given to a model checker, which explores all the possible states of
the system in a brute-force manner. The aim of such systematic exploration
is to find a state that violates the property defined on the model. If, dur-
ing the exploration, the model checker encounters a state that violates the
given property, it provides a counterexample that indicates how the model
can reach the undesired state. The counterexample describes an execution
path that starts in the initial state and leads to a final state where the prop-
erty is violated. Model checking is a general approach and can be applied in
many different areas ranging from hardware verification to network security
protocols verification.

In the context of this thesis, I am interested in model checkers for network
security protocols verification formalizingthe Dolev-Yao (DY) [27] intruder
model. A model checker implementing the DY intruder model is a specific
type of model checker that implements a network and allows the definition
of entities that can communicate with each other by sending messages over

3.1 Static analysis 33

communication channels. Furthermore, a model checker implementing the DY
intruder, assumes that the network is under the control of an active intruder
(the so called DY intruder) who has control of the entire network and can
perform some actions on the messages that transit on it. In particular, the DY
intruder can read and destroy any message, modify and create new messages
as long as he does not break cryptography (following the perfect cryptography
assumption).

3.1.2 The AVANTSSAR platform

In this section I briefly describe the AVANTSSAR platform [6] and the
ASLan++[85] formal language used to model network protocols.

The AVANTSSAR platform (Automated VAlidatioN of Trust and Secu-
rity of Service-oriented ARchitectures) provides a comprehensive set of tools
and formal languages for the specification and automated validation of trust
and security of Service-Oriented Architectures (SOAs) and, in general, ap-
plications in the Internet of Services. The platform takes as input a formal
specification of a Service-Oriented architecture and, using model checking
techniques, generates an Abstract Attack Trace (AAT) which represents an
high-level sequence of actions that violates a security property defined on
the specification. The AVANTSSAR platform supports different specification
languages such as BPMN, ASLan [10] and ASLan++ [85]. The core of the
AVANTSSAR platform comprises three back-ends which, by operating on the
same input, analyse the specification. Specifically, the AVANTSSAR platform
comprise the three back-ends CL-AtSe [80], OFMC [14] and SATMC [8].

Figure3.1 shows the architecture of the AVANTSSR platform as described
in [6] which is divided in two main layers: the connector layers and the vali-
dation layer. As already stated, the input of the AVANTSSAR platform is a
specification of the services to analyse written in one of the supported formal
languages. The connector layer provides a set of softwares that translate the
input to the AVANTSSAR platform into the low-level language ASLan which
is the main language supported by the validation layer. The validation layer
provides a set of softwares for the formal analysis of the ASLan specification
coming form the connector layer. More specifically, the input of the validation
layer is a specification of the services to analyse along with a policy stating
the security requirements of the input services. The orchestration phase of the
validation layer analyses the ASLan specification looking for a composition of
the services that is expected but not yet guaranteed to satisfy the security
requirements of the input policy. The orchestrator generates a specification
of the services that is guaranteed to satisfy the security requirements. The
validator then takes the output of the orchestator and checks whether it sat-
isfies the security requirements. If that is the case, the orchestrated service
is returned as output, otherwise, a counterexample is generated and given to
the orchestrator phase to provide a different orchestration. This process is

34 3 Software analysis

repeated until a valid orchestration is generated, or no suitable orchestration
can be found.

The AVANTSSAR platform can also be used manually where, the orches-
tration phase is not used and the user manually generates the target service
and security requirements to input to the validator. The validator analyzes
the input and generates either a success (i.e, the input satisfies the security
requirements) or a counterexample in for of an AAT.

Vulnerability

: Policy
: Tool input/output

P

: Trust and SecurityTS
: Composed ServiceCS
: Composed PolicyCP
: ServiceS

in
secu

re

P

Policy

Composed service/policy

CP

CS

Secured service/policy

TS Wrapper

CS

CP

secure

Services

feedback

BPMN + Annotations

CONN

CONN

HLPSL++

CONN

AnB

CONNECTOR

ASLan++

orchestration/
composition

validation
problem

TS VALIDATORTS ORCHESTRATOR

Specification of the available services (new) Service specified

ASLan ASLan

TS Wrapper

The AVANTSSAR Validation Platform

Fig. 3.1: The AVANTSSAR validation platform

3.1.2.1 ASLan connector

The ASLan connector is a module written in Java that translates high level
input languages such as BPMN and ASLan++ into the low-level language
ASLan. The purpose of this module is to allow security analyst to write speci-
fications in a more easy to use language since the definition of complex services
at the ASLan level is not practically feasible and can become quite cumber-
some. It is important to underline that only syntactic translations is performed
by the connector preserving the semantics of the model. The ASLan connec-
tor is also used to translate from ASLan to Message Sequence Chart (MSC)

3.1 Static analysis 35

in Alice-and-Bob notation. This is particularly helpful in the case the valida-
tor generates a counterexample so it can be easily reviewed by the security
analyst.

3.1.2.2 The formal language ASLan++

ASLan++ [12] is a formal and typed security protocol specification language
whose semantics is defined in terms of the ASLan language [11]. ASLan++ and
ASLan are used by the AVANTSSAR [6] platform and the SPaCIoS Tool [84].
I won’t go into the full details of the ASLan++ language, but in the following
I discuss the main aspects of the ASLan++ language needed to understand
my formalization.

Specification

The ASLan++ language resemble an Object-Oriented programming language
in the way it defines its main structure. An ASLan++ specification consists
in a hierarchy of entity declarations, which are similar to Java classes. The
top-level entity is usually called Environment and it typically contains the
definition of a Session entity, which in turn contains a number of sub-entities
that define the main principals involved in the communication (e.g., web appli-
cation, database). Each sub-entity defines the internal behavior of the com-
ponent it models and the interaction with other entities. The definition of
an entity starts with the keyword entity followed by the name of the entity
(beginning with a capital letter) and a list of parameters. Consider the exam-
ple in Listing 3.1 where three entities are defined. The outer entity is called
Environment (line 1) which contains a sub-entity Session (line 2), which in turn
contains two more sub-entities Webapplication (line 3) and Database (line 4).
Entities may also have parameters which are defined in brackets. In the case
of the entity Webapplication there are two variables, Actor and Database of
type agent.1 In this case, Database is a normal variable while Actor is actually
a keyword used to represent the current entity. The keyword Actor can be
compared to the keywords this in Java or self in Python.

Listing 3.1: Example of ASLan++ entities
1 entity Environment{
2 entity Session{
3 entity Webapplication(Actor , Database: agent):{}
4 entity Database(Actor , Webapplication: agent):{}
5 }
6 }

The content of an entity is composed by five main sections:

• type, in which custom data types can be defined,
1 See § 3.1.2.2 for details on ASLan++ data types.

36 3 Software analysis

• symbols, in which variables, constants, functions and predicates are de-
clared,

• clauses, where Horn clauses for that entity can be defined,
• body, where the behavior of the entity is defined. The instantiation of an

entity must be done in the body of the parent entity using the new keyword
as follows: new subentity(<params>),

• goals, where security properties can be defined for the entity.

In ASLan++ comments start with the percentage character % which is
used to comment a single entire line.

Data Types

In an ASLan++ entity, a section called type is reserved to the definition of
custom data types which actually are sub-types of basic data types. Before
detailing sub-types, I describe basic data types. ASLan++ supports the fol-
lowing basic data types:2

• agent: a communicating entity;
• text: an atomic message and is used for all those values that may be sent

over the network
• message: a non atomic message;
• fact: a boolean value.

A sub-type defines a data type can be used when another data type is
expected. For example Listing 3.2 defines a custom type mytype which is sub-
type of type message meaning that mytype can be used when a type message is
required, but a type message cannot be used when a type mytype is required.

Listing 3.2: ASLan++ example of a custom sub-type
1 % Declaring sub -type
2 mytype < message;

Horn clauses

In an ASLan++ entity, a section called clauses is reserved to the definition
of Horn clauses. A Horn clause is of the form HCname: head :- body;.

Symbols

In an ASLan++ entity, a section called symbols is reserved to the declaration
of variables, constants, sets, functions and predicates.
2 See [12] for the full list of supported data types.

3.1 Static analysis 37

Variables and constants

Variables in ASLan++ start with an upper case character (line 2 in List-
ing 3.3) while constants start with a lower case character (line 4 in Listing 3.3).
Variables assignments are of the form Var:=m where Var is a variable and m
is a constant. It is also possible to assign a random fresh value (i.e., a ran-
dom value that has never been used before) by using the function fresh()
(e.g. Var := fresh()). Finally, it is sometime useful to allow two entities to
have access to the same data, meaning that they share some data. This can
be achieved by defining global variables. A global variable is declared in the
outermost entity so that it can be used in any inner entity.

Sets

ASLan++ supports sets of elements of a certain type with the keyword set
(e.g. myset : message set defines a set of type message). Three basic opera-
tions are defined on sets that can be used to query and manipulate sets:

• Contains: MySet->contains(E) is used to query MySet on whether the
element E belongs to MySet. The character ? can be used to return an
element that belongs to the set. For example MySet->contains(?E) stores
in the variable E a random element contained in MySet, if there is at least
one element in the set.
• Add: MySet->add(E) is used to add element E to MySet.
• Remove: MySet->remove(E) is used to remove element E from MySet.

Functions

In ASLan++ there is no functions call and functions do not have a body
but are represented as uninterpreted functions. A function starts with a lower
case character, defines a number of parameters and a return type (line 6
in Listing 3.3).

Predicates

Predicates are defined in the same way functions are defined with the only
exception that their return type is fact (line 8 in Listing 3.3). It is also possible
to retract facts using the keyword retract (line 10 in Listing 3.3).

Listing 3.3: ASLan++ example representing variable, constant, function, fact
and fact retraction

1 % Variable definition
2 Variable : message;
3 % Constant definition
4 constant : text;
5 % Function definition
6 fn (message) : text;

38 3 Software analysis

7 % Predicate definition
8 pred(message) : fact;
9 % Fact retraction

10 retract factName ();

Body

In an ASLan++ entity, a section called body is reserved to the definition of
the behavior of that entity which can be defined with a number of statements
described in the following paragraphs.

Sending and receiving messages

Sending and receiving of messages are expressed in Alice-and-Bob notation:
A -> B: M;, where A and B are entities and M a message. More formally, a
message send statement, Snd -> Rcv: M, is composed by two variables Snd
and Rcv representing sender and receiver, respectively, and a message M ex-
changed between the two parties. In message receive, in order to assign a
value to the variable M, a ? precedes the message M, i.e., Snd -> Rcv: ?M. The
ASLan++ keyword Actor refers to the entity itself (similar to “this” or “self”
in Object-Oriented languages) and thus we actually write the send and receive
statements as Actor -> Rcv: M and Snd -> Actor: ?M, respectively. ? acts as
a wildcard if it is not followed by any variable (e.g., Snd -> Actor: ?) since
no specific pattern of the receiving message is expected. When defining the
communication between two entities, it is possible to define different kind
of communication channels having different kind of properties. The channels
types supported by ASLan++ are summarized in Table 3.1 along with the
security properties they ensure.

Table 3.1: Channel types supported by ASLan++

ASLan++ symbol Explanation
-> Insecure communication channel.
*-> Authentic communication channel.
->* Confidential communication channel.
-> Authentic and confidential communication channel.

if statement

The if statement is a control flow statement that allows to specify two possi-
ble behavior based on a boolean guard. The syntax (Listing 3.4) and semantics
of an if statement are quite straightforward and comparable to common pro-
gramming languages. The guard of the if can be any expression of type fact.
In the case the guard is true, the true branch is evaluated, otherwise the else
branch is evaluated.

3.1 Static analysis 39

Listing 3.4: ASLan++ example of an if statement
1 if(<guard >){
2 % true branch
3 else{
4 % false branch
5 }

while statement

The while statement is a control flow statement that allows to specify loops.
The syntax (Listing 3.5) and semantics of the while statement are quite
straightforward and comparable to other programming languages. The guard
of the while can be any expression of type fact. If the guard evaluates to
true, the body of the while is executed, otherwise the next statement after
the while is executed. The while statement can be used in ASLan++ to simu-
late an entity that is actively listening for incoming connections. This is done
by specifying the guard of the while loop to the constant true which always
evaluates to the logical value true thus defining an endless loop.

Listing 3.5: ASLan++ example of an while statement
1 while(<guard >){
2 % while loop
3 }

select-on statement

ASLan++ includes a statement called select-on that can be compared to the
if statement in the sense that it allows to define a control flow based on the
value of some guards. There are, however, two important differences: (1) more
than one guard can be defined (2) when evaluating the guards of a select-
on statement, if none is valid, the execution is blocked until one becomes
valid, meaning also that there is no fail branch. The syntax of the select
-on statement (Listing 3.6) starts with the keyword select which encloses
one or more on(<guard>) where guard can be any expression of type fact
. The body of a select-on branch is enclosed in curly brackets. Since the
evaluation of a select-on might block the execution of the model in the case
no guard evaluates to true, one might ask what happen in the case that
more then one guard evaluates to true. In this case, the model checker will
non-deterministically execute one of the branch for which the guard is true.
The select-on is thus a statement that allows to introduce non-deterministic
behavior in an ASLan++ specification.

Listing 3.6: ASLan++ example of a select-on statement
1 select{
2 on(<guard1 >):{

40 3 Software analysis

3 % body in case guard1 is true
4 }
5 on(<guard2 >):{
6 % body in case guard2 is true
7 }
8 ...
9 }}

Goals

In an ASLan++ entity, a section called goals is reserved to specify security
properties that have to be checked on the specification. In general, the goals
section is only defined in the Session entity defining security properties for
its sub-entities. In the goals section one can specify LTL formulas to use as
goals such as []pred(Var) stating that the predicate pred must always hold
over a variable Var. The LTL operators needed to understand the case studies
are shown in Table 3.2.3

Table 3.2: Subset of the LTL operators supported by ASLan++

Operator ASLan++ syntax Explanation
¬ !f negation
= f1 = f2 equality
6= f1 != f2 inequality
∧ f1 \& f2 conjunction
∨ f1 | f2 disjunction

Globally [](f) always

3.1.2.3 From ASLan++ to ASLan

An ASLan++ specification can be automatically translated (see [6]) into a
more low-level ASLan specification, which ultimately defines a transition sys-
tem M = 〈S, I,→〉, where S is the set of states, I ⊆ S is the set of initial
states, and →⊆ S × S is the (reflexive) transition relation. The structure of
an ASLan specification is composed by six different sections: signature of the
predicates, types of variables and constants, initial state, Horn clauses, tran-
sition rules of → and protocol goals. The content of the sections is intuitively
described by their names. In particular, an initial state I ∈ I is composed by
the concatenation of all the predicates that hold before running any rule (e.g.,
the agent names and the attacker’s own keys). The transition relation → is
defined as follows. For all S ∈ S, S → S′ iff there exist a rule such that
3 See [12] for the full list of supported LTL operators.

3.1 Static analysis 41

PP.NP&PC&NC =[V]⇒ R

(where PP and NP are sets of positive and negative predicates, PC and NC
conjunctions of positive and negative atomic conditions) and a substitution
γ : {v1, . . . , vn} → TΣ where v1, . . . , vn are the variables that occur in PP and
PC such that: (1) PPγ ⊆ dSeH , where dSeH is the closure of S with respect to
the set of clausesH, (2) PCγ holds, (3)NPγγ′∩dSeH = ∅ for all substitutions
γ′ such that NPγγ′ is ground, (4) NCγγ′ holds for all substitutions γ′ such
that NCγγ′ is ground and (5) S′ = (S \ PPγ) ∪ Rγγ′′, where γ′′ is any
substitution such that for all v ∈ V , vγ′′ does not occur in S.

I now define the translation of the ASLan++ constructs I have considered
here. Every ASLan++ entity is translated into a new state predicate and
added to the section signature. This predicate is parametrized with respect
to a step label (that uniquely identifies every instance) and it mainly keeps
track of the local state of an instance (current values of whose variables) and
expresses the control flow of the entity by means of step labels. As an example,
in the case of the ASLan++ entity

entity Snd(Actor , Rcv: agent){
symbols

Var: message;
}

then the predicate stateSnd is added to the section signature and, sup-
posing an instantiation of the entity new Snd(snd, rcv), the new predi-
cate state_Snd(snd, iid, sl_0, rcv, dummy_message) is used in transi-
tion rules to store all the informations of an entity, where the ID iid identifies
a particular instance, sl_0 is the step label, the parameters Actor, Rcv are
replaced with constants snd and rcv, respectively, and the message variable
Var is initially instantiated with dummy_message.

Given that an ASLan++ is a hierarchy of entities, when an entity is trans-
lated into ASLan, this hierarchy is preserved by a child(id_1, id_0) pred-
icate that states id_0 is the parent entity of id_1 and both id_0 and id_1
are entity IDs.

A variable assignment statement is translated into a transition rule inside
the rules section. As an example, if in the body of the entity Snd defined
above there is an assignment Var := constant; where constant is of the
same type of Var, then the following transition rule is obtained:

state_Snd(Actor ,IID ,sl ,Rcv ,Var)
=>
state_Snd(Actor ,IID ,succ(sl),Rcv ,constant)

In the case of assignments to fresh(), the variable Var is assigned to a new
variable.

In the case of a message exchange (sending or receiving statements), the
iknows(message) predicate is added to the right-hand side of the correspond-
ing ASLan rule. This states that the message message has been sent over the

42 3 Software analysis

network and iknows is used because, as is usual, the Dolev-Yao attacker is
identified with the network itself.

The last point is the translation of goals focusing only on the LTL goal
used in the case studies. Goals are translated into attack states containing the
negation of the argument of the LTL operator:

attack_state authorization :=
iknows(M)

More information on ASLan, ASLan++ and the AVANTSSAR Platform
can be found in [12, 6].

3.1.2.4 Validators

The validators take as input an ASLan specification (which can be an orches-
tration or a manual specification) and check whether the ASLan specification
meets the security requirements under the assumption that the network is con-
trolled by a DY intruder. The three back-ends included in the AVANTSSAR
platform, CL-Atse, OFMC and SATMC, provide the model-checking function-
ality for analyzing the ASLan specification. By default, all three back-ends
run on the same specification so that the security analyst can compare results
and performances of the three tools, however, the security analyst can also
manually select one specific back-end to use.I now briefly describe the three
back-end tools.

CL-Atse

The Constraint-Logic-based Attack Searcher (CL-AtSe) [80] is developed and
maintained by the Institut National de Recherche en Informatique et Automa-
tique. CL-Atse uses rewriting and constraint solving techniques to model all
states that are reachable by the entities modeled in the specification and
decides if the security requirements are violated with respect to the DY in-
truder. Moreover, it applies constraint solving with simplification heuristics
and redundancy elimination techniques. CL-AtSe performs a bound analysis
on the number of calls in case the specification allows for loops in execution
and implements several preprocessing modules to simplify and optimize input
specifications before starting a verification. In particular, it includes optimi-
sations for step interleaving, either by preprocessing or by optimised data
structures and deduction rules.

OFMC

The Open-source Fixedpoint Model Checker (OFMC) [14] extends the On-
the-fly Model Checker (the previous OFMC). The two main techniques im-
plemented in OFMC are the lazy intruder and constraint differentiation.

The lazy intruder is a symbolic representation of the intruder which aims
at avoiding the naive search of the possible infinite search space generated

3.2 Dynamic analysis 43

by a specification including a DY intruder. By using a symbolic, constraint-
based approach, OFMC reduces the search space without excluding attacks
and without introducing new ones.

Constraint differentiation integrates the lazy intruder and ideas from
partial-order reduction technique to solve the problem resulting from the large
number of possible interleaving due to parallel protocol executions. Constraint
differentiation uses independence information from the symbolic transition
system when reducing constraint and works by introducing a new kind of
constraint.

SATMC

The SAT-based Model Checker (SATMC) [8] is an open, flexible platform for
SAT-based bounded model checking of security services developed and main-
tained by University of Genova. SATMC reduces the problem of determining
whether the system violates a security goal in k > 0 steps to the problem
of checking the satisfiability of a propositional formula (the SAT problem).
SATMC generates a formula that represents all the possible evolution of the
transition system (up to k depth) described by the specification. Thus, find-
ing an attack of length k is reduced to solving a propositional satisfiability
problem. This SAT solving task is performed by state-of-the-art SAT solvers,
which can handle propositional satisfiability problems with hundreds of thou-
sands of variables and clauses. When SATMC finds a satisfiable formula, the
corresponding model is translated back into a partially ordered set of rules
that, starting from the initial state, will lead the specification into a state that
violates the security requirements defined on the specification.

3.2 Dynamic analysis

In this section I describe two dynamic analysis approaches that provide the
basis of my research, namely: penetration testing (§ 3.2.1) and model-based
testing (§ 3.2.2). In particular, for penetration testing I will describe how
security analysts perform this kind of testing and the tool suite that istypically
used for penetration testing of web applications. For model-based testing, after
giving a high level description of the approach, I will describe the SPaCIoS
tool from which I started to develop the research proposed in this thesis.

3.2.1 Penetration Testing

The most used methodology to assess the security of web applications (or
software in general) is penetration testing. Penetration testing (or informally
pentesting is used to describe an activity in which an authorized security
analyst simulates attacks on a system with the intent of finding weaknesses
that may cause harm to the system itself. Penetration testing issometimes,

44 3 Software analysis

confused with, or used as synonymous of, vulnerability assessment. However,
there is a fundamental difference between a vulnerability assessment and a
penetration test: a vulnerability assessment is meant to identify vulnerabilities
while a penetration test is meant to exploit vulnerabilities to actually harm
the system. The goal of a penetration test is to actually identify what sort of
damages a real attacker might cause to a system with respect to a security
property. The security property depends on the system itself, an example
could be: is it possible, for unauthorized users, to have access to resource X?
It might also be used to assess the ability of the environment surrounding the
system to successfully detect and respond to attacks. and a specific security
property to assess. An important aspect of penetration testing is to conduct
the tests in a response way. The tests need to be scheduled and planned in
such a way that they do not cause any denial of service or real harm to the
system. Finally, once the tests are completed, the security analyst writes a
summary report to the owner of the system describing his findings so that
appropriate countermeasures can be taken.

To perform a penetration test, security analysts make use of a number
of automatic tools. However, automatic tools are not yet capable of entirely
replacing the human factor [29] meaning that the experience of a penetration
tester plays a central role

3.2.1.1 Penetration testing methodologies

There are two main approaches used to conduct a penetration test: black-box
and white-box testing. The main difference between black-box and white-box
is the amount of knowledge of a system under analysis System Under Test
(SUT) that is available to the security analyst prior to the beginning of the
penetration test. The two approaches can be used to analyze a system from
two different points of view.

Black-box testing assumes that very little knowledge of a system is avail-
able before starting the test. The security analyst starts with a very small set
of information such as an URL or an IP address and from that he has to ex-
tend his knowledge and ultimately compromise the target system. Black-box
testing simulates an attack coming from an external attacker and thus un-
familiar with the environment surrounding the SUT. Black-box analysis can
be used to understand what sort of information an attacker might be able to
collected and use to harm the SUT.

Opposite to black-box, white-box testing provides the security analyst a
complete knowledge of the SUT. The initial knowledge might include anything
form network diagrams, source code and IP addresses information. White-box
testing simulates what might happen during an attack performed from insiders
or as a result of the leak of sensitive information, where the attacker gets access
to source code, network layouts, and possibly even some passwords.

In most situations, however, black-box and white-box can complement and
enhance each other. For example, having identified some anomalous behavior

3.2 Dynamic analysis 45

during a black-box analysis, the easiest way to investigate its root cause is to
review the source code of the system behaving anomalously.

Finally, even tough black-box and white-box penetration testing are gen-
erally very effective in finding threats to a system, they lack any rigorous or
formal description. There has been different attempts in identifying a precise
methodology to perform a penetration test such as collections of vulnerabil-
ities, tools and check lists have been proposed to be used as guidelines for
performing penetration testing. In particular, it is relevant to name a few:
OWASP [60], OSSTMM [40] and CAPEC [51].

OWASP

The Open Web Application Security Project has developed a widely used set
of standards, resources, training material, and the famous OWASP Top Ten
list mentioned in Chapter 2 which is mainly focused on the security of web
applications.

OSSTMM

The Open Source Security Testing Methodology Manual is a widely used
methodology that covers all aspects of performing a penetration test. The
purpose of the OSSTMM is to develop a standard that, if followed, will ensure
a baseline of tests to perform, regardless of customer environment or test
provider. This standard is open and free to the public, as the name implies,
but the latest version requires a fee for download.

CAPEC

The Common Attack Pattern Enumeration and Classification (CAPEC) aims
at providing a catalog of common attack patterns to wide range of systems
along with a comprehensive description of requirements, limitations and re-
lated attacks.

3.2.1.2 Anatomy of a penetration test

This section gives an overview of the main steps followed by a security analyst
when performing a penetration test.

Information gathering

During this step, the security analyst tries to get as many information as pos-
sible of it’s target. In order to do so, the security analysts takes advantage of
freely available resources (search engine, social networks etc.) where he might
find public useful information. The activity of online searching and collec-
tion of information is usually known as Gathering Open Source Intelligence
(OSINT). Additionally, information can be collected by the target itself, to

46 3 Software analysis

do so the security analyst employees tools such as port scanners4 to collect
information on the target system such as as what software is running. This
process may not be necessary when performing white-box testing but it surely
is necessary when performing black-box testing.

Vulnerability assessment

Next, the security analyst begins the discovery of vulnerabilities. Vulnerabili-
ties are the means attackers use to successfully compromise a system. In this
phase a security analyst makes extensive use of vulnerability scanners. A vul-
nerability scanner is a software which purpose is to identify a set of known
vulnerabilities on a system. A vulnerability scanner employees vulnerabilities
databases and active checks to best identify which vulnerabilities are present
on a system. Modern vulnerability scanners are very powerful tools capable of
identifying many vulnerabilities, however, they can’t fully replace the human
factor [29], so it is also required to perform manual analysis and verify the
results.

Exploitation

The previous two steps give an overview of the kind of information disclosed
by the system and the vulnerabilities it is affected by. However, these infor-
mation are not sufficient to truly understand the level of security of a system.
This is why the exploitation phase is an important step in the penetration
test. The security analyst has to use his creativity and experience to create
exploits using the information and vulnerabilities found in the previous steps
in an attempt to access the target system. Some vulnerabilities are remarkably
easy to exploit, such as logging in with default passwords while others might
require more sophisticated actions, such as writing a custom code to exploit
a vulnerability in a specific programming language.

Post exploitation

The post exploitation step, as the name itself suggests, starts once an exploita-
tion was successful and the security analyst has now accessed to the target
system. In post exploitation, the security analyst gathers information about
the attacked system and tries to further compromise other systems and collect
more information. It might be possible, for example, to dump password hashes
and attempt an off-line brute force attack and, if a password was reversed, it
might be used to access other systems.

Report

Finally, a penetration testing is of no use if the results of the analysis is not
reported to the owner of the attacked system and then fixed. The security
4 See § 3.2.1.3 for more details on the tools used during a penetration test.

3.2 Dynamic analysis 47

analyst should report the information related to his findings during the en-
tire penetration testing. detailing the weaknesses he identified and how he
successfully exploited such weaknesses to compromise the system. Writing a
good report is as import, and difficult, as any of the previous steps might be.

3.2.1.3 Toolkit

In this section I list and describe the main tools used in a penetration testing
session. This classification is not exclusive but it covers the vast majority of
the security tools nowadays available.

Web Applications Proxies

The best way to understand the communication “under the hood” with a web
application is to use an HTTP proxy. An HTTP proxy is a tool capable of
intercepting an HTTP request (and its response) and gives the possibility
of showing or editing the request (or the response) before it gets sent (or
received). An HTTP proxy is the most useful tool when it comes to analyzing
web applications. Their flexibility allows the security analyst to easily perform
basic malicious injection test and analyze the behavior of a web application to
such malicious input. Examples of well known and still active HTTP proxies
are:

• Burp Proxy [68]
• Fiddler [78]
• OWASP Zed Attack Proxy [62]

Vulnerability scanners

A vulnerability scanner is a software whose purpose is to identify a set of
known vulnerabilities on a system. A vulnerability scanner employees vulner-
abilities databases and active checks to best identify which vulnerabilities are
present on a system. Vulnerability scanners are generally able to identify the
target operating systems to decide which subset of the known vulnerabilities
should be tested. They are usually not able to probe general purpose ap-
plications, and are not capable of identifying unknown vulnerabilities. Some
vulnerability scanners are able to exploit network links with other sub-systems
by recursively scanning the hosts on the targeted network. Vulnerability scan-
ners also differentiate on the target they analyze, being it a stand alone ap-
plication, an operating system, a web application or whether they search for
a specific vulnerability such as SQL Injection, Cross-Site Scripting or buffer
overflows. In my thesis I am mainly interested in the security of web appli-
cations and thus I report only examples of well known vulnerability scanners
used to analyze web applications:

• Nikto [77]

48 3 Software analysis

• Arachni [5]
• W3af [69]
• Metasploit [46]
• Acunetix vulnerability scanner [1]
• OpenVAS [36]
• Netsparker [54]
• Sqlmap [74]
• Wfuzz [88]
• Dotdotpwn [28]
• DIRBuster [58]

3.2.2 Model-Based Testing

As already mentioned, software testing aims at finding behaviors that differ
from the one intended by the software. The main purpose is to find a failing
path that leads the system to a state that was not expressed by its require-
ments and in security testing this translates in finding vulnerabilities. One
issue of a totally manual testing approach, is the identification of meaningful
tests to perform on the SUT. Model-based testing (MBT) [33] is a software
testing technique which aims at providing a solution to the generation of
meaningful test cases. MBT employees the use of behavioral models repre-
senting the intended behavior of the SUT. Tests, namely pairs of inputs and
expected outputs, are generated from the behavioral models and are then per-
formed on the real SUT. A model describing the SUT is, generally, an abstract
representation of the real SUT where some details are not represented. As a
result, the tests generated are at the same abstraction level as the model itself
and are called Abstract Attack Traces (AATs). An AAT cannot be performed
on the real SUT at its level of abstraction but it requires an additional step
of concretization where the AAT is mapped to concrete actions (such as the
execution of an HTTP request) that can be performed on the SUT.

MBT tries to bring together the powerfulness and reliability of formal
methods and the effectiveness of testing. Test cases with a specific purpose
can be automatically generated thanks to the capability of back-end formal
methods such as model-checking. In fact, it is possible to formalize a test case
in terms of a specification goal that is then used with the model of a SUT in
order to treat test case generation as a model checking problem.

A general representation of MBT approach is shown in Figure 3.2 where
they main steps for the generation and execution of test cases are:

1. A behavioral model is generated from the SUT. The generation of such a
model can be performed manually or automatic tools could be used when
available;

2. The behavioral model is then given in input to the Tests Generation En-
gine (Test Generation Engine (TGE)) which analyzes and generates tests.
There are a variety of ways in which tests can be generated depending on
the model itself (e.g.: model-checkers, SAT solvers, etc.);

3.2 Dynamic analysis 49

3. AATs are generated from the TGE and are fed to the Tests Execution
Engine (TEE);

4. The TEE is in charge of concretizing the AATs and to test them on the
SUT. When a test if generated, the TEE decides either automatically or
by manual intervention whether the test was successful or not;

5. The result of a tests can be used to further refine the behavioral model.

Fig. 3.2: General representation of a Model-Based Testing approach

3.2.3 The SPaCIoS tool

Secure Provision and Consumption in the Internet of Services (SPaCIoS) is
a collection of tools related to modeling, verification and testing of inter-
net services (which includes, but not limited to, web applications and net-
work protocols). The SPaCIoS tool shows the effectiveness of applying formal
methodologies such as model checking to the runtime analysis of the security
of internet services.

50 3 Software analysis

The implementation of the SPaCIoS tools consists of a collection of differ-
ent plug-ins for the Eclipse IDE providing a MBT solution for testing internet
services within the same environment used to develop such services. Figure3.3
shows the main components of the SPaCIoS tool which resembles the general
approach of MBT shown in Figure3.2. The security analyst interacts with the
user interface of the SPaCIoS tool which is provided by the Eclipse workbench
and workspace. The workbench contains the main graphical components of
the SPaCIoS tool while the workspace contains resources and data needed
by the SPaCIoS tool. The user interface of SPaCIoS is integrated and ex-
tends the Eclipse workbench with new commands used to control all the tools
implemented by SPaCIoS and the editors used to provide new input to the
SPaCIoS tool. The creation of the formal model is performed within Eclipse
itself thanks to the editors provided by the SPaCIoS tool. Once the formal
model of a SUT and a security property have been created, the security an-
alyst can invoke the Property-driven and vulnerability-driven test generation.
This component generates the AATs using the model of the SUT and the se-
curity property of interest. The test case generation component may also take
advantage of a trace-driven fault localization which is based on the source code
of the SUT, when available. The test cases generated represents an execution
trace of the SUT leading it to a state where the security property is violated.
The Libraries component of SPaCIoS comprises four different sets: vulnerabil-
ities, attack patterns, security goals and attacker models. These sets are used
as input for the property-driven and vulnerability-driven test case generation
component as well. Attack patterns are also used to guide the security analyst
in the iterative testing phase carried out by the Test Execution Engine (TEE),
which is in charge of executing the test cases by handling the communication
with the SUT. However, a test might fail revealing a discrepancy between
the model of the SUT and the real SUT which means that some adjustments
should be performed on the model.

The main modeling language employed in the SPaCIoS tools is ASLan++.
As I already stated in § 3.1.2.2, ASLan++ is suitable for the definition of dis-
tributed systems that exchange messages over a different range of secure chan-
nels and provides the flexibility to define a variety of security goals. ASLan++
facilitates the specification of internet services at a high level of abstraction
in order to reduce model complexity as much as possible, and at the same
time is close to procedural and object-oriented programming languages, so
that it can be employed by security analysts who are not formal specification
experts.

The SPaCIoS tools allows security analysts the flexibility to select which
tool should be executed in isolation and the possibility to follow different MBT
flows.

3.3 Conclusions 51

Fig. 3.3: The SPaCIoS tool and its main components

3.3 Conclusions

In this chapter, I have described the main software analysis techniques that
are used nowadays to analyze the security of a system. I have described static
and dynamic analysis techniques with emphasis on the secure analysis of web
applications. More specifically, I have described model checking as a static
analysis technique and the AVANTSSAR platform that uses model checking
for analyzing the security of network protocols. Moreover, I have described
penetration testing and model-based testing as dynamic analysis techniques,
including in particular the SPaCIoS tool, which is used for analyzing the
security of internet services.

Part II

Model-based Security Testing Framework
(MobSTer)

4

MobSTer

In this part, I describe the Model-based Security Testing Framework (Mob-
STer that aims to support a security analyst in carrying out security testing
of web applications. MobSTer was developed during the doctoral thesis of Dr.
Michele Peroli in which I collaborated at the beginning of my Ph.D. During
the development of MobSTer, I worked on the definition of actions, the basic
building blocks of MobSTer that I describe in this chapter. Moreover, I per-
formed comparative tests with state-of-the-art tools for the secure analysis of
web applications in order to evaluate the effectiveness of MobSTer. The main
idea underlying MobSTer is to combine model-checking techniques and pen-
etration testing guidelines and checklists. The aim is to create a framework
capable of searching for possible vulnerable “entry points” without missing
important checks. More specifically, as shown in Figure 4.1, MobSTer follows
the classical approach of Model-based testing. First, the security analyst cre-
ates a model of the web application by defining actions; an action, intuitively,
is a part of the web application providing some particular functionality that
can be accessed by users through a user interface or a web browser (e.g.,
authentication, user profile management or item purchase in an e-shopping
application). The model is completed with a security property that should
hold on the web application. The final model is then fed into a Model Checker
that will return Counterexamples (CE) if any are found, which are execution
traces that violate the security goal. However, both the actions themselves
and the CEs are too abstract to be directly employed for testing the web
application. MobSTer thus provides for a Test Execution Engine (TEE) that
translates a CE into a sequence of HTTP requests that can be performed on
the web application.

Actions are defined by the security analyst who decides the abstraction
level and the granularity he wishes to consider. As a concrete example of the
actions’ characteristics (i.e., their use in the framework as well as the expertise
used in their identification), consider the “login” functionality. Web applica-
tions usually employ one of the following types of authentication mechanism

56 4 MobSTer

Test Execution Engine

Model
Checker

Test

Web Application
Model

CE(s)

Web
Application

Login

Fig. 4.1: A high-level view of the MobSTer framework

(it also includes the attacks that the security analyst can exploit in order to
attack the action):

• Basic Authentication: the tester can try to perform a brute-force attack,
and the password is sniffable if not passed via HTTPS.

• HTTP Digest Authentication: brute-force attacks and man-in-the-middle
attacks are possible.

• Form-based Authentication: brute-force attacks are possible, injection vul-
nerabilities (e.g., SQL-injection [72], Cross-Site Scripting XSS [37], etc.)
have to be tested, and the attacker should try to capture the authentica-
tion token (i.e., session tokens or cookies).

For each of these authentication types, a security analyst can create an asso-
ciated action and also reuse it later to test different models.

MobSTer is implemented as a prototype1 which was applied to test a
number of case studies to assess its strength and concretely evaluate it with
respect to four state-of-the-art tools that are normally used by penetration
testers and that are close to what MobSTer aims to achieve: Burp Suite [68]
(free version 1.7.23 and Pro version 1.7.23), OWASP Zed Attack Proxy [62]
(ZAP, version 2.3.1) and Arachni [5] (framework version 1.5.1). Our evaluation
shows that MobSTer has a better identification rate and a better vulnerability
coverage than these four tools.

4.1 Modeling web applications for MobSTer

In MobSTer, the definition of models is inspired by the HRU model, a security
model proposed by Harrison, Ruzzo and Ullman for the integrity of access
rights in operating systems [39]. The HRU model defines (i) a finite set of
generic rights R and (ii) a finite set C of commands containing conditions
to be checked and primitive operations to be performed (i.e., create/destroy
objects/subjects, give/delete rights on an object). A configuration of such a
protection system is a triple (S,O, P), where S is the set of current subjects,
1 The source code of the MobSTer tool is available at https://github.com/REGIS-
lab/MobSTer.

https://github.com/REGIS-lab/MobSTer
https://github.com/REGIS-lab/MobSTer

4.1 Modeling web applications for MobSTer 57

O is the set of current objects, S ⊆ O, and P is an access matrix, with a
row for every subject in S and a column for every object in O. P [s, o] is a
subset of R, the generic rights. P [s, o] gives the rights to object o possessed
by subject s. The “safety” problem for protection systems under this model is
to determine in a given situation whether a subject can acquire a particular
right to an object. Basically, safety means that an unreliable subject cannot
pass a right to someone who did not already have it (i.e., the owner gives away
certain rights to his objects).

To test web applications using MobSTer, an access matrix M like the ma-
trix P of the HRU model is defined, where the commands are instantiated with
the functionalities offered by the web application, the set of generic rights is
redefined to express the information that permits one to relate web application
functionalities to known vulnerabilities, and the set of primitive operations is
changed according to the changes performed on the other concepts.

In MobSTer, the model of a web application for security testing is de-
fined as a transition system TS that contains: (i) a data structure containing
the data handled by the web application (and its users), (ii) the information
about the storage and the management of this data by the web application,
(iii) the functionalities that the web application provides, and (iv) how these
functionalities can be accessed by the web application’s users.

4.1.1 Users, data and knowledge

The set UserName is defined as the set of unique identifiers of users inter-
acting with the web application, where a special label Anon is introduced for
anonymous browsing. For the users in UserName, the security analyst has to
establish which data is in the scope of the analysis.

Definition 4.1 (UserData). Let MetaData be a set of abstract representa-
tions (defined by the security analyst) of the data implemented in web appli-
cations that a user can handle, MetaData = n be the number of elements
in MetaData, BasicTypes = {String , Int ,Bool , . . .} be the set of concrete
data types and StrucTypes = {Profile,Credential , . . .} the abstract types of
the elements of MetaData. The record UserData = (field1 , ...,fieldn), where
fieldi ∈ UserData2 is an instantiation (at some level of abstraction) of the i-th
element ofMetaData and is of the form fieldi = [(subfieldi.1 [, subfieldi.2], ...)],
where

• fieldi has type in StrucTypes or BasicTypes, and
• subfieldi.j are optional and have types in BasicTypes.

�

As an example, a typical data structure is
2 With a slight abuse of notation, ∈ is used also for records.

58 4 MobSTer

UserData =(cred = (user, pwd),

id,

prof = (name, ...),

messages = (m[,m]...[,m]),

data = (d[, d]...[, d])).

When a security analyst models a web application, some of the fields of
UserData will remain unchanged, others will be modified (the choice will
depend on the web application in some cases and on the modeling choices in
other cases).

In a multi-user environment, every user has access to his (and other users’)
data through the interface of the web application. To model this aspect, the set
Data contains the possible data that users can handle during their interaction
with the web application.

Definition 4.2 (Data). The set Data is defined by instantiating every ele-
ment in UserData with each user in UserName, i.e.,

Data = {x.y | x ∈ UserName and y ∈ UserData} .

�

During the interaction with a web application, a user can access and use
many types of knowledge. For instance, he can:

• use information he already knows, e.g., from the beginning of his execution
(the origin of this initial knowledge is not discussed here and its definition
is demanded to the security analyst),
• gain information from the interaction with the web application itself,
• or, in borderline cases, even guess some information.

These types of knowledge are described by means of labels contained in the
set

KSource = {Initial ,Gained ,Guessed} ,

where other sources of knowledge can of course be modeled by defining a
different KSource .

Definition 4.3 (Knowledge). The knowledge of the users is defined as a set
of triplets

UKnows = {(x, d, ksrc) | x ∈ UserName, d ∈ Data and ksrc ∈ KSource} ,

and U si
Knows denotes the content of the set UKnows at state si.

�

4.1 Modeling web applications for MobSTer 59

4.1.2 The behavior of web applications

The behavior of a web application is modeled through events that a specific
user triggers (i.e., causes to happen), through the use of the functionalities
of the web application (i.e., actions), regarding some data, and with respect
to a specific “location” on the server. In MobSTer, events describe what is
happening to the web application’s data. Events are related to actions in that
when an action α is performed, some events take place (i.e., the user triggers
some events through the use of the action).

Definition 4.4 (Events). Events describe how the data is managed by the
information technology that the web application relies on (e.g., databases
that manage data, file systems for files, sessions for access control and volatile
data, operating systems that execute commands, and the web application’s
user interface that retrieves data from the users). The syntax for defining
events is

x .event(parameters, location) ,

where x ∈ UserName, event is the event’s name, parameters ⊆ Data and
location is the technology used by the web application to handle the data
(e.g., the file system).

�

For instance, if an action models a functionality that allows a user to write
some data on the web application’s database, then the event x .write(targetData,
database) is related to that action.

Actions (Definition 4.9) are used to move the transition system from a
state (Definition 4.8) to another. In order to simplify the notation for the
actions, events are specified in the target state of the action, i.e., for states si
and si+1 of the transition system,

si
αi+{events}−−−−−−−−→ si+1 becomes si

αi+1−−−→ s′i+1,

where in s′i+1 for each event in {events}, a label expressing the event and its
location is specified in the event’s parameters. In those cases in which it is not
possible to determine the location where the data are managed, the security
analyst can create multiple models with different guesses, and test each such
model. The automatic testing process will take care of reducing the overhead
of testing multiple traces.

Similar to the definition of the knowledge of the users, the set Event con-
tains the possible labels for events. As a concrete example, a useful instanti-
ation of the set Event (that could, of course, also be modified by the security
analyst) is

Event = {ShowDB ,WriteDB ,ShowFS ,WriteFS ,Exec,WriteSD ,ShowSD} ,

where the intended meanings of the labels in Event are:

60 4 MobSTer

• ShowDB : the labeled data has been displayed as a result of a query that
reads from a database (e.g., the messages in an online forum).

• WriteDB : the labeled data has been written in a database (e.g., if a user
saves his profile on a database).

• ShowFS : the labeled data has been read from the file system and displayed
(e.g., the web application has a photo album whose photos are read from
files).

• WriteFS : the labeled data has been written on the file system of the server
(e.g., photos, attached documents, etc.).

• Exec: the labeled data has been displayed and retrieved as part of the
execution of a command (e.g., the open function in PERL or the Runtime
class in Java).

• ShowSD : the labeled data has been retrieved and displayed from a local
session of the browser (e.g., preferences or runtime state).

• WriteSD : the labeled data has been saved in the browser along with the
other data pertaining to a certain session.

Definition 4.5 (WAEvent). The set of events that are related to the user and
the data is defined as:

WAEvent = {(x, d, e) | x ∈ UserName, d ∈ Data and e ∈ Event} ,

where a triplet in WAEvent states that the event e happens on a data d and
the user x triggered it. WAsi

Event denotes the content of WAEvent at state si.

�

4.1.3 Security Mechanisms & Testing-Related Information

Users interact with a web application through a browser. Even if a user is not
aware of what is happening, from a security perspective, a lot of information
can be extracted from a web application about the mechanisms (that are of-
ten concealed to the users) implemented in order to preserve the security of
the system (i.e., the security of the web application and its data-management
technologies), and the information that is interesting from a testing perspec-
tive but is not part of the knowledge or the behavior of the web application.

Definition 4.6 (Assertions). Assertions describe security controls such as
authentication, access control, input validation, encoding, and user and session
management. A security analyst can define assertions (in the form of labels)
about security controls in order to define the set Assertion.

�

The analysis is focused on those security mechanisms (enforced through/on
some data) that refer to the classes in Definition 4.6. The strategy that a se-
curity analyst can follow when defining the set Assertion is to identify the

4.1 Modeling web applications for MobSTer 61

key attack surfaces that web applications can expose. This strategy corre-
sponds to mapping the attack surface of the web application; some key areas
to investigate during the mapping are:

• the web application’s functionalities (i.e., the actions that can be lever-
aged);

• the core security mechanisms (e.g., access controls, authentication mech-
anisms, etc.);

• how the web application processes user-supplied input;
• the technologies employed on the client-side;
• the technologies employed on the server-side.

As an example, the following set is the one used in the case study:

Assertion = {Granted ,Checked ,AJAX ,Sanitized ,Admin,

User ,Echoed ,PageIncluded ,noAttack} ,

where the intended meanings for the elements in Assertion are:

• Granted : this label is used along with the data modeling the (HTTP)
session and means that the session is granted (i.e., the user has logged-in
and some session ID is used during the communication).
• Checked : if the data is used in a query on the database (or file system)

and may not be displayed by the user interface.
• Sanitized : if sanitization is enforced on the data.3
• Admin/User : if the role of the users of the web application is checked

(these assertions define the values of the user data userType, and are
checked whenever an action requires these privileges).

• AJAX : if the data was displayed and its values are retrieved via AJAX-
functionalities.

• Echoed : if the data submitted through a request is reported identical in
the response page.

• PageIncluded : if in the URL/page there is a direct reference to a file (then
used as a web page) hosted on the server.

• noAttack : this label is used as a means for a security analyst to disable
attacks for a certain data.

Definition 4.7 (SECAssertion). The set

SECAssertion = { (x, d, p) | x ∈ UserName, d ∈ Data and p ∈ Assertion }

states that a certain user x has used a data d on which the security analyst
has made an assumption p about how the data d is handled from a security
perspective; SEC si

Assertion denotes the content of the set SECAssertion at state
si.

�
3 The only granularity considered is fully sanitized or not. The concretization phase
will take care of testing the generated traces.

62 4 MobSTer

4.1.4 States of the transition system

In MobSTer, every state si describes a particular snapshot of the web ap-
plication regarding the information about: (i) the users in UserName and
their knowledge in U si

Knows , (ii) the triggered events in Event on the data
(WAsi

Event), and (iii) the assertions in Assertion about security mechanisms
and testing-related information SEC si

Assertion . In other words, a state describes
what is happening client-side and server-side during the interaction of a user
with the web application.

Definition 4.8 (States). For a given web application, a state of the TS is an
instance of the matrix M such that the row names take values in UserName,
the column names take values in every element of Data and the labels in
KSource , Event and Assertion are assigned to M ’s cells. The syntax M [U,D]
denotes a cell of the matrix M of the states of TS , where U ∈ UserName and
D ∈ Data.

�

A final remark on the matrix is in order. As stated above, MobSTer takes
inspiration from the HRU model [39]. The definition of the access matrix (P
in the original paper) remains the same but, in MobSTer , “subjects” are
replaced by “users” and “objects” are replaced by “data” (the definitions of
“commands” and “rights” are replaced in order to be usable in the context of
web applications).

4.1.5 Actions

Let the following set be a set of labels for the modelled functionalities

functionName = {Login,Logout ,Search,GetEdit ,ListId ,

EditProfile,ViewProfile,UpdateProfile}.

The elements in functionName refer to the functionalities implemented in
the web application that are modeled as actions. These actions have to be
instantiated with respect to the data (contained in the set Data) of the web
application.

Definition 4.9 (Actions). An action α ∈ Action is defined as

α = name(agent , parameters)/[Conditions]PrimitiveTransitions ,

where name ∈ functionName, agent ∈ UserName, parameters ⊆ Data,
Conditions is a set of conditions that have to be satisfied in order to per-
form the action, and PrimitiveTransitions is a set of transitions that describe
how the state changes.

�

4.1 Modeling web applications for MobSTer 63

Table 4.1: Definition of the Login action

1 Login(x , x .cred)
2 if (M [Anon,Anon.session] = Grant ∧ M [x , x .cred] = Initial)
3 Reset M for x
4 Del Grant from M [Anon,Anon.session]
5 Add Grant into M [x , x .session]
6 Add Checked into M [x , x .cred]
7 End

The elements of PrimitiveTransitions are of the form
operation X [into/from] M [U ,D]
operation X for U

where X ∈ Event ∪ Assertion, U ∈ UserName and D ∈ Data. In the above
example, the first primitive transition is applied to a single cell ofM , whereas
the second one is applied to all the cells in the row U .

A condition is an expression of the form:

if X ∈ / /∈ M [U ,D] .

As an example, consider the definition of the action Login, which is given
in Table 4.1. The action’s name is “Login” (line 1) and, to maintain the func-
tionality general enough to be used by multiple agents, let x be the agent
using it. As parameters both “username, password” and “credential” could be
used (instantiated for the user x). The parameter “credential” (cred for short)
is used in the example in Table 4.1.

Usually, a login can be performed only if the user is not logged in yet (i.e.,
he is still anonymous to the web application) and if he knows his credentials
(i.e., the credentials are part of his knowledge). These conditions are defined
in line 2 of Table 4.1. Once the conditions in line 2 have been fulfilled, the
state of the transition system needs to be changed. First of all, the previous
event is deleted from the matrix (through the primitive Reset in line 3), then
the Grant label is deleted from the Anon user in line 4 (this also means that
a user can login only from an anonymous session) and the user receives the
session in line 5. This information is also stored in the state (line 6) since the
“credentials” are checked (the low-level mechanism is not important) and the
action is closed in line 7.

4.1.6 Security goals

The purpose of security goals is to verify that some properties or conditions
hold on the model. More specifically, MobSTer deals with injection flaws
(SQLi, XSS and command injection).

In general, to exploit a vulnerability, some conditions related to the data
and some properties must be fulfilled. Conditions are formalized with respect
to a vulnerability by means of a logical formula that has to be valid in every

64 4 MobSTer

possible state describing the evolution of the model, or has to be valid for
every trace starting from an initial state.

Although it is not possible to give an exact procedure for the definition of
security goals, it is possible to give a general approach that can be helpful to
a security analyst while writing security goals. The approach consists of four
steps, which are described below. Each step should be instantiated according
to the vulnerability for which the security analyst wants to write the security
goal; examples of instantiations are given after each step.

1. Definition of entry points: The security analyst has to determine which
are the entry points that are used to attack a web application. Examples
of entry points are:
• text/numerical parameters,
• URLs,
• login functionalities and
• paths to files.

2. Understanding the testing procedure: The security analyst then has to
understand which is the procedure used to test the vulnerability for which
she wants to define a security goal (usually this procedure is the same as
the one that is used to attack the web application). The OWASP testing
guide [64] has an “How to Test” section for each covered vulnerability, and
it is a good starting point for learning how to test web applications. For
instance, the procedure for testing “SQL-Injections” described in [64] is:
(i) Make a list of all input fields whose values could be used in crafting a

SQL query.
(ii) Test them separately, trying to interfere with the query and to gen-

erate an error.
(iii) Monitor all the responses from the web server and have a look at the

HTML/JavaScript source code for evidence of a successful attack.
The procedure for testing “Directory traversal/file include” described in
[64] is:
(i) Enumerate all parts of the application that accept content from the

user in order to load static information from a file.
(ii) Insert malicious strings in the used parameter to include files that are

not intended to be accessed by the user (e.g., “../../../../etc/passwd”
to include the password hash file of a Linux/UNIX system). It is also
possible to include files and scripts located on an external web site.

(iii) Monitor all the responses from the web server and have a look at the
HTML/JavaScript source code for evidence of a successful attack.

The security analyst will gain two valuable items of information from the
testing procedure. First, how the test should be performed, which will be
included in the model of the web application as a goal defining how to find
the entry point. Second, the set of payloads that should be used during
the concretization phase.

4.1 Modeling web applications for MobSTer 65

3. Model behavior association: The security analyst has to define which be-
havior of the model is more suitable to describe the entry points and
the state in which a web application should be after a successful test for
the vulnerability. For example, the information that can be used for the
definition of a login bypass via “SQL-Injection” is:
(i) Username and password are submitted to the backend server.
(ii) Username and password are checked against the information stored

in the database.
(iii) The restricted functionalities of the web application are usable.

4. Logical formula definition: The security analyst has to define a logical
formula that merges all the information gathered during the previous steps
with respect to the sets KSource , Event and Assertion used to model the
web application.

4.1.7 The Alloy language

Before showing the translation from the transition system to the Alloy lan-
guage, I briefly introduce some basic notions of Alloy that are needed to
understand the translation.

4.1.7.1 Signatures and Relations

A signature (sig) is the basic building block of the Alloy language and defines
a set of elements. A signature can be specified to have always exactly one
element by using the keyword one. For example,

one sig Obj {};

defines a set Obj that contains only one element. A signature can be defined
to be abstract when one wishes to refine a classification of a set of elements.
Each element contained in the abstract signature is constrained to also be con-
tained in the signature that extends the abstract signature itself. An abstract
signature can be extended by using the keyword extend. For example,

abstract sig Color {};

sig Blue extend Color {};

sig Red extend Color {};

defines an abstract signature Color and two signatures Blue and Red extend-
ing Color.

The body of a signature, which is contained within a pair of curly braces,
allows one to define fields that declare relations between the set defined by
the signature and another set or another relation. To define complex relations,
Alloy provides multiplicity constraints and operators on sets. The multiplicity
constraints relevant for MobSTer are:

66 4 MobSTer

• x: set e: meaning x is a subset of e;
• x: one e: meaning x is a singleton subset of e.

The operators on sets relevant for MobSTer are:

• X + Y: the union of sets X and Y,
• X & Y: the intersection of sets X and Y,
• X - Y: the difference of sets X and Y,
• R -> S: the product of two relations.

4.1.7.2 Facts

In Alloy, facts are used to put explicit constraints on the model. During the
analysis of a model, any execution trace that violates any facts, will be dis-
carded.

4.1.7.3 Predicates

Predicates allow one to specify parameterized constraints that can be used to
represent operations. For example,

pred name [parameter1:domain1, parameter2:domain2]
constraint1
constraint2
constraint3

If the inputs satisfy all of the specified constraints, then the predicate evaluates
to true, otherwise it evaluates to false.

4.1.7.4 Assertion

Assertions are assumptions about the model that can be checked using the
Alloy Analyzer. For example,

assert name-of-assertion
// list of constraints

4.1.8 Model definitions in Alloy

It is now possible to define how to translate the transition system describ-
ing a web application in MobSTer into the Alloy language by means of the
definitions in § 4.1.

4.1 Modeling web applications for MobSTer 67

4.1.8.1 Users, data and knowledge

The model of a web application in MobSTer can be formalized by applying
Theorem 4.1, Theorem 4.2 and Theorem 4.3. The formalization of the model
starts from the definition of the user’s data structure (Theorem 4.1):

abstract sig User {

field1: one DataType1

field2: one DataType2

...

initialK: set Data

gainK: set Data

}

Translated in Alloy, the user is an abstract signature that contains a list
of fields. Each user’s field is also a signature that extends Data. The set Data
represents the generic data type in the model, and the keyword one forces each
field to contain exactly one element of the specified data type. In addition to
the fields specifically related to the web application that is being modeled,
the user’s signature always defines the fields initialK and gainK. which are
subsets of the set Data (denoted by the keyword set). Since Data is extended
by all the other signatures of the user’s data, initialK and gainK can contain
any type of information. Two main data types are needed to model a web
application in MobSTer:

• basic: defined by declaring a concrete signature that extends the abstract
signature Data. For example, sig BasicDataType extends Data.
• structured : defined by declaring (i) an abstract signature A that extends

the abstract signature Data, (ii) one or more fields in the signature A,
and (iii) abstract signatures relative to the fields of the signature A. For
example,

abstract sig StructDataType {
field1: one DataType1,
field2: one DataType2,
...
} extends Data
sig abstract DataType1 extends Data
sig abstract DataType2 extends Data

With the definition of the user and the data of the web application, it is
possible to instantiate the user’s fields.

• For each basic field, the concrete signature (one for each user) is defined
as

68 4 MobSTer

one sig UserADataType1 extends DataType1 {}

one sig UserADataType2 extends DataType2 {}

• For each structured field, the concrete signature (one for each user) is
defined as

one sig UserADataType3 extends DataType3{} {

field1 = UserADataType4

field2 = UserADataType5

}

• The concrete signature of each user and the relation associated to each
field are defined as

one sig UserA extends User{}
{

field1 = UserADataType1

field3 = UserADataType1

field2 = UserADataType3

...

initialK = UserADataType1 + ...

gainK = NoData

}

4.2 Evaluation

To evaluate the effectiveness of MobSTer, two further steps were taken: (1)
create a formal model on a web application following §4.1 and (2) implement
MobSTer in a prototype version that could be tested and compared with other
tools.

To achieve (1), the Alloy language was selected for writing formal models
of web applications so to be able to apply the Alloy analyzer [41] on such
models. The Alloy analyzer is the tool used to analyze an Alloy model, it
takes in input the model and its constraints and finds structures that satisfy
them. Alloy has been used in a wide range of applications from finding holes
in security mechanisms to designing telephone switching networks.

To achieve (2), a Python version of MobSTer performing a concretiza-
tion phase was implemented. The implementation of MobSTer makes use of:
the data contained in the CE (resulting from the model-checking phase), a

4.2 Evaluation 69

CE(s)

Configuration
Values

Model

Alloy
Model Checker

Results make request
GET/POST

Browsing Phase Attack Phase Check Phase

MobSTer

Initial Phase

Information
extraction

GET:
starting_URL

Data

Data
Extraction

Create
Request

Configuration
ValuesData

Extraction

Create
Request

make request
GET/POST

Check
Attack

Instantiation
Library

HTML
PAGE

HTML
PAGE

HTML
PAGE

Fig. 4.2: Execution workflow of the MobSTer framework

file containing Concretization Values needed for the correct interaction with
the SUT (e.g.: IP addresses, parameters names, etc.), and the Instantiation
Library containing the attack-related information to perform the tests (i.e.,
payloads and scripts used during the actual attack against the SUT).

Listing 4.1: Structure of the configuration file used by MobSTer
1 starting_URL = ’http ://192.168.1.42:8080/ WebGoat /...’
2

3 set_cookie = {’JSESSIONID ’:’974
AE36BC95C4I0D036C2E3CDS543B1C ’}

4 SSL_authentication = [None|Yes]
5

6 views = {’Login ’:’ListId ’}
7

8 Data[’Tom ’] = {
9 ’employee_id ’ : ’105’,

10 ’password ’ : ’tom ’
11 }
12 Data[’Jerry ’] = {
13 ’employee_id ’ : ’106’,
14 ’password ’ : ’jerry ’
15 }
16

17 actionsURL = {
18 ’NoAction ’ : ’’,
19 ’Login ’ : ’Login ’,
20 ’Logout ’ : ’Logout ’,
21 [...]
22 ’GetSearch ’ : ’SearchStaff ’,
23 ’Search ’ : ’FindProfile ’
24 }
25

26 actionsLabel = {
27 ’NoAction ’ : None ,
28 ’Login ’ : None ,
29 ’Logout ’ : None ,
30 [...]

70 4 MobSTer

31 ’GetSearch ’ : None ,
32 ’Search ’ : None
33 }

4.2.1 Implementation

4.2.1.1 Initial Phase

In this phase, MobSTer automatically runs the Alloy Analyzer on the model
of a SUT. If a CE is found during the initial phase, it is saved in a text file
containing all the information about the states of the transition system. The
text file is then parsed, along with the configuration file (containing the Con-
cretization Values), in order to populate the Python variables that will be
used in the next phases. Alloy supports multiple CEs generations, thus differ-
ent test cases for the same security property on one model can be generated.

With the information regarding the CEs and the relative variables popu-
lated, the engine starts the interaction with the target web application. The
security analyst is required to write a configuration file (Listing 4.1) for the
target web application containing: (i) the URL from which to start the in-
teraction (line 1 in Listing 4.1), (ii) two optional fields for setting a cookie
and stating if the web application requires an SSL connection (lines 3-4 in
Listing 4.1), and (iii) the list of concatenated actions (line 6 in Listing 4.1).

The notion of views (i.e., how the actions correspond to the real implemen-
tation of the web application with respect to its pages) is introduced in order
to define the relations between the “pages” composing a web application and
the functionalities provided by it (i.e., how they match). The definition of the
views allows the security analyst to model each functionality as a single action
without the need of defining actions referring to multiple functionalities. The
Python engine is aware of these modeling choices via the use of the variable
views.

4.2.1.2 Browsing Phase

After the initial phase, MobSTer has all the information required for the
interaction with the SUT, thus the browsing phase can begin. This phase
deals with the problem of reaching the exact location where the attack has
to be performed. Knowing from the CE at which state the attack has to be
made (say, at state 5), the Python engine selects, one by one, the actions from
the first state to the one before the attack (in this example, state 4). For each
action, the engine performs two sub-phases: “Data extraction” and “Request
creation”.

Data extraction: This phase assumes that a web page has been previously
retrieved by the engine; for the very first interaction (i.e., the action NoAction
) the engine retrieves the page pointed by the starting_URL variable). The

4.2 Evaluation 71

engine extracts and saves the data contained in the retrieved HTML page
(e.g., text in input forms, checkboxes, etc.). For each user of the target web
application, the data pertaining to the user is maintained in a data structure
containing all the data gathered during the analysis (lines 8-15 in Listing 4.1).

Request creation: In order to create requests, the Python engine has to re-
trieve the data pertaining the request and generate the actual HTTP requests.
The following sub-phases execute:

• Data selection: The engine checks all the data used in the model (i.e., the
data type used during the modeling phase) in order to determine which
one should be used (e.g., it tries to discriminate which employee_id and
password should be used for the Login action); if multiple data can be
selected in order to use an action, the engine automatically checks which
data has to be used with a simple comparison with the data displayed,
or used, in the subsequent state of the transition system, i.e., by tracking
the evolution of the atomic propositions though the different states of the
transition system

• Input filling : The engine selects the proper data from the one available
in its data structure with respect to the possible input on the page (i.e.,
the possible HTTP requests that can be made). This is done, at first, by
checking (i) if any of the labels (contained in a predefined list) is used in
the page (e.g., text, TEXT, password, textarea), (ii) a list of indicators
for buttons (e.g., action, submit, button) and (iii) which information is
available in the extracted data (i.e., the data structure Data). In case
multiple forms are present in a page, this information is not enough to
decide which one should be used to create a HTTP request. To resolve
this decisional problem, the security analyst specifies in the configuration
file some information (associated with the action) that can be used for
making such choices (e.g., the button action or the target page of a link;
lines 18 and 27 in Listing 4.1). If the tool is not able to derive any of these
information, the missing fields are reported to the security analyst with
the request of supplying the missing value.

• Request generation: Once the correct data has been selected regarding a
certain state of the transition system, the engine is ready to create and
send a HTTP request to the SUT and, subsequently, to retrieve the result-
ing web page. The Python engine can generate various types of requests
(i.e., GET/POST requests with variables, cookies or SSL authentication).
To differentiate such cases, the security analyst should specify for each
action a label (referring to the main feature modeled by the action) in
the variable actionsLabel of the configuration values. The possible values
(and their meaning) for actionsLabel are:
– none: for buttons or forms (it is assumed forms to be one of the main
features of web applications that are modeled);

72 4 MobSTer

– link: for the cases where a link has to be followed in order to reach a
different part of the web application (e.g., to reload the information
on a web page);

– GP: when the engine has to retrieve the given web page before accessing
the functionality (GP stands for “Get Page”).

4.2.1.3 Attack Phase

Once the browsing phase has been completed (i.e., the engine reached the
location where the attack has to be made), the Python engine switches to the
attack phase. During this phase, the engine delivers the payload for a given
attack. The penetration testing approach for such a phase is to test every entry
point on the target page, i.e., using every available input on the page in order
to deliver every possible payload in the Instantiation Library. A complete
scan of the web applications used as case studies (i.e., WebGoat, DVWA and
Gruyere) is not the focus of this thesis (and their vulnerabilities are well known
anyway); thus, in the implementation of this phase, the Python engine is given
the knowledge of the entry points for each of the tested attacks (i.e., the right
target field in a form or the partial URL to be used). This choice is not a
limitation since the number of entry points can be increased if necessary and
this information is only used during the attack phase (i.e., the other phases
do not have any knowledge about the exact location of the vulnerabilities
and everything is derived from the model and the interaction with the web
application). In this way, it is possible to show the effectiveness of the Python
engine with a reduced overhead during the attack phase. Of course, with an
augmented number of entry points the overall time of the test will increase,
but such analysis is not in the scope of this thesis.

4.2.1.4 Check Phase

After the delivery of every payload in the previous phase, a check phase starts.
If the information contained in the CE requires that the check for an attack
has to be made in a different location of the SUT (i.e., the success of the attack
is not verifiable in the received HTTP response), an additional browsing phase
is called. Once the engine retrieves the HTTP page where the results of the
attack should appear, the engine checks if the attack was successful or not.
Two types of checks are implemented in the prototype version of MobSTer:
(i) general checks and (ii) payload-related checks.

General checks include those general conditions of the page that have
to be checked for every payload of a given attack (e.g., search for a regular
expression in the page, check a given status code, etc.). Payload-related checks
include the checks for those attacks where the conditions that have to be
checked depend on every single payload. Both general checks and payload-
related checks, for the payloads considered by MobSTer, are included in the

4.2 Evaluation 73

Instantiation Library so that the security analyst does not have to manually
define them. As an example, for the following payload for a XSS attack

a l e r t (S t r ing . fromCharCode (88 , 83 , 83 , 65 ,
116 , 116 , 65 , 99 , 107))

the string XSSAttAck (i.e., the decoded string of the payload) has to be
found in the result page in order to have the confidence that the attack was
successful. Even though the checking phase implemented in the prototype ver-
sion of MobSTer is simple, the modularity of the tool allows security analysts
to implement and use the test oracle of their choosing.

4.2.2 Results of the tests

I now show the vulnerability coverage and effectiveness provided by MobSTer.
In particular, MobSTer was tested against four security tools that are the
closest to what MobSTer aims to achieve: Burp Suite [68] (free version 1.7.23
and Pro version 1.7.23), OWASP Zed Attack Proxy [62] (ZAP, version 2.3.1)
and Arachni [5]. For performing the comparison all tools were configured in
complete automatic mode with the default configuration that comes after the
installation.

Arachni is a security scanner framework, whereas Burp Suite, ZAP and
Paros are mainly proxy tools used to intercept and analyze the HTTP traffic
from and to a SUT, but they also provide vulnerability-scanning techniques
that we employed for the tests. The tools selected for testing are not the
most powerful tools for performing vulnerability scanning, but still they are
the main general-purpose and free tools currently available. The case studies
used to perform the comparison are well known case studies able to show
whether or not a class of vulnerability was being covered, specifically: Web-
Goat, Gruyere [44], Damn Vulnerable Web Application (DVWA [30]).

• WebGoat is a deliberately insecure web application developed and main-
tained by OWASP. WebGoat is divided in many different lessons which
purpose is to teach how different vulnerabilities work;

• Gruyere is a small web application containing multiple security bugs that
allows its users to publish snippets of text and store assorted files. The
Gruyere model is composed of actions that permit users to add/delete
messages (snippets), upload files, modify their profile, and see other user
profiles;

• DVWA is a PHP/MySQL web application that, similarly to WebGoat, is
divided in different lessons and shows different web application vulnerabil-
ities. DVWA allows the selection of three levels of security to test, making
each lesson harder to exploit.

Table 4.2 shows a tabular representation of the results of the tests and
in the following I describe in detail the results dividing them by category of
attack following the categorization in the table.

74 4 MobSTer

Table 4.2: Results of the tests performed on the case studies. Legenda: X –
success of the test, i.e., the test has been able to find the vulnerability, X –
failure of the test, ∼ – ineffective test or the test is inapplicable to the case
study

Case Study

M
ob

S
T
er

B
u
rp

B
u
rp

P
ro

Z
A

P

A
ra

ch
n
i

Access Control Flaws
Business Layer Access Control WebGoat X ∼ ∼ ∼ X

AJAX Security
DOM-Injection WebGoat X X X ∼ X
Reflected XSS via AJAX Gruyere X X X X X

Cross-Site Scripting (XSS)
WebGoat X X X X X
Gruyere X ∼ X X X
Gruyere X ∼ X X XStored XSS
DVWA X X X X X
WebGoat X X X X ∼
WebGoat X X X X ∼
Gruyere X ∼ X ∼ ∼Reflected XSS

DVWA X X X X X
Injection Flaws

WebGoat X X X X XCommand-Injection (or Execution) DVWA X X X X X
WebGoat X X X X ∼
WebGoat X X X X ∼
WebGoat X X X X ∼
WebGoat X X X X ∼

SQL-Injection

DVWA X X X X X
(string, numeric, XPATH)

DVWA X X X X X

4.2.2.1 Access-control flaws

Access-control flaws violate business-level policies and they are extremely dif-
ficult to characterize and identify automatically since those policies are unique
for each SUT. In the case studies, used to evaluate MobSTer, access control
policies were defined as goals of the model. The goals check if the user has the
correct privileges when accessing an action.

• Business layer access control: In this lesson, MobSTer was able to gain
access to high-privilege actions with a low-privilege account. The vulner-
ability was tested but a false negative reported (i.e., the vulnerability was
exploited but not reported as such). The main reason for MobSTer to be
able to exploit this type of vulnerability is that with a model of the SUT
it is possible to represent the means to reason about roles (as abstract

4.2 Evaluation 75

security constraints) and derive traces that are meaningful for these tests.
However, the fact that the vulnerability was exploited but not reported,
highlights the fact that MobSTer requires a more refined attacks check
phase.
On the other hand, the benchmark tools focus their security evaluation on
the analysis of the raw HTTP messages exchanged between the browser
and the SUT and do not have knowledge of the meaning of the data in
these messages.

4.2.2.2 AJAX security

To detect and test this type of flaws, the goal checks if it is possible to perform
an attack with the use of actions that employ AJAX technologies.

• DOM-Injection: MobSTer was able to perform tests for blocked func-
tionalities and bypass the restrictions coded in the DOM. The other tools
failed to identify this attack since they could not perform the request
containing the vulnerability. The model that was created for this type of
attack provides an example of how different types of functionalities can be
modeled in MobSTer and how a security analyst can leverage information
that other security tools cannot see.

• Reflected XSS via AJAX: MobSTer was able to find and confirm the
attack thanks to its concretization methodology. Specifically, being able to
control where the attack has to be launched makes the testing for a distinct
vulnerability stronger than a broad search for many vulnerabilities. Only
Burp Pro was able to perform the attack thanks to its scanner engine.

4.2.2.3 Cross-Site Scripting (XSS)

The considered XSS flaws are:

• Stored XSS: The goal checks if there exists an action where a data,
previously written by a user, is displayed by a (different) user. MobSTer
was able to trigger the XSS attacks in locations different from the ones
used to deliver the payload. More specifically:
– In the WebGoat and Gruyere case studies, the success of MobSTer re-

sides in the attack traces generated by the model checker. Usually, this
type of vulnerability is not found with automatic tools since it requires
one to check if a specific payload is executed in a different location
where it was injected. MobSTer presents a clear advantage in finding
and exploiting this vulnerability since it allows for this possibility.

– In the DVWA case study, the stored XSS behaves very similarly as a
reflected XSS since the payload, once stored in the database, is also
sent back in the response from the SUT. Because of this characteristic
, all the tools were able to find the vulnerability.

76 4 MobSTer

• Reflected XSS: The goal checks if there exists an action where the user
input is displayed back to the same user. MobSTer was able to find the
vulnerabilities. Like the other examples, this attack is well known and
modern security tools are using mature testing methodologies. For the
tests performed with Burp free it was necessary to perform a manual check
since Burp free does not automatically check if a payload is present in the
response. Burp Pro, on the other hand, provides an automatic checking
phase that was able to identify the vulnerability. For the tests performed
with Arachni, it should be noted that it was not possible to aim correctly
the tool on the vulnerable page since WebGoat loads the content of a page
based on the value of some parameters in the HTTP request’s body, which
Arachni does not allow one to specify. The only other way to make body
parameters visible to Arachni is to use its integrated proxy feature. We
tried it and although Arachni was now able to test the body parameters,
the set of payloads used by Arachni causedWebGoat to generate numerous
errors, which resulted in Arachni not being able to find the vulnerability.

4.2.2.4 Injection flaws

The goals for the injection flaws check if a user can access an action that was
previously injected by an attacker.

• Command-Injection (or execution): The goal for this vulnerability
checks if there exists an action where user supplied input is used as part
of the execution of an operating system command.
– In the case of WebGoat, MobSTer was able to find the vulnerability

during the model-checking phase but the TEE could not exploit it.
Also Burp (Free and Pro), Arachni and ZAP failed to find the vul-
nerability. The main problem in this example was that the standard
security policies of the Tomcat server blocked the execution of shell
commands.

– In the case of DVWA, MobSTer, Burp (Free and Pro), ZAP and
Arachni were able to successfully complete the tests (i.e., find the
vulnerability).

• SQL-Injection attacks: The goal for this vulnerability checks if, during
an action, external input was used in a query on the database result-
ing in additional data displayed by the user interface. MobSTer was able
to perform the tests with success. Burp (Free and Pro) also proven to
be successful in performing these tests; this is due to the fact that the
payloads used for the tests are the same even though a manual check of
the success of the tests is required with Burp free. For Arachni, the same
problem that occurred with the “Reflected XSS” case studies occurred: the
payloads generated by Arachni caused numerous crashes on WebGoat.

4.3 Related work 77

4.3 Related work

Model-based testing approaches are the more closely related to MobSTer and
thus call for a comparison with existing researches.

In [20], the authors describe an approach called “Chained Attack” that
takes HTTP requests in input, generates a model, and searches for sequences
of attacks on the model by exploiting model-checking techniques that imple-
ment the Dolev-Yao [27] intruder. The approach is similar to MobSTer, but
the result they present is quite limited. Even though the approach aims to
be used by security analysts that do not have a strong background in formal
methods, quite a lot is required of them for the concretization phase. Secu-
rity analysts have to write a configuration file containing information such as
header names and keys appearing in raw HTTP messages, semantics of HTTP
responses and conditions representing attacks, whereas MobSTer simplifies the
definition of the models and provides more automation for the concretization
phase. More specifically, their concretization phase is not as mature as Mob-
STer’s since they provide only information about the payloads that need to
be used, whereas MobSTer provides for a more solid testing engine with its
Instantiation Library.

The methodology proposed in [7, 9] is focused on binding the specifica-
tion of security protocols to actual implementations. The methodology starts
with the definition of an abstract model (written using a role-based language)
of the HTTP messages composing the security protocol. A model checker is
then used in order to derive a counterexample violating some given security
properties. The abstract messages, contained in the counterexample, are then
mapped to concrete messages used to test the web application. The results are
particularly promising but not directly comparable to MobSTer, since Mob-
STer is at a different level of abstraction. Indeed, the models MobSTer deals
with are not protocol-dependent (HTTP messages) but application-dependent
(actions).

The work described in [17, 18, 19] presents an approach for model-based
security testing of web applications closely related to mutation testing: they
start from a secure model and use mutation operators to automatically intro-
duce vulnerabilities in the model. Some of the major differences with MobSTer
reside in modeling the interaction between user and web application (Mob-
STer takes into consideration the user interaction only when the CEs are
tested), the use of mutations and the use of an attacker in the model-checking
phase. On the other hand, the approach by [17, 18, 19] is more mature than
MobSTer’s and allows for automatic test-case generation via mutants.

The work in [3] proposes a methodology that relies on the Alloy Analyzer
for the analysis of several sample web mechanisms and web applications. The
authors employ threat models such as a malicious attacker controlling a web-
site or even a portion of the network. They have defined three different intruder
models that should find web attacks, whereas in MobSTer it is only required
to describe the behavior of the web application. Furthermore, this method-

78 4 MobSTer

ology is at a different level of abstraction than MobSTer since they mainly
model network infrastructures and protocols rather than web applications.

The work in [45] describes an approach for the identification of vulner-
abilities based on the formalization of vulnerability test patterns into test
purposes. They define both the behavior of the web application and the test
purpose, and use model-checking techniques for the generation of abstract test
cases. The idea is similar to MobSTer, but MobSTer allows for a wider cov-
erage of vulnerabilities, whereas [45] considers the main vulnerabilities that
are provided in terms of test patterns from CWE (i.e., Blind and Not Blind
SQL-Injection, Reflected and Stored XSS) and that need to be translated in
order to be tested. The coverage of MobSTer is wider as it considers also more
complex attacks that exploit logical flaws. [82] extend their work ([45]) with
risk assessment in order to select relevant aspects and vulnerabilities for the
generation of models. The same differences with respect to MobSTer pointed
out for [45] apply for [82].

In [16], the authors propose a model-based vulnerability testing approach
where attacker models are used to test a given web application (or function-
ality). In this approach, the payloads and the behavior of the attacker are
separated. Attacker models can be seen as an instantiation of the security
goals that are defined in this work, although the level of abstraction of the
security goals described in this work is higher (in the sense that the attacker
models are specific to a scenario) than the one proposed in [16]. The main dif-
ference with respect to this approach is that MobSTer bases the analysis on
the models of web applications rather than the procedures for testing them;
this results in not needing to change such procedures if a (slightly) different
web application has to be tested.

Another formal approach that uses a different attacker model is proposed
by [70] where they use the formal language ASLan++ [85] and model-checking
techniques that implement the Dolev-Yao [27] intruder model for modeling a
web application vulnerable to CSRF but they do not consider other vulnera-
bilities.

4.4 Conclusions

In this chapter I have described MobSTer, a framework that was developed
during the doctoral thesis of Dr. Michele Peroli in which I collaborated at
the beginning of my PhD. MobSTer combines model-checking techniques and
penetration testing check lists to automate the testing of web applications
without missing important checks. Models of web applications are created by
taking into consideration different aspects, in particular: (i) their functionali-
ties (that are modeled as actions), (ii) the data used (along with information
about data storage and management), and (iii) a security goal specifying the
vulnerability to be tested.

4.4 Conclusions 79

As became clear during the testing phase, whose results are shown in the
evaluation section (§ 4.2), the use of actions has a positive impact on all the
phases of MobSTer, resulting in a quite simple and flexible methodology for
testing the security of web applications. Finally, one strength of great impact
provided by MobSTer is the reusability of actions and of the sets KSource ,
Event and Assertion. The expertise required to populate the Instantiation
Library is automatically “reused”. The analyst can collect her expertise into
MobSTer and reuse it during future tests on possibly different web applica-
tions, which may be carried out by her or by members of the testing group of
the analyst’s organization, if any. New attack techniques and payloads can be
inserted into the framework without changing (or compromising) the testing
methodology.

Part III

Multi-stage analysis of web applications

5

The formalization

I now describe how to formally represent the behavior of a vulnerable web
application and how the Dolev-Yao (DY) attacker model can successfully ex-
ploit vulnerabilities of web applications. In my formalization, I use ASLan++,
the formal specification language of the AVANTSSAR platform [6] and the
SPaCIoS Tool [84], but in fact the approach that I propose is general and,
mutatis mutandis, it could be quite straightforwardly used with other specifi-
cation languages and/or other reasoners implementing the DY attacker model.

Before providing the details of the formalization, I highlight an important
point about this work: WAFEx does not search for payloads that can be used
to exploit vulnerabilities, but rather it analyzes the security of web applica-
tions by exploiting multiple vulnerabilities that lead attackers to violate a
security property of a web application. This approach can successfully exploit
and combine vulnerabilities related to:

• SQL injection,
• File-system access,
• Cross-Site Scripting and
• Cross-Site Request Forgery,

but, again, the approach that I propose is general enough and it can be, fairly
easily, extended to cover more classes of vulnerabilities. My formalization
represents five main entities:

(i) the web attacker, which interacts with the web application and the honest
client,

(ii) the file-system, which interacts with the web application and the database
for reading and writing content,

(iii) the database, which interacts with the web application and the file-
system, providing a means to query a database,

(iv) the web application, which defines the interaction with the web attacker,
the file-system, the database and the honest client,

84 5 The formalization

(v) honest client, which interacts with the web application and the web
attacker,

The entities web attacker, file-system, database and honest client can be
reused in every formalization of a web application, whereas the entity web
application should be specified according to the web application under anal-
ysis. In the following, I first define the data types and the communication
model adopted in the formalization, and then I describe the main entities of
the formalization.

5.1 Data types

As already mentioned in § 3.1.2.2, ASLan++ data types can have sub-types.
This is particularly useful to keep the analysis simple and efficient. I now define
the sub-types used in the formalization. Recall that in ASLan++ sub-types
are represented as a relation subtype < messagemeaning that any value of type
subtype can be used in a context where a value of type message is required,
but a value of type message cannot be used in the context where a value of
type subtype is required. Listing 5.1 defines the sub-types cookie (representing
cookies), param (representing HTTP parameters), inode (representing a file in
the file-system) and nonce (representing a fresh value) to be subtypes of text,
and page (representing a web page) to be sub-type of inode.

Listing 5.1: ASLan++ code of the sub-types used in my formalization
1 types
2 cookie < text;
3 param < text;
4 inode < text;
5 nonce < text;
6 page < inode;

5.2 The communication model

Messages are the basic communication units used in my formalization and are
defined as follows:

Definition 5.1. Messages consist of variables V , constants c, concatenation
M.M , function application f(M) of uninterpreted function symbols f to mes-
sagesM , and encryption {M}M of messages with public, private or symmetric
keys that are themselves messages.1 M1 is a submessage of M2 as is standard
(e.g., M1 is a submessage of M1.M3, of f(M1) and of {M1}M4

) and, abusing
notation, I then write M1 ∈M2.
1 I need not distinguish between different kinds of encrypted messages, but it could
be possible to do it by following standard practice.

5.2 The communication model 85

Honest client Web Application File-System Database

Authentic and
confidential

Server

Fig. 5.1: The communication model between the honest client, the web appli-
cation, the file-system and the database

�

As illustrated in (Figure 5.1), for the communication model of my formal-
ization, I assume:

1. that the honest client and the web application communicate over an au-
thentic and confidential channel, and

2. that the web application, the file-system and the database are on the same
physical machine i.e., no attacker can read or modify the communication
between them.

These assumptions derive from the fact that I am not interested in finding
attacks against the communication between honest client and web application
but rather to exploit vulnerabilities of the web application — this is not a
limitation as the formalization could be quite straightforwardly extended to
include attacks to the communication channel. Furthermore, the file-system
and the database entities are not real network nodes and thus no attacker can
put himself between the communication, i.e., man-in-the-middle attacks are
not possible.

In order to express this assumption in ASLan++, I formalize the commu-
nication between the honest client and web application by using a confidential
and authentic channel, represented in ASLan++ by means of the *->* nota-
tion. Moreover, it is needed to ensure a correct pairing between requests and
responses. This is done by including a fresh nonce in every request.

The ASLan++ code that formalizes this communication model is given
in Listing 5.2, where two entities are involved in the communication: a client
(line 1) and a server (line 12).

Listing 5.2: ASLan++ code implementing a communication model enforcing
authenticity, confidentiality and freshness

1 entity Client (Actor , S : agent) {
2 symbols
3 Nonce : text;
4 payload , Response : message;
5 body{
6 Nonce := fresh ();
7 Actor *->* S : payload.Nonce;
8 S *->* Actor : ?Response.Nonce;
9 }

86 5 The formalization

10 }
11

12 entity Server (Actor , C : agent) {
13 symbols
14 NonceC : text;
15 response , PayloadC: message;
16 body{
17 while(true){
18 select{on(S *->* Actor : ?PayloadC .? NonceC):{
19 Actor *->* S : Response.NonceC;
20 }}
21 }
22 }
23 }

The client defines a variable Nonce to use as nonce (line 3), a constant
payload to use as message to send to the server (line 4) and a variable Response
used to store the response from the server (line 4). The body of the client
starts by initializing the variable Nonce to a fresh value (line 6). The client
sends a message to the server by concatenating the constant payload and Nonce
(line 7), and then expects to receive a response from the server containing the
value for the variable Response and the same nonce sent to the server in the
previous request (line 8).

The server defines a variable NonceC used to store the nonce received from
the client (line 14), a constant response representing the response the server
sends to the client and a variable PayloadC used for receiving the payload sent
from the client (line 15). The server is a network node that actively listens
for incoming connections, thus its body is enclosed in an endless while loop
(line 17). In case it receives a message from the client (line 18), it stores the
value of the received message in PayloadC and the value of the nonce in NonceC.
Finally, the server responds to the client with the constant response and the
nonce sent from the client (line 19).

The communication between web application, file-system and database
does not involve the exchange of any message (as I assumed they are on the
same physical machine). The communication between these entities is thus
represented by means of facts and facts retraction. Every operation that can
be performed on either the database or the file-system is associated to a fact.
The web application uses a fact associated to an action (e.g., perform a query,
read a file) and, once the operation is completed, the entity entitled to execute
that operation (the database or the file-system) uses fact retraction to remove
the fact and restore execution to the web application.

Listing 5.3: ASLan++ code implementing the communication model used
between web application, database and file-system

1 entity Env{
2 symbols
3 nonpublic query(message set , message) : fact;

5.2 The communication model 87

4 Result : message;
5

6 entity Server {
7 symbols
8 sql : message;
9 table : message set;

10 body{
11 query(table , sql);
12 select{on(! query(table , sql)):{
13 % handle variable Result here
14 }}
15 }
16 }
17

18 entity Database {
19 symbols
20 Sql: message;
21 Table : message set;
22 body{
23 while(true){
24 select{on(query(?Table , ?Sql)):{
25 Result := <...>;
26 retract query(Table , Sql);
27 }}
28 }
29 }
30 }
31 ...
32 }

Listing 5.3 shows an example of such a communication model. Within
the Env entity I define a nonpublic fact query(message set, message) used
to represent the execution of a query, and a variable Result that is shared
between all the subentities of Env: Server and Database. The shared variable
is used to store the result of executing the query (lines 3 and 4). The entity
Server (line 6) defines symbols needed to execute the query: the query itself
(line 8) and the table over which the query should be executed (line 9). The
fact query(table, sql) is then used for executing a query (line 11). The server
then waits for the fact to be retracted (line 12), meaning that the query has
been executed. Finally, the server finds the result of executing the query in
the shared variable Result (line 13).

In the database (line 18), variables are defined to represent the table
(line 20) and the query (line 21). The database then actively waits to pro-
cess new queries within and endless while loop (line 23) and when a query
fact is valid (line 24) the value of the shared variable Result is initialized
accordingly to the behavior of the query being executed (line 25). Finally,
the fact representing the query is retracted (line 26) so that the entity that
requested the execution of the query can continue its execution.

88 5 The formalization

5.3 The Web Attacker

The web attacker that I propose can be reused in every specification and is
based on the canonical model by Dolev and Yao [27], which defines an attacker
that has total control over the network but cannot break cryptography: he can
intercept messages and decrypt them if he holds the corresponding keys for
decryption, and he can generate new messages from his knowledge and send
messages under any agent name. Message generation and analysis are formal-
ized by derivation rules, expressing how the attacker can derive messages from
his knowledge. The web attacker I propose originates from two fundamental
aspects of my work: (1) as stated, I am not interested in generating the pay-
loads that will exploit vulnerabilities, but rather I want to represent that a
vulnerability can be exploited and what happens when it is exploited, and (2)
the models should be as simple as possible so as to avoid state-space explosion
when carrying out the analysis with the model checker.

With these two aspects in mind, suppose that an attacker wants to search
for a possible SQLi attack in a login form possibly leading him to have unau-
thorized access to the web application. As described in § 2.1, the attacker
injects a statement that changes the truth value of a WHERE clause in a SQL
SELECT query, creating a tautology. Similarly, suppose the attacker is trying to
look for a file inclusion vulnerability possibly leading him to access resources
stored outside the root folder of the web application (Directory Traversal vul-
nerability). As described in § 2.2, the attacker tries to access resources by
injecting an appropriate payload that forces the web application to read files
outside of the root directory of the web application. Generally, whenever the
attacker wants to exploit one of the vulnerabilities described in Chapter 2, it
has to inject an appropriate malicious payload that forces the web application
into behaving in a way different.

In WAFEx I do not explicitly represent payloads since finding the right
payload is not in the scope of this work; I thus introduce a constant malicious
that represents any and all malicious inputs the attacker could use for exploit-
ing one of the vulnerabilities described in Chapter 2. In the case of a SQLi
attack, the constant malicious represents the attempt to create a Boolean
tautology such as ’ or ’1’=’1, whereas in the case of a file inclusion vulner-
ability it represents the attempt to access a file outside of the root directory
of the web application such as ../../etc/passwd. To represent an attacker’s
attempt to exploit a vulnerability, I define the following Horn clause

hc_evil(M) : attack(M) :- M=malicious .?;

that states that the predicate attack(M) holds for a message M whenever
it is of the form malicious.?, i.e., a message M that is a concatenation of any
message (represented by ?) and the constant malicious that represents a pay-
load to exploit web applications vulnerabilities. More specifically, this states
that the attacker has injected a malicious payload malicious into the param-
eter (expressed as a variable) M. In case of a SQLi attack for authentication

5.4 The File-system 89

bypass, one can think of malicious as the ’ or ’1’=’1 payload that creates
a tautology allowing unauthorized access to the web application.

My approach allows the DY attacker to exploit the following attacks:

• SQLi for extracting the content of the database,
• SQLi for creating a tautology,
• SQLi for reading from the file-system,
• SQLi for writing to the file-system,
• SQLi for inserting new content into the database,
• file inclusion for reading arbitrary content from the file-system,
• remote code execution by uploading an arbitrary malicious file,
• XSS (stored and reflected) for redirecting a user,
• XSS (stored and reflected) for stealing the user’s knowledge,
• CSRF for forcing the user into performing a request chosen by the at-

tacker.

To be able to represent these attacks, the entities file-system, database
and honest formalize their behavior based on the validity of the Horn clause
attack which means they define how they should respond in case they receive
a message containing malicious. By doing so, the DY attacker can exploit one
of the vulnerabilities previously described by simply generating a message
that contains malicious.

5.4 The File-system

I now give the formalization of the file-system entity that can be used in any
specification when searching for attacks related to file-system vulnerabilities
of web applications. The file-system is always actively listening for incoming
requests from the web application and database. As already stated, I assume
the file-system to be on the same physical machine of the web application
(Figure 5.1), thus no attacker can put himself between the communication
(i.e., man-in-the-middle attacks are not possible).

My formalization aims to abstract as many concrete details as possible,
while still being able to represent the exploitation of file-system vulnerabil-
ities, and so I do not represent the entire file-system structure but rather
formalize messages sent and received along with reading and writing behav-
ior. This allows to give a compact formalization so as to avoid state-space
explosion problems when carrying out the analysis with the model checker.
The ASLan++ code representing the file-system entity is given in Listing 5.4.

Listing 5.4: ASLan++ code representing the behavior of the file-system entity
1 nonpublic fs : message set;
2 nonpublic file(message) : message;
3 nonpublic readFile(message) : fact;
4 nonpublic writeFile(message) : fact;

90 5 The formalization

5 ...
6 entity Filesystem {
7 symbols
8 Path , Val : inode;
9 body{

10 while(true){
11 select{
12 % file -system read
13 on(readFile (?Path)):{
14 select{on(fs ->contains(file(Path))):{
15 Result := file(Path);
16 retract readFile(Path);
17 }}}
18 % file -system write
19 on(writeFile (?Path)):{
20 fs->add(file(Path));
21 retract writeFile(Path);
22 }
23 % file -system malicious read
24 on(readFile (?Path)):{
25 select{on(attack(Path)):{
26 select{on(fs ->contains(file(?Path))):{
27 Result := Path;
28 retract readFile(Path);
29 }}}}}
30 }
31 }
32 }
33 }

5.4.1 File-system content

To exploit vulnerabilities related to reading and writing operations, I represent
the files available in the file-system. The existence of a file is represented
by means of a set of messages fs (line 1) and the uninterpreted function
file (line 2), i.e., given a variable Filepath of type message, file(Filepath)
represents a file in the file-system and fs->contains(file(Filepath)) is used
to verify whether or not the file file(Filepath) is stored in the file-system.

5.4.2 File-system operations

The file-system entity reacts to reading and writing operations, for which I
define the facts readFile(message) (line 3) and writeFile(message) (line 4),
both taking a generic variable of type message that represents a file location
in the file-system.

5.4 The File-system 91

5.4.3 Reading and writing behavior

The file-system entity formalizes a generic file-system so that this entity can be
reused in every scenario where a web application interacts with a file-system.
Before detailing the formalization of reading and writing behaviors, I recall
that the goal of my approach is to test the security of a web application and
thus access control policies/models for the file-system are not considered as
they are external to the web application. Hence, I assume that every file that
is in the file-system can always be read and that every writing operation will
always succeed.

To define reading and writing behavior, the file-system entity defines,
within the symbols definition (line 7), two variables Path and Val of type inode
that are used to identify two different files (line 8). The file-system entity is
represented as an entity always ready to execute new operations (line 10).
More specifically, I define the file-system with three select-on branches rep-
resenting the behaviors of: a reading operation (line 13), a writing operation
(line 19) and a malicious reading operation (line 24).2

Whenever the fact readFile(Path) holds (line 13), the file-system entity
checks, by means of the fs set, whether the file exists in the file-system
(line 14): if so, the file-system stores file(Path) in the variable (shared with
the web application) Result (line 15) and retracts the fact readFile(Path) to
notify that the reading operation has been performed (line 16).

Whenever the fact writeFile(Path) holds (line 19), the file-system entity
adds the existence of the file Path to the set fs, i.e., fs->add(file(Path))
(line 20). As result of a writing request, the file-system entity need not re-
turn a result as I do not consider access control policies and thus I assume
that a writing operation will always succeed. The file-system retracts the fact
writeFile(Path) (line 21) to notify that the writing operation has been per-
formed.

Finally, the file-system entity specifies what happens in the case of a ma-
licious attempt from the attacker to access the file-system for a reading oper-
ation (line 24). In this case, whenever both the fact readFile(Path) and the
Horn clause attack(Path) hold, the attacker has the ability to access an arbi-
trary file stored in the file-system. To represent this behavior, the file-system
makes use of the non-deterministic nature of the select-on statement3 in or-
der to retrieve an arbitrary file from the file-system (line 26) and stores it
into the shared variable Result (line 27). Finally, the file-system retracts the
fact readFile(Path) in order to notify that the reading operation has been
performed (line 28). During the analysis, the model checker will determine
the appropriate file that should be retrieved in order to violate the security
property defined on the model.
2 I need not define a malicious writing operation since I assumed a writing operation
to always succeed due to not considering access control policies.

3 See § 3.1.2.2 for further details on the non-deterministic nature of the select-on
statement in ASLan++.

92 5 The formalization

5.5 The Database

I now give the formalization of the database entity that can be used in
any specification when searching for SQLi attacks in web applications. The
database, just like the file-system, is always actively listening for connections.
I assume the communication between the database and the web application
and between the database and the file-system to be secure since the database
actually is not a real network node, and thus no network attacker can put
himself between the communication with the database, i.e., man-in-the-middle
attacks are not possible.

I propose a formalization that can be used in any specification and that is
both compact, to avoid state-space explosion problems, and general enough not
to be tailored to a given technology (e.g., MySQL or PostgreSQL). Hence, I do
not represent the entire database structure, the SQL syntax nor access policies
specified by the database. Rather, I formalize messages sent and received,
the tables of the database and queries. The ASLan++ code representing the
database behavior is given in Listing 5.5.

Listing 5.5: ASLan++ code representing the behavior of the Database entity
1 nonpublic query(message set , message) : fact;
2 nonpublic inset(message set , message) : fact;
3 nonpublic delete(message set , message) : fact;
4 nonpublic update(messageset , message , message) : fact;
5 nonpublic query_read(message) : fact;
6 nonpublic query_write(message) : fact;
7 ...
8 entity Database {
9 symbols

10 Table : message set;
11 Tuple , Sql , Oldtuple : message;
12 File : fnode;
13

14 body{
15 while(true){
16 select{
17 % query behavior
18 on(query (?Table , ?Tuple)):{
19 select{
20 on(! attack(Tuple) & (Table ->contains(Tuple)):{
21 Result := Tuple;
22 }
23 on(attack(Tuple) & Table ->contains (?Sql)):{
24 Result := Sql;
25 }
26 on(attack(Tuple) & fs->contains(file(?File))):{
27 Result := file(File);
28 }

5.5 The Database 93

29 on(attack(Tuple) & Tuple = malicious .?File .?):{
30 fs->add(file(File));
31 Result := file(File);
32 }
33 on(attack(Tuple)):{
34 Table ->add(Tuple);
35 Result := Tuple;
36 }
37 on(attack(Tuple)):{
38 Result := db;
39 }
40 }
41 retract query(Table , Tuple);
42 }
43 % query insert
44 on(insert (?Table , ?Tuple)):{
45 select{
46 on(true):{
47 Table ->add(Tuple);
48 Result := Tuple;
49 }
50 on(attack(Tuple) & Table ->contains (?Sql)):{
51 Result := Sql;
52 }
53 on(attack(Tuple) & fs->contains(file(?File))):{
54 Result := file(File);
55 }
56 on(attack(Tuple) & Tuple = malicious .?File .?):{
57 fs->add(file(File));
58 }
59 on(attack(Tuple)):{
60 Table ->add(Tuple);
61 }
62 on(attack(Tuple)):{
63 Result := db;
64 }
65 }
66 retract insert(Table , Tuple);
67 }
68 % query delete
69 on(delete (?Table , ?Tuple)):{
70 select{
71 on(true):{
72 Table ->remove(Tuple)
73 Result := Tuple;
74 }
75 on(attack(Tuple) & Table ->contains (?Sql)):{
76 Result := Sql;
77 }

94 5 The formalization

78 on(attack(Tuple) & fs->contains(file(?File))):{
79 Result := file(File);
80 }
81 on(attack(Tuple) & Tuple = malicious .?File .?):{
82 fs->add(file(File));
83 }
84 on(attack(Tuple)):{
85 Table ->add(Tuple);
86 }
87 on(attack(Tuple)):{
88 Result := db;
89 }
90 }
91 retract update(Table , Key , Tuple);
92 }
93 % query update
94 on(update (?Table , ?Oldtuple , ?Tuple)):{
95 select{
96 on(true):{
97 Table ->remove(Oldtuple)
98 Table ->add(Tuple);
99 Result := Tuple;

100 }
101 on(attack(Tuple) & Table ->contains (?Sql)):{
102 Result := Sql;
103 }
104 on(attack(Tuple) & fs->contains(file(?File))):{
105 Result := file(File);
106 }
107 on(attack(Tuple) & Tuple = malicious .?File .?):{
108 fs->add(file(File));
109 Result := file(File);
110 }
111 on(attack(Tuple)):{
112 Table ->add(Tuple);
113 Result := Tuple;
114 }
115 on(attack(Tuple)):{
116 Result := db;
117 }
118 }
119 retract update(Table , Oldtuple , Tuple);
120 }
121 % query read file
122 on(query_read (? Tuple)):{
123 select{
124 on(fs->contains(file(Tuple))):{
125 Result := file(Tuple);
126 }

5.5 The Database 95

127 on(attack(Tuple) & Table ->contains (?Sql)):{
128 Result := Sql;
129 }
130 on(attack(Tuple) & fs->contains(file(?File))):{
131 Result := file(File);
132 retract query(Table , Tuple);
133 }
134 on(attack(Tuple) & Tuple = malicious .?File .?):{
135 fs->add(file(File));
136 Result := file(File);
137 }
138 on(attack(Tuple)):{
139 Table ->add(Tuple);
140 Reulst := Tuple;
141 }
142 on(attack(Tuple)):{
143 Result := db;
144 }
145 }
146 retract query(Table , Tuple);
147 }
148 % query write file
149 on(query_write (? Tuple)):{
150 select{
151 on(true):{
152 fs->add(file(Tuple));
153 Result := file(Tuple);
154 }
155 on(attack(Tuple) & Table ->contains (?Sql)):{
156 Result := Sql;
157 }
158 on(attack(Tuple) & fs->contains(file(?File))):{
159 Result := file(File);
160 }
161 on(attack(Tuple) & Tuple = malicious .?File .?):{
162 fs->add(file(File));
163 Tuple := file(File);
164 }
165 on(attack(Tuple)):{
166 Table ->add(Tuple);
167 Result := Tuple;
168 }
169 on(attack(Tuple)):{
170 Result := db;
171 }
172 }
173 retract query_write(Tuple);
174 }
175 }

96 5 The formalization

users

username name surnamepassword phone avatar

Fig. 5.2: Example of an entity-relationship model composed of one table and
six attributes

176 }
177 }
178 }

5.5.1 Database content

As already stated, I want to avoid state-space explosion problems while being
able to deal with the vulnerabilities described in §2.1. To do so, the database is
defined as a set of sets, represented by the constant db, which contains one set
for each table of the real database. The content of a table is then represented
by one or more tuple defined as a concatenation of messages.

As an example, consider the simple entity-relationship model shown in Fig-
ure 5.2 where there is a table users containing six attributes: username,
password, name, surname, phone, avatar. The corresponding ASLan++ code
that represents such database is given in Listing 5.6 where: the database is
defined as a set of messages db (line 1), the table users is also defined as a
set of messages users (line 2) and the information for the user bob is defined
with constants (line 3). The table users is initialized by including a tuple
with the information for the user bob (line 3) and the database is initialized
by including all the tables composing the database which, in this case, is only
one (line 6).

Listing 5.6: ASLan++ code representing the definition of the database for the
example in Figure 5.2

1 nonpublic db : message set;
2 nonpublic users : message set;
3 nonpublic bob , bobpasswd , bobname , bobsurname , bobphone

, bobavatar : text;
4 ...
5 users ->add((bob , bobpasswd , bobname , bobsurname ,

bobphone , bobavatar));
6 db ->add(users);

5.5 The Database 97

Database operations

Since I do not consider the SQL syntax, I explicitly define the type of queries
supported by the formalization of the database, for which I use the following
facts:

• query(Table, Tuple) (line 1): verifies that Tuple is in Table,
• insert(Table, Tuple) (line 2): inserts Tuple inside Table,
• delete(Table, Tuple) (line 3): deletes Tuple from Table,
• update(Table, Oldtuple, Newtuple) (line 4): deletes Oldtuple from Table

and inserts Newtuple in Table,
• query_read(File) (line 5): interacts with the file-system to read File,
• query_write(File) (line 6): interacts with the file-system to write File.

5.5.2 The behavior of queries

The database entity formalizes a generic database so that this entity can be
reused in every scenario where a web application interacts with a database.
To formalize the behavior of queries, the database entity defines, within the
symbols definition (line 10), variables for: a table (line 10), tuples (line 11)
and a file (line 12). I represent the database entity to be always ready to
execute new queries (line 15). More specifically, I define the database entity
with six select-on branches representing the six types of queries supported
by my formalization. For each of the six queries, six possible behaviors are
formalized: one for the intended behavior (i.e., the Horn clause attack() does
not hold) and five malicious behaviors (i.e., the Horn clause attack() holds).
As described in §2.1, a SQLi attack can modify a query to make it behave in a
totally different way. I represent this possibility by formalizing in the database
entity that whenever any of the previously defined queries and the Horn clause
attack() hold, a different behavior can be executed. Specifically, attacker is
allowed to alter any query and make it behave as one of the following actions
(injections):

• SQLi for extracting the content of the database,
• SQLi for creating a tautology,
• SQLi for reading from the file-system,
• SQLi for writing to the file-system,
• SQLi for inserting new content into the database.

When a query needs to be executed (line 18), the database verifies if
Tuple is present in Table (line 20). If that is the case, the database stores
in the shared variable Result the value of Tuple. In the case the Horn clause
does hold, five additional behaviors could be performed. I rely on the non-
deterministic behavior of the select-on statement to let the model checker
decide the behavior to perform. The five additional select-on define the ex-
ploitation of one of the five SQLis supported by my formalization. A SQLi

98 5 The formalization

for creating a tautology forces the database to non-deterministically select a
tuple Sql contained in Table (line 23) and to store it in the shared variable
Result (line 24). A SQLi for reading the file-system forces the database to
non-deterministically select a file contained in the file-system (line 26) and
to store it in the shared variable Result (line 27). A SQLi for writing to the
file-system forces the database to retrieve the file File specified in the tuple
Tuple (line 29) and to add it in the file-system (line 30). The newly created
file is then stored in the shared variable Result (line 31). A SQLi for in-
serting a new tuple (line 33) forces the database to include the value Tuple
into Table (line 34). The newly inserted tuple is then stored in the shared
variable Result (line 35). A SQLi for extracting the entire database (line 37)
forces the database to store the constant db representing the entire database
in the shared variable Result (line 38). Finally, the database retracts the fact
query(Table, Tuple) to notify that the query has been executed (line 41).

When an insert query needs to be executed (line 44), the database can
perform a legitimate insert query (line 46) or one of the malicious behaviors
previously described (lines 50-62). In case of a legitimate insert query, the
database inserts the value Tuple into Table (line 47) and stores the newly
inserted tuple in the shared variable Result (line 48). Finally, the database
retracts the fact insert(Table, Tuple) to notify that the query has been ex-
ecuted (line 66).

When a delete query needs to be executed (line 69), the database can
perform a legitimate delete (line 71) or one of the malicious behaviors previ-
ously described (lines 75-87). In case of a legitimate delete query, the database
deletes Tuple from Table (line 72) and stores the value of the deleted tuple
in the shared variable Result (line 73). Finally, the database retracts the fact
delete(Table, Tuple) to notify that the query has been executed (line 91).

When an update query needs to be executed (line 94), the database can
perform a legitimate delete (line 96) or one of the malicious behaviors de-
scribed previously (lines 101-115). In case of a legitimate update query, the
database deletes the old tuple Oldtuple from Table (line 97) and inserts Tuple
instead (line 98). The database then stores the value of the newly inserted
tuple in the shared variable Result (line 98). Finally, the database retracts
the fact update(Table, Oldtuple, Tuple) to notify that the query has been
executed (line 119).

When a query for reading from the file-system needs to be executed
(line 122), the database can perform a legitimate query for reading from the
file-system (line 124) or one of the malicious behaviors previously described
(lines 127-142). In case of a legitimate query for reading from the file-system,
the database treats the value Tuple as a file and thus verifies whether file(
Tuple) is contained in the file-system (line 124). If that is the case, the database
stores the value file(Tuple) in the shared variable Result (line 125). Finally,
the database retracts the fact query_read(Tuple) to notify that the query has
been executed (line 146).

5.6 The Web Application 99

When a query for writing to the file-system needs to be executed (line 149),
the database can perform a legitimate query for writing to the file-system
(line 151) or one of the malicious behaviors previously described (lines 155-
169). In case of a legitimate query for writing to the file-system, the database
treats the value Tuple as a file and thus adds file(Tuple) to the file-system
(line 152). The database then stores the value file(Tuple) in the shared vari-
able Result (line 152). Finally, the database retracts the fact query_write(
Tuple) to notify that the query has been executed (line 173).

5.6 The Web Application

The web application is a node of the network that can send and receive mes-
sages. In my formalization, the web application can communicate with the
honest client by means of the HTTP protocol and with the file-system and
database. The file-system and the database entities do not depend on a spe-
cific scenario and thus they can be reused in every model. The web application
entity, on the other hand, does depend on the scenario being modeled and thus
it is not possible to provide a single entity that can be reused in every model.
However, I provide the skeleton of a specification and a series of guidelines
on how to represent the web application’s behavior for testing the interaction
with the client, the file-system and the database.

5.6.1 The HTTP protocol

The Hypertext Transfer protocol (HTTP) is the base communication protocol
for interacting with a web application. By its own nature, HTTP is a stateless
protocol, which means that each pair request-response is considered as an
independent transaction that is not related to any previous request-response.
In order to represent this characteristic, I follow the same approach I adopted
for the file-system and the database entities, and use select-on statements to
define that a web application can answer different requests without following
a specific sequence of messages.

5.6.2 Client communication

An HTTP request (and response) header comprises different fields that are
needed for the message to be processed by the server and the browser. In my
formalization, I do not need to represent all the information of a real request
(or response) header as they are not relevant for the analysis. I introduce two
uninterpreted functions http_request() and http_response() representing, as
the names suggest, an HTTP request and an HTTP response respectively. For
an HTTP request I represent:

• a variable for the sender,

100 5 The formalization

• a variable for the receiver,
• a constant for the requested page,
• a concatenation of variables for the parameters, and
• a concatenation of variables for the cookies.

For example, consider the HTTP request in Listing 5.7 where the high-
lighted texts identify the information represented in the formalization.

Listing 5.7: HTTP request sample
GET /index.php?page=menu.php HTTP /1.1
Host: 127.0.0.1
User -Agent: Mozilla /5.0
Accept: text/html ,application/xhtml+xml ,application/xml

;q=0.9 ,*/*;q=0.8
Accept -Language: en -US ,en;q=0.5
Accept -Encoding: gzip , deflate
Referer: http ://127.0.0.1/ index.php
Cookie: PHPSESSID=1234567891011
Connection: close
Upgrade -Insecure -Requests: 1
Cache -Control: max -age=0

The corresponding ASLan++ formalization would be Client *->* WebApp
: http_request(index, Page, Phpsessid}, where index is a constant repre-
senting the requested web page, Page is a variable representing an HTTP
query value and Phpsessid is a variable representing the cookie value.

For an HTTP response, I represent:

• a variable for the sender,
• a variable for the receiver,
• a constant for the response page,
• a concatenation of constants, variables and uninterpreted functions for the

response body, and
• a concatenation of variables for the cookies.

For example, consider the HTTP response to the previous HTTP requested
reported in Listing 5.8.

Listing 5.8: HTTP response sample
HTTP /1.1 200 OK
Date: Fri , 13 Oct 2017 08:08:12 GMT
Server: Apache /2.4.25 (Unix) PHP /5.6.30
X-Powered -By: PHP /5.6.30
Pragma: no -cache
Connection: close
Content -Type: text/html; charset=utf -8
Content -Length: 15348

<!– http code of menu.php –>

5.6 The Web Application 101

The corresponding ASLan++ formalization would be WebApp *->* Client
: http_response(index, file(menu), none) where index is a constant repre-
senting the name of the responding page (which in this case is the same as the
requesting page), file(menu) is returned to express that a file was retrieved
from the file-system and none is a constant representing no cookie is returned
to the client.

5.6.3 File-system and database communication.

As already stated in § 5.4, whenever the web application has to read content
from the file-system, it uses the predicate readFile(), and whenever it has to
write to the file-system, it uses the predicate writeFile(). When a readFile()
or a writeFile() predicate is used, the web application has to wait for the
file-system to retract the appropriate predicate meaning that the operation
has been processed and the web application can continue its execution. The
result of executing the reading or writing operation is stored in the shared
variable Result.

Similarly, when the web application has to perform a SQL query on the
database, it uses one of the six predicates representing a database query sup-
ported by my formalization (see §5.5). The web application waits to be notified
that the query has been executed by waiting for the appropriate predicate to
be retracted. Once the predicate is retracted, the result of executing the query
is stored in the shared variable Result. For example, consider a web applica-
tion performing a query query(Table, Tuple) asking the database whether
Tuple is contained in Table. if Tuple is contained in Table, the database stored
the value Tuple in Result to acknowledge that the value is indeed contained in
Table. Whenever the web application performs a query the answer provided
by the database has to always been forwarded back to the client.

5.6.4 Sessions

As already mentioned, HTTP is a stateless protocol. In order for the user to
experience a stateful interaction with a web application (i.e., the web appli-
cation recognizes when a user is logged in when he changes page), developers
make use of HTTP cookies to create sessions (see § 2.3). A session allows a
web application to store information into a memory area so to have it acces-
sible across multiple web pages. When a request is made to a web page that
creates a session, the web page allocates a memory area and assigns to that
area a session identifier. The same session identifier is sent back to the client
as an HTTP cookie value. When an HTTP cookie is received, a web browser
automatically sends it back to the web application when a new request is
made. The web application receives the session identifier and uses it to re-
trieve the information stored within the associated memory area. In order to
represent sessions, I introduce a set called sessions that contains tuples of the

102 5 The formalization

form (sessionVal, (key, value)), where sessionVal identifies a session and
(key, val) maps key to val.

Consider the example shown in Listing 5.9 where a session value Phpsessid
is initialized to a fresh value (lines 1). The set sessions is then populated with
a new tuple associating the variable Phpsessid with the tuple (usersession,
User) (line 2). The value Phpsessid is sent back to the client whenever a new
session is initialized and whenever a page requires a session, the client has to
send a session value that will be checked by the web application and used to
retrieve the necessary information.

Listing 5.9: ASLan++ code representing the initialization of a session
1 Phpsessid := fresh();
2 sessions ->add(Phpsessid , (usersession , User));

5.6.5 Remote code execution

The formalization I propose can represent scenarios where the attacker is
able to write arbitrary files to the file-system, which might lead to arbitrary
remote code execution. As described above, the model of a web application is
represented as a sequence of select-on statements defining the requests the
web application responds to. The possibility of uploading a file that leads to
remote code execution can be seen as a way of creating new requests the web
application can now respond to. In order to model this possibility, I include
into the skeleton model of the web application a series of predefined select-on
statements representing the behavior of common malicious server side code an
attacker might try to upload. I define that these malicious select-on can be
used by the attacker only if the file exists in the file-system (i.e., fs->contains
(Filepath) is valid for that file). This will ensure that the attacker finds a way
of writing the malicious file before actually using it.

An example representing this behavior is shown in Listing 5.10. A select
-on statement defines the possibility to handle an HTTP request for the
page evil_file which can be handled only if fs->contains(evil_file) holds
(line 2).

Listing 5.10: ASLan++ code representing a remote code execution example
1 select{
2 on(Entity*->*Actor: http_request(evil_file , none ,

none).? WebNonce & fs->contains(evil_file)):{
3 % behavior here
4 }}

5.7 The honest client

My formalization can address attacks involving the interaction of the DY
attacker with an honest client. More specifically, as stated in § 5.3, I propose

5.7 The honest client 103

a representation of XSS attacks (stored and reflected) and CSRF attacks that
require the attacker to interact with an honest client. In the following, I define
the representation of an honest client.

The honest client represents the functionalities provided by a web browser.
The basic functionality any web browser should be able to perform is to send
HTTP requests and handle HTTP responses. Browsers also have an inter-
nal memory area where they store private information (e.g., session cookies).
Thus, the honest client has to implement a private knowledge representing the
new information learned during the interaction with the web application. To
represent that, the entity of the honest client defines a private set called hknows
that represents the knowledge known by the honest client. The content of
hknows is increased whenever the honest client receives an HTTP response as a
result of the interaction with the web application (e.g., cookies values received
from the web application after a successful login). Furthermore, browsers pro-
vide a JavaScript engine that takes care of executing JavaScript code. As
described in § 2.3, JavaScript is often abused by attackers in order to force
clients into executing arbitrary client-side code that might compromise the
security of the client. I follow the same approach adopted for remote code
execution in web application (§ 5.6) and include in the honest client the ma-
licious actions that can be performed as a result of the executing client-side
JavaScript. More specifically, the attacker is allowed to steal the knowledge
of the honest client by forcing the honest client into sending the set hknows to
the attacker (i.e., XSS for session hijacking).

The ASLan++ code representing the behavior of the honest client is given
in Listing 5.11. Within the symbols definition, the honest client defines a
variable used to represent a page (line 3), a variable for representing HTTP
parameters (line 4), a variable for representing a cookie (line 5), a variable for
representing the body of a response (line 6) and a variable for representing a
fresh nonce (line 7). Like the other entities, the honest client is also actively
ready to communicate with the web application (line 10). The behavior of the
honest client is formalized by two select-on branches defining a general re-
quest allowing the honest client to interact with the web application (line 12),
and the possibility for the attacker to send a message to the honest client and
force the execution of an arbitrary request (line 24).

To perform a general request (line 12), the honest client initializes a fresh
nonce variable WebNonce to ensure a fresh communication (line 13), and it also
initializes three variables Page (line 14), Params (line 15) and Cookie (line 16)
to a value chosen non-deterministically. Finally, the honest client performs the
new request (line 17). When handling the response (line 18), the honest client
stores the value Cookie into the set hknows (line 19) and proceeds by processing
the value Body that might have been used to carry out an XSS attack. The
honest client verifies whether or not the Horn clause attach() holds for the
value Body of the HTTP response (line 21) and, if that is the case, the honest
client is forced into sending the set hknows to the attacker (line 21).

104 5 The formalization

Finally, the attacker can force the honest client into executing any arbi-
trary request (i.e., CSRF attack). The honest client receives a message from
the attacker with values for the page on which the request should be performed
(line 24). The honest client creates a nonce to ensure a fresh communication
(line 25) and non-deterministically decides the value for the variable Cookie
(line 26). An HTTP request is then performed (line 27) and the response is
handled the same way previously described (lines 28-31).

Listing 5.11: ASLan++ code representing the behavior of the honest client
1 entity Honest(Actor , Webapplication : agent){
2 symbols
3 Page : page;
4 Prams : message;
5 Cookie : cookie;
6 Body : message;
7 WebNonce : nonce;
8

9 body{
10 while(true){
11 select{
12 on(true):{
13 WebNonce := fresh ();
14 Page := ?;
15 Params := ?;
16 Cookie := ?;
17 Actor*->* Webapplication:http_request(Page , Params ,

Cookie).WebNonce;
18 Webapplication *->*Actor:http_response (?Page , ?Body

, ?Cookie).WebNonce;
19 hknows ->add(Cookie);
20 if(attack(Body)){
21 Actor *->* i : hknows;
22 }
23 }
24 on(i *->* Actor : ?Page.? Params):{

25 WebNonce := fresh ();
26 select{on(hknows ->contains (? Cookie)):{

27 Actor *->* Webapplication : http_request(Page ,
Params ,Cookie).WebNonce;

28 Webapplication *->*Actor:http_response (?Page , ?
Body , ?Cookie).WebNonce;

29 hknows ->add(Cookie);
30 if(attack(Body)){
31 Actor *->* i : hknows;
32 }
33 }}

5.9 Multi Stage case study 105

34 }
35 }
36 }
37 }
38 }

5.8 Security properties

The last component of the formalization of a web application, is the enumera-
tion of the security properties (or goals) that should be verified. As discussed
in Chapter 5, I am not interested in finding a vulnerability but rather to ex-
ploit them. In particular, I am interested in defining security properties related
to authentication bypass and confidentiality breach.

Authentication bypass represents the possibility for the attacker to access
some part of the web application that should be protected with some sort
of authorization mechanisms. Confidentiality represents the possibility for the
attacker to obtain information that is “leaked” from the web application. Such
“leakage” can happen from either the file-system, the database of the honest
client.

I use the LTL “globally” operator [], which defines that a formula has
to hold on the entire subsequent temporal path, and the iknows predicate in
the ASLan++ language, which represents the knowledge of the attacker. Au-
thentication goals can thus being represented by stating that the attacker will
never have access to some specific page, and confidentiality goals by stating
that the attacker will never increase his knowledge with parts coming from
the file-system, the database or the honest client. As an example consider the
goal in Listing 5.12 stating that the attacker will never know something of the
form file() (i.e. will never have access to content stored in the file-system).

Listing 5.12: Confidentiality goal for file inclusion
[](!(iknows(file (?))))

5.9 Multi Stage case study

I now show how my formalization can be used to create the model of a web
application called Multi-Stage4, which I specifically wrote to show how multi-
ple vulnerabilities can be combined together to generate complex attacks and
how WAFEx is able to discover multiple attack traces that violate the same
security property. Multi-Stage is depicted in Figure 5.3 as a series of MSC in
which there are four entities: honest client, web application, file-system and
4 Multi-Stage is freely available for testing at [53].

106 5 The formalization

database. Note that the pictures follow standard notational conventions: con-
stants begin with a lower case character (e.g., username), variables with an
upper case one (e.g., User).

I designed Multi-Stage to ensure that it is realistic and representative of
software that could indeed be deployed. Multi-Stage provides functionalities
that many modern web applications provide to their users; in particular, it
provides:

• a registration page that allows users to create an account on the web
application (Figure 5.3a);

• an HTTP login page via which users can log in the web application by
providing username and password (Figure 5.3b);

• a restricted page that allows logged in users to search for other users
(Figure 5.3c);

• a restricted page that allows logged in users to change their own personal
information (name, surname, phone number) and to upload an image to
use as avatar (Figure 5.3d).

I now describe in more detail the MSC for each functionality provided
by Multi-Stage. Figure 5.3a shows the registration process. The user sends a
message to the web application containing the constant register representing
the requested page and the variables Username and Password representing
the credentials for a new use to register to the web application (1). The web
application performs an insert request to the table tableUsers with the values
of Username and Password (2). Finally, the web application sends a response
back to the user containing the constant index representing the next page.

In Figure 5.3b is depicted the login process. The honest client sends a
message to the web application containing the constant index representing
the requested page and the variables Username and Password representing
the credentials used to log in the system (1). The web application performs
a query request to the database on the table tableUser in order to verify
that the provided credentials are valid (2). The database returns a response
QueryResponse to the web application (3). Finally, the web application sends
a response back to the honest client containing the constant index repre-
senting the next page, the response from the database QueryResponse and a
newly created variable Phpsessid representing the value of the session cookie.

In Figure 5.3c is depicted the MSC for search users in the web applica-
tion. The honest client sends a message to the web application containing the
constant search representing the requested page and the variables Userid
and Phpsessid representing, respectively, the honest client to search and the
value of the session cookie (1). The web application checks if Phpsessid is
a valid session value (2) and, if that is the case, it performs a query to the
database for search the user represented by Userid (3). The database answers
to the web application by sending the result of executing the query (4) and
the web application sends a response back to the honest client containing the
constant search identifying the current page, the value Userid representing

5.9 Multi Stage case study 107

the honest client requested and the value QueryResponse representing the
response of the search query.

In Figure 5.3d is depicted the possibility to edit perform information. The
honest client sends a message to the web application containing the con-
stant profile representing the requested page, the variables Name, Surname,
Phone, File_avatar representing, respectively, name, surname, phone num-
ber and an image file to use as avatar and the variable Phpsessid representing
the value of the session cookie (1). The web application checks if Pphpsessid
is a valid session value (2) and, if that is the case, it performs a query request
to the database for changing the values of name, surname, phone number and
avatar (3). The database answers to the web application with the variable
QueryResponse (4). The writes to the file-system the newly uploaded file for
the avatar (5). Finally, the web application sends a response back to the hon-
est client containing the page profile and the response from the database
QueryResponse.

5.9.1 The specification

The ASLan++ code representing the web application entity for the Multi-
Stage case study is given in Listing 5.13. The web application entity can
communicate with the honest client, the database and the file-system. The
web application defines symbols required for the formalization of Multi-Stage
in the symbols definition (lines 3-8) and actively listens for incoming con-
nections (line 11). It can answer to four different requests for: registering
new users (line 14), logging in users (line 22), searching users in the database
(line 36) and updating personal information (line 44). Additionally, the model
includes two malicious server-side requests that could be exploited by the at-
tacker (as described in § 5.6). The first malicious request allows the attacker
to access the entire database (line 57), whereas the second allows the attacker
to access the entire file-system (line 60). Clients can register new users to
the web application by means of the registration request, where they provide
values for User and Password (line 14). The web application then generates a
tuple Tuple filling the remaining fields with random values (line 15) and, by
means of the insert() predicate, performs an insert query on the database
(line 16). The web application then waits until the insert query has been exe-
cuted (line 17) and answers to the client by sending Result, representing the
result of executing the query (line 18).

The login request allows users of the web application to log in by providing
proper credentials User and Password (line 22). The web application creates a
tuple to query the database (line 23) and, by means of the query() predicate,
performs a query on the database (line 24). The web application then waits
for the query to be executed (line 25) and verifies that a proper user has been
retrieved as result (line 26). If that is the case, the execution proceeds, the
web application creates a new session and sends the session to the commu-
nicating entity along with the constant dashboard representing the next page

108 5 The formalization

and Result representing the result of the query (lines 27-29). If the result of
the query is not a proper user in the database, the web application does not
create a session and simply answers by sending Result, representing the result
of executing the query (line 31).

A search page allows users to search for other registered users. The search
functionality is accessible only by logged in users. web application. The web
application receives the variable Search that identifies the user to search for
and the variable Phpsessid that identifies a cookie value (line 36). The web
application verifies that the variable Phpsessid identifies a valid cookie value
and grants access to the page (line 36). If the user is granted permission
to access the search page, the web application creates a tuple to query the
database (line 37) and queries the database (line 38). The web application
waits for the database to process the query (line 39) and answers client by
providing the result of executing the query Result concatenated with the
variable containing the requested value Search (line 40). The last functionality
provided by the Multi-Stage web application is the possibility for a logged in
user to update their personal information. The web application receives a
request for the page profile along with the parameters Name, Surname, Phone,
Avatar and the cookie value Phpsessid (line 44). The web application then
verifies that Phpsessid is a valid cookie value and retrieves from the session
identified by Phpsessid the name of the logged in user that will be used in the
update query (line 44). The update does not allow one to change the password,
thus this value should be preserved. In order to do so, the web application
first creates a query for retrieving the tuple already stored in the database
(lines 45-46) and then creates a new tuple that will only update the values
for name, surname, phone number and avatar (line 47). The variable Var_1,
which is used to store the value of the password in the database, is reused
when creating the new tuple since the password cannot be changed. The web
application then performs the update query (line 48) and waits for the query
to be performed (line 49). Once the update has been performed, it is time to
upload the value of the avatar field representing the image of the user. The
web application performs a write operation on the file-system (line 50) and
waits of the operation to complete (line 51). Once the write is completed, the
web application answers to the update request by sending the variable Result,
representing the result of the update query (line 52).

Finally, the model of the Multi-Stage web application handles two addi-
tional requests representing the possibility for the attacker to access the entire
file-system (lines 60-61) or the entire database (lines 57-58), provided that he
managed to upload a malicious file represented by the constant evil_file.

Listing 5.13: ASlan++ code for the Multi-Stage case study
1 entity Webapplication(Actor , Honest : agent) {
2 symbols
3 Entity : agent;

5.9 Multi Stage case study 109

4 Var_1 , Search , User , Usertm , Password , Name , Surname ,
Phone : param;

5 Avatar: fnode;
6 Tuple , Oldtuple : message;
7 Phpsessid : cookie;
8 WebNonce : nonce;
9

10 body{
11 while(true){
12 select{
13 % registration
14 on(? Entity*->*Actor:http_request(register , ?User.?

Password , nonec).? WebNonce):{
15 Tuple := User.Password .?.?.?.?;
16 insert(users , Tuple);
17 select{ on(! insert(users , Tuple)):{
18 Actor*->*Entity:http_response(index , Result ,

nonec).WebNonce;
19 }}
20 }
21 % login
22 on(? Entity*->*Actor:http_request(index , ?User.?

Password , nonec).? WebNonce):{
23 Tuple := User , Password ,?,?,?,?;
24 query(users , Tuple);
25 select{ on(! query(users , Tuple)):{
26 if(Result = (?User ,?Password ,?Name ,?Surname ,?

Phone ,? Avatar)){
27 Phpsessid := fresh();
28 sessions ->add((Phpsessid , usersession , User));
29 Actor*->*Entity:http_response(dashboard , Result ,

Phpsessid).WebNonce;
30 }else{
31 Actor*->*Entity:http_response(index , Result ,

nonec).WebNonce;
32 }
33 }}
34 }
35 % search
36 on(? Entity*->*Actor:http_request(search , ?Search , ?

Phpsessid).? WebNonce & sessions ->contains ((?
Phpsessid , usersession , ?Usertm))):{

37 Tuple := Search .?.?.?.?.?;
38 query(users , Tuple);
39 select{ on(! query(users , Tuple)):{
40 Actor*->*Entity:http_response(search , Search.

Result , nonec).WebNonce;
41 }}
42 }

110 5 The formalization

43 % profile update
44 on(? Entity*->*Actor:http_request(profile , ?Name.?

Surname .?Phone.?Avatar , ?Phpsessid).? WebNonce &
sessions ->contains ((? Phpsessid , usersession , ?

User))):{
45 Var_1 := ?;
46 Oldtuple := (User ,Var_1 ,?,?,?,?);
47 Tuple := User.Var_1.Name.Surname.Phone.Avatar;
48 update(users , Tuple , Oldtuple);
49 select{ on(! update(users , Tuple , User.Var_1.Name.

Surname.Phone.Avatar)):{
50 writeFile(Avatar);
51 select{ on(! writeFile(Avatar)):{
52 Actor*->*Entity:http_response(dashboard ,

Result , nonec).WebNonce;
53 }}
54 }}
55 }
56

57 on(? Entity *->* Actor : http_request(evil_file ,
none , nonec) & fs->contains(file(evil_file))):{

58 Actor -> i : db;
59 }
60 on(? Entity *->* Actor : http_request(evil_file ,

none , nonec).? WebNonce & fs ->contains(file(
evil_file))):{

61 Actor -> i : fs;
62 }
63 }
64 }
65 }
66 }

5.10 Conclusions

In this chapter, I have described my formalization for modeling vulnerable
web applications. I have shown how the canonical DY attacker model can
be used to exploit vulnerabilities of web applications. Moreover, I have for-
malized four entities: the file-system, the database, the web application and
the honest client; representing the vulnerable parties of a web application. I
have described how to express security properties in terms of authentication
bypass and confidentiality breach along with the description of Multi-Stage,
a case study that shows how my formalization ca be used to model a real web
application.

Fig. 5.3: The MSCs of the Multi-Stage case study

Honest client Web Application File-System Database

register.Username.Password

insert(tableUsers, User, Userpwd)

index

Server

(a) MSC representing the registration procedure

Honest client Web Application File-System Database

index.Username.Password

query(tableUsers, User, Userpwd)

QueryResponse
index.QueryResponse.Phpsessid

Server

(b) MSC representing the login procedure

Alt

Honest Client Web Application File-System Database

search.Userid.Phpsessid

[session(Phpsessid)]

search.Userid.QueryResponse

query(tableUsers, Userid)

QueryResponse

Server

(c) MSC representing the possibility to search users

Alt

Honest Client Web Application File-System Database

profile.Phpsessid.Name.Surname.
Phone.FileAvatar

[session(Phpsessid)]

dashboard.QueryResponse

query(tableUsers, Name, Surname, Phone, FileAvatar)

QueryResponse

writeFile(FileAvatar)

Server

(d) MSC representing the possibility to edit personal information

6

WAFEx

I have developed, using the Python3 language, a prototype tool called Web
Application Formal Exploiter (WAFEx [86]) which implements my approach.
The purpose of WAFEx is to help the security analyst during the exploitation
phase of a penetration test described in §3.2.1.2. Specifically, WAFEx can help
in identifying how to exploit vulnerabilities of web applications by generating
multi-stage attacks. As depicted in Figure 1.1, WAFEx implements a model-
based testing approach that consists of two phases: a model creation phase
and a concretization phase. In the model creation phase the security analyst
creates a model of a web application while in the concretization phase the
model of a web application is analyzed and tested on the real web application.
I applied WAFEx to a number of case studies that are discussed at length in
§ 6.3. Before describing the case studies, I describe the two phases in more
detail.

6.1 Model creator

The model creation phase implemented in WAFEx consists of a plug-in for
the Burp Proxy [68] (Burp, for simplicity) that helps the security analyst in
the creation of a specification in ASLan++. The security analyst records an
HTTP trace by using Burp (1 in Figure 1.1) and with the Model Creator
Plugin [87] generates an ASLan++ skeleton of the web application along
with a concretization file (2 in Figure 1.1). I have chosen ASLan++ so as
to be able to apply the model checkers of the AVANTSSAR Platform [6] (in
particular, CL-AtSe [80]), but my approach is general and could be quite
straightforwardly used with other specification languages and/or other rea-
soners implementing the DY attacker model. The skeleton of the ASLan++
model is created following the formalization I presented in Chapter 5, while
the concretization file is meant to tie together abstract requests in ASLan++
with details needed to perform the real requests on the web application. In

114 6 WAFEx

order to do so, I performed some minor changes to the ASLan++ formaliza-
tion described in Chapter 5. More specifically, I performed the following two
changes:

• Every HTTP request is associated with a progressive constant tag# that
is used to identify the details of the request in the concretization file.

• Instead of having one constant malicious that represents every possible
malicious input, I use different constants to better identify the payload
that should be used to attack the web application. In particular, I use the
following constants instead:
– sqli: SQLi payload for extracting the entire database,
– sqli_bypass: SQLi payload for creating a tautology,
– sqli_read: SQLi payload for reading from the file-system,
– sqli_write: SQLi payload for writing to the file-system,
– fsi: file-inclusion payload for reading from the file-system,
– xss: XSS payload for stealing the user’s session.

The concretization file is represented in the JSON data format and its
structure is shown in Listing 6.1. For every request in the ASLan++ model,
an identification tag is created in the concretization file (line 2). The details
of a request are:

• the HTTP method used to perform the request (line 3),
• the real URL of the request (line 4),
• the parameters used in GET request, that are saved in a JSON object

(line 5) pairing the abstract parameter (i.e., the one used in the model)
with a JSON array of two elements representing the real key and associ-
ated value (line 6),

• the parameters used in POST request, that are represented just like the get
parameters (line 8),

• the cookies that are also represented as a JSON object (line 9) mapping
an abstract cookie with the corresponding pair consisting of key and value
(line 10).

Listing 6.1: JSON structure of the concretization file
{
"tag#": {
"method": "[GET|POST]",
"url": "http[s]://[url]",
"get_params":{
"[abstract_param]":[" real_param "," real_value "]

},
"post_params":{}
"cookies": {
"[abstract_cookie]": [" real_cookie_key ","

real_cookie_val "]

6.2 Concretization 115

},
}

}

As shown in Figure 6.1, the Model Creator plug-in extends the usual op-
tions provided by Burp by including a new button Send to WAFEx. The secu-
rity analyst can then select the requests\responses he wants to use for creating
the model and then, by means of the Send to WAFEx button, they can be sent
to the WAFEx model creator interface (Figure 6.2).

The Model Creator plug-in graphical interface can be used to edit the
skeleton of an ASLan++ model and the concretization file. On the left side
of the interface there are two panels ((1) and (2) in Figure6.2) that shows the
requests to be converted to an ASLan++ model. The first panel ((1) in Fig-
ure 6.2) shows a table where rows represent a single pair request\response.
By selecting one raw, the second panel ((2) in Figure 6.2) shows the details
of the selection. Specifically it can show the details of both the request or
the response. This two areas can be helpful for the analyst in order to al-
ways have an overview of the real requests and responses he has to model.
WAFEx model creator allows the security analyst to specify an SQL file that
represent the database used by the web application ((3) in Figure 6.2). The
SQL file is then used to automatically create the database structure of the
ASLAn++ model by following the formalization I propose in § 5.5. Once the
requests\responses and the SQL file has been selected, the security analyst
can press the Generate! button in order to generate the model. Once the
model is generated, it is displayed in the main are consisting of a syntax high-
lighted text area that allows the modeler to complete the newly created model
((4) in Figure 6.2). WAFEx model creator also creates the concretization file
and provides the possibility to edit it by selecting the corresponding tab ((5)
in Figure 6.2). Once the model is ready, it can be easily saved thanks to the
Save button. Once the ASLan++ model and the concretization file are ready,
the concretization phase can start.

6.2 Concretization

Once the ASLan++ model and the corresponding concretization file are ready,
the analysis can start. The security analyst interacts with WAFEx (3 in Fig-
ure 1.1) to start the testing of a web application. WAFEx makes use of the
model checker CL-AtSe [80] to analyze an ASLan++ model (4 in Figure1.1)
and, in case an attack is found, CL-AtSe generates an AAT represented as
a MSC (4 in Figure 1.1). An AAT shows the requests that, when executed,
violates the security property defined on the model of the web application.
However, since the model of the web application represents an abstraction of
the real web application, it is required to test the AAT on the real web appli-
cation to ensure that the attack found can actually be carried out. WAFEx

116 6 WAFEx

Fig. 6.1: WAFEx model creator: button for selecting requests and responses
to process

does so automatically by reading the AATs, along with the concretization file
(6 in Figure 1.1), and performs the attack on the real web application (7
in Figure1.1). WAFEx is then capable of understanding what kind of request
should be performed at a given step of an AAT thanks to the additional de-
tails in the ASLan++ model that I described in § 6.1. In case a vulnerability
has to be exploited, WAFEx uses state-of-the-art tools such as Wfuzz [31] and
sqlmap [74] for the generation of a malicious payload, otherwise it uses the
information in the concretization file to perform the request.

It is worth noting that CL-AtSe does not allow for the generation of multi-
ple AATs (nor do the other back-ends of the AVANTSSAR Platform). Thus,
whenever a trace was found in the analysis of the case studies, I disabled the
branch corresponding to the attack in the select-on for the entity that was
used in that trace and run WAFEx again to generate another trace different
from the previous one (if such a trace exists). This process does, of course,
miss some traces since disabling a branch prevents any other trace to use that
branch in a different step of the attack trace.1 However, it shows that multiple
traces can actually be generated.

The parameters and usage details of WAFEx are shown in Listing 6.2.

1 I plan to extend CL-AtSe or replace it with a tool capable of generating multiple
attack traces.

6.2 Concretization 117

Fig. 6.2: WAFEX model creator: main interface area

Listing 6.2: WAFEx usage parameters
usage: wafex.py [-h] [--c concre_file] [--debug]

[--mc -only] [--interactive]
[--verbose] [--translator]
[--proxy ip:port]
[--mc -options MC_OPTIONS]
[--mc -timeout T]
model

positional arguments:
model An ASLAn++ model

optional arguments:
-h, --help show this help message and exit
--c concre_file The concretization file , needed

for executing Abstract Attack
Trace

--debug Print debug messages
--mc-only Run the model checker only and

exit
--interactive Ask input of every parameter
--verbose Increase the output verbosity

Translator:
--translator Specify a jar translator to use.

Allowed values are 1.4.1, 1.4.9 ,

118 6 WAFEx

1.3. Default (1.4.1)

HTTP(S) options:
--proxy ip:port Use an HTTP proxy when executing

requests

Cl -Atse options:
--mc-options MC_OPTIONS

String representing the options
to pass to Cl -Atse.
For more information on the
available options check
Cl-Atse manual

--mc-timeout T If Cl -Atse runs more than T
seconds , abort (default: 600)

6.3 Experimental results

In this section, I show how my formalization can be used effectively for
representing and testing attacks involving the exploitation of multiple web
application vulnerabilities. During the development of WAFEx, I first ap-
plied it to some well-known vulnerable web applications to check whether
WAFEx was able to identify the vulnerabilities I formalized. In particular, I
applied WAFEx to: DVWA [30], WebGoat [63] and Gruyere [44], which pro-
vide state-of-the-art environments for pentesters to improve their skills and
tools2. WAFEx has been able to correctly identify all the vulnerabilities de-
scribed in Chapter 2, which allowed us to refine the concretization phase of
WAFEx to deal with the actual exploitation. After this initial testing, I took
a step further and considered two concrete and complex case studies in order
to show that my approach can indeed be applied to real web applications but
more importantly that WAFEx can be used to perform an analysis that no
other tool is currently capable of. Specifically, I applied WAFEx first to the
Multi-Stage case study that I presented in § 5.9 and then to Cittadiverona
(http://www.cittadiverona.it), a web application that collects, organizes
and shows local events that take place in the city of Verona, Italy. Cittadi-
verona is a customized version of the Joomla! CMS that was developed over
a number of years by Virtuopolitan S.r.l. and previous owners. Cittadiverona
provides a concrete and generic example of the security issues of a real-world
web application.

6.3.1 Case study: the Multi-Stage web application

I already described the Multi-Stage web application in § 5.9 as a means to
illustrate how to create a model of a web application. In this section, I show
2 See §A.1 for details on the ASLan++ model for these case studies.

http://www.cittadiverona.it

6.3 Experimental results 119

the result of applying WAFEx to Multi-Stage. I defined the security property
given in Listing 6.3, that wants to ensure that the attacker is not able to
have access to the entire database, and CL-AtSe then generated four different
AATs that violate this property.

Listing 6.3: Confidentiality goal for the Multi-Stage case study
[](!(iknows(db)));

6.3.1.1 The abstract attack traces

Abstract Attack Trace #1

This first AAT (Figure 6.3) shows a simple attack where the attacker might
be able to exploit a SQLi in the login phase to directly access the entire
database. The attacker sends to the web application a request for the page
index by sending the constant malicious and Password(84) as login cre-
dentials, and the constant nonec meaning no cookie is sent (1). The web
application, when performing the query for checking the credentials (2), is
forced into executing one of the malicious actions I formalized in §5.5. In this
case, the database answers to the login query with the content of the database
{{bob.bobpasswd.bobname.bobsurname.bobphone.bobavatar}} (3) mean-
ing that the attacker used a SQLi attack to dump the entire database. The
result of executing the query is then sent back to the attacker as a response
to the login phase (4).

Attacker Web Application File-System Database

index,malicious.Password(84),nonec

Server

index.{{bob.bobpasswd.bobname.
bobsurname.bobphone.bobavatar}}.nonec

query(users, malicious.Password(75))

{{bob.bobpasswd.bobname.
bobsurname.bobphone.bobavatar}}

Honest Client

1
2

3
4

Fig. 6.3: AAT #1 for accessing the database in the Multi-Stage case study

Abstract Attack Trace #2

I disabled the branch that allows the attacker to force the dump of the en-
tire database and ran the model checker again to generate a different AAT
(Figure6.4). The attacker sends to the web application a request for the page
index by sending the constant malicious and the constant evil_file as
login credentials (1). The web application performs a query to the database

120 6 WAFEx

(2) and, because of the constant malicious, the database is forced into exe-
cuting one of the malicious actions I formalized in § 5.5. In this case, the con-
stant malicious triggers the possibility of directly writing to the file-system.
The file being written is the file represented by the constant evil_file (3).
Since the write operation does not return any value, the web application sim-
ply answers to the attacker with dummy_message (4). The attacker can now
use the evil_file to have direct access to the database (5 and 6).

Attacker Web Application File-System Database

index,malicious.evil_file,nonec

Server

writeFile(evil_file)
index,dummy_message,nonec

evil_file,none,nonec

{{bob.bobpasswd.bobname.
bobsurname.bobphone.bobavatar}}

query(users, malicious.Password(75))

Honest Client

1
2

3
4

5

6

Fig. 6.4: AAT #2 for accessing the database in the Multi-Stage case study

Abstract Attack Trace #3

I disabled the branch that allows the attacker to force the database into writing
to the file-system and ran the model checker again to generate a different
AAT (Figure 6.5). The attacker sends to the web application a request for
page index by sending the constant malicious and Password(75) as login
credentials (1). Once again the database is forced into executing one of the
malicious actions I formalized in § 5.5, which in this case would be to bypass
the login process and have access without knowing correct credentials (2 and
3). The attacker thus gains access as the user bob (4), who is a legitimate
user in the web application. The attacker can now take advantage of the page
profile that gives the possibility of updating the personal information of the
user currently logged in. The attacker exploits this functionality to upload a
remote shell as an avatar image (5). The request to page profile causes the
execution of a query that updates the details of user bob (6) and returns a
tuple to the web application with the new details (7). The request to page
profile also causes the upload to the file-system of the file evil_file (8).
The web application then answers to the attacker with the updated details of
user bob (9). Finally, like in the previous AAT, the attacker can now take
advantage of evil_file (10) to have direct access to the database (11).

6.3 Experimental results 121

Attacker Web Application File-System Database

index,malicious.Password(75),nonec

Server

query(users, malicious.Password(75))

dashboard,bob.bobpasswd.bobname.
bobsurname.bobphone.bobavatar,n7

5(Phpsessid)

profile,Name(77).Surname(77)
.Phone(77).evil_file,n75(Php

sessid)

update(users, bob.bobpasswd.
bobname.bobsurname.bobphone.bobavatar,

bob.bobpasswd.Name(77).
Surname(77).Phone(77).evil_file)

writeFile(evil_file)

bob.bobpasswd.Name(77).
Surname(77).Phone(77).evil_file

dashboard,bob.bobpasswd.Name(77).Sur
name(77).Phone(77).evil_file,nonec

evil_file,none,nonec

{{bob.bobpasswd.Name(77).Surname
(77).Phone(77).evil_file}}

bob.bobpasswd.bobname.bobsurname.bo
bphone.bobavatar

Honest Client

1
2

3

4

5 6

7

9
8

10

11

Fig. 6.5: AAT #3 for accessing the database in the Multi-Stage case study

Abstract Attack Trace #4

I generated a fourth, more complex AAT showing how the attacker can have
access to the database even when no SQLi attack is possible. I removed the
possibility for the attacker to perform any kind of SQLi on the database and
generated the AAT in Figure 6.6. In this AAT the interaction starts with the
honest client sending a request for page index providing credentials for the
user bob (bob and bobpasswd 1). The web application performs a query on
the database (2) and answers with bob’s details (3). The honest client is then
granted access to the web application and the session value n83(Phpsessid)
is sent back to him along with the result of executing the login query (4).
The attacker now performs a CSRF attack on the honest client by sending to
him a malicious request for page search along with the constant malicious
(5). The CSRF attack forces the honest client into performing a request
to the page search using the constant malicious as parameter (6). The
search page is used to search a user in the database, thus the web applica-
tion performs a query to the database using the constant malicious (7).
The execution of such a query does not produce any tuple, and therefore the
constant none is returned by the database (8). When page search answers
to a request, it reflects the value of the parameter searched along with the
result of the query. The web application then answers to the honest client
by sending back the constant malicious along with the result of executing
the query, which in this case is none (9). This is where the honest client
receives the constant malicious and the CSRF attack actually becomes a
reflected XSS attack. Recall that based on my formalization (§5.7), whenever

122 6 WAFEx

the honest client receives the constant malicious, he is forced into sending
his knowledge to the attacker. The honest client thus sends his knowledge,
represented by {n83(Phpsessid),nonec}, to the attacker (10). The attacker
can now use the session values n83(Phpsessid) to impersonate user bob and,
just like in the previous AAT, the attacker can abuse the possibility of upload-
ing an avatar in order to upload a malicious code represented by the constant
evil_file (11—15). Finally, the attacker can take advantage of evil_file
and access the entire database (16 and 17).

Attacker Web Application File-System Database

index,bob.bobpasswd,nonec

Server

query(users, bob.bobpasswd)

dashboard ,bob.bobpasswd.bobname
.bobsurname.bobphone.bobavatar ,

n83(Phpsessid)

bob.bobpasswd.bobname.
bobsurname.bobphone.bobavatar

Honest Client

search.malicious

search,malicious ,n83(Phpsessid)

search,malicious.none,nonec

query(users, malicious)

none

{n83(Phpsessid),
nonec} profile,Name(85).Surname(85).Phon

e(85).evil_file,n83(Phpsessid)

update(users, bob.bobpasswd.bobname.
bobsurname.bobphone.bobavatar,

bob.bobpasswd.Name(85).
Surname(85).Phone(85).evil_file)

writeFile(evil_file)

bob.bobpasswd.Name(85).Surname(85).
Phone(85).evil_file

dashboard,bob.bobpasswd.Name(85).Sur
name(85).Phone(85).evil_file,nonec

evil_file,none,nonec

{{bob.bobpasswd.Name(85).Surnam
e(85).Phone(85).evil_file}}

1
2

34

5

6
7

8
9

10 11 12

13

15 14

16

17

Fig. 6.6: AAT #4 for accessing the database in the Multi-Stage case study

6.3.1.2 Concretization

For each AAT generated for the Multi-Stage case study, WAFEx performed
the concretization phase trying to attack the real web application. I run
WAFEx on a Mac Book laptop (Intel i5-4288U with 8G RAM and Python3.5).
The execution time of the model-checking phase to generate an AAT ranges
from 30ms to 50ms. Of the four AATs, WAFEx was able to concretize AAT
#1, #3 and #4. It was not possible to concretize AAT #2 since the user that
was running the database did not have writing privileges on the file-system
and thus it was not possible to exploit a SQLi for writing on the file-system.

6.3 Experimental results 123

6.3.2 Case study: Cittadiverona

Cittadiverona is a web application developed and maintained by Virtuopolitan
S.r.l., a communication agency focused on the development and managing of
touristic web applications. Cittadiverona has been active since 2005 and is
now the main point of reference for locals and foreigners who are looking for
information about the many events offered by different organizations in the
city of Verona (Italy) and its surroundings. It currently has 969.000 registered
users and around 15 new events are posted every week.

Cittadiverona is a web application based on the Joomla! CMS that over
the years has gone through many changes that were required to maintain the
web application functioning and meet new requirements. Some of the changes
made to Cittadiverona allowed it to be highly ranked on Google. Cittadiverona
provides features similar to the ones that I described in the case study § 5.9
plus other features specific to Cittadiverona’s needs and goals. Specifically,
Cittadiverona provides:

• a public registration page that allows users to create an account on the
web application;

• a public HTTP login page that allows users to log in the web application
by providing username and password;

• a public page that users can use to query the database looking for events
— users can search events based on different filters (e.g., description, time
period, location);

• a public page for displaying details of a specific event;
• a restricted page where only logged in users can submit new events; once

the user sends a new event, the administrators can view and edit it.

Furthermore, Cittadiverona provides administrative functionalities that are
accessible only to specific users identified as administrators:

• a page where all events can be viewed and edited;
• a file management area that can be used to upload new files and read from

the file-system;
• a backup page that can be used to save the entire content of the database

and the file-system;
• a user-management area where users can be created and edited.

The first phase of the analysis was to create a model of the Cittadiverona
case study. I then used the Model Creator plug-in to create the skeleton of
the web application (see § 6.1) and I manually refined the skeleton to reflect
the functionalities offered by Cittadiverona. Listing 6.4 shows the resulting
ASLan++ specification.

6.3.2.1 The specification

Administrators are allowed to log in using a dedicated web page adminlogin by
providing proper credentials identified by Var_0 and Var_1 (line 14); note that

124 6 WAFEx

variables’ names are generated automatically by the Model Creator Plugin.
Once credentials are submitted, the web application creates a tuple (line 15)
and performs a query on the table jos_users (line 16). The web application
now waits until the query is executed (line 17) and, if the result of executing
the query (stored in Result) is of the right format (line 18), then it verifies that
the corresponding User returned by the query is indeed a valid administrator
(line 19). The predicate isAdmin(agent) is used to identify which agent in
the model has administrative privileges. If the value of User identifies a valid
administrator, the web application creates a session and associates the User to
it (lines 20 and 21). Finally, the web application answers to the login request
by sending back the result of executing the query and the newly created session
(line 22). If the result of executing the query does not produce a valid user
(i.e., the if statement in line 18 evaluates to false), the web application does
not create a new session and responds by sending the result of executing the
query (line 25).

Administrators can perform a series of actions. In particular, they can show
events saved in the database (line 30). The web application receives a request
for page adminindex with a variable Var_0 identifying the id of the event to
show and a variable Sessid identifying a session value. The web application
verifies that the value of Sessid is indeed a valid session value and that the
user associated to that session is an administrator (line 30). If that is the
case, the web application grants access to the page, creates a tuple (line 31)
and queries the database (line 32). The web application waits for the query
to be executed (line 33) and answers with the result of executing the query
(line 34).

Administrators can also edit events. The web application receives a request
for page adminindex with variables Var_0, Var_1, Image, Var_3, Var_4, Var_5 and
Var_6 representing, respectively, the title, description, picture, category, place,
period and identifier of the event to edit. Furthermore, the request contains
the variable Sessid that the web application uses to verify that the request
comes from a logged in user that has administrative privileges (line 53). The
web application first initializes the variable Oldtuple representing the old tuple
that will be updated (line 54) and then initializes the variable Tuple represent-
ing the new tuple (line 55). The web application performs the update query
(line 56) and waits for the database to complete the operation (line 57). Once
the operation is completed, the web application uploads the value of Image
used to represent a picture associated with the event being edited. To do so,
the web application performs a write operation on the file-system (line 58)
and waits for the operation to be completed (line 59). Once the write oper-
ation is completed, the web application answers with the result of executing
the update query (line 60).

Administrators can also upload new files to the file-system. The web ap-
plication receives a request for the page adminindex along with a variable File
representing the file to upload and a variable Sessid representing a session
value (line 65). The web application verifies that the value for Sessid is a

6.3 Experimental results 125

valid session value and that the associated agent has administrative privileges
(line 65). If that is the case, the web application performs a write operation
(line 66) and waits for the file-system to perform the operation (line 67). Once
the operation is completed, the web application does not need to send an an-
swers since the write operation on the file-system does not return a result (as
formalized in § 5.4).

Administrators can also read content from the file-system. The web appli-
cation receives a request for the page adminindex along with a variable File
representing the file to read and a variable Sessid representing a session value
(line 72). The web application verifies that the value for Sessid is a valid ses-
sion value and that the associated agent has administrative privileges (line 72).
If that is the case, the web application performs a reading operation (line 73)
and waits for the file-system to complete the operation (line 74). Once the
operation is completed, the web application answers by sending the value of
the variable Result containing the result of the reading request performed on
the file-system (line 75).

Administrators can create new users (line 38) and edit user details (line 45).
Creating a new user is achieved by sending a request to page adminindex along
with variables Var_0, Var_1, Var_2 and Var_3 representing, respectively, the
username, password, name and email address of the new user. The request
contains also the variable Sessid representing a session value (line 38). The
web application verifies that the value for Sessid is a valid session value and
that the associated agent has administrative privileges (line 38). If that is
the case, the web application creates a tuple representing the new user to
add to the database (line 39) and performs an insert query to add Tuple to
the table jos_users (line 40). The web application then waits for the insert
query to complete (line 41) and then answers by sending the variable Result
representing the result of executing the insert query (line 42). For editing
users, the web application receives a request for page adminindex along with
variables Var_0, Var_1, Var_2, Var_3 and Var_4 representing, respectively, the
username of the user to edit, the new username, new password, new name and
new email address of the user. The request contains also the variable Sessid
representing a session value (line 45). The web application verifies that the
value for Sessid is a valid session value and that the associated agent has
administrative privileges (line 45). If that is the case, the web application
initializes the value Oldtuple that represents a database tuple for the user to
be edited, which is identified by the variable Var_0 (the additional ? are used
to define the arity of the tuple) (line 46). The web application then initializes
Tuple that is going to replace Oldtuple (line 47) and performs the update
query (line 48). The web application waits for the update query to complete
(line 49) and then answers by sending the variable Result representing the
result of executing the update query (line 50).

Finally, administrators can retrieve the entire database and file-system as
part of a backup functionality. The web application receives a message for the
page admnistrator_backup_php and the variable Sessid representing a session

126 6 WAFEx

value (line 79). The web application verifies that the value for Sessid is a
valid session value and that the associated agent has administrative privileges
(line 79). If that is the case, the web application answers by sending the sets fs
and db representing, respectively, the file-system and the database (line 80).

Normal users can register to the web application by sending a request to
the page register along with variables Var_0, Var_1, Var_2 and Var_3 repre-
senting, respectively, username, password, name and email of the new user
(line 98). The web application creates a tuple with the details of the new user
(line 99) and performs an insert query to the database (line 100). Once the
insert query is completed (line 101), the web application answers by sending
the result of executing the query (line 102).

Registered users can log in by sending a request to the page login with
variables Var_0 and Var_1 representing, respectively, username and password
(line 84). The web application creates a tuple to verify the credentials (line 85)
and queries the database (line 86). The web application then waits for the
operation to complete (line 87). If the result of the query contains a valid user
(line 88), the web application creates a session (line 89) and associates to it
the agent retrieved from the database (line 90). Finally, the web application
answers by sending the result of executing the query along with the newly
created session (line 91). If the result of executing the query does not contain
a valid username, the web application answers with the result of executing
the query but without initializing a valid session (line 91).

Users that are not logged in the web application can query the database
to search for events. The web application receives a request for the page index
with variables Var_0, Var_1, Var_2 and Var_3 (line 118) representing, respec-
tively, title, description, category, location and time period of the event. The
web application then creates a tuple to query the database (line 119) and
performs a query operation (line 120). Once the query operation is completed
(line 121), the web application answers by sending the result of executing the
query (line 122).

Logged in users can insert new events in the database by sending a request
to the page addevent with variables Var_0, Var_1, Var_2, Var_3, Var_4 and Image
representing, respectively, title, description, category, time period, location
and image for the event to insert. Within the request, the variable Sessid
represents a session value. The web application verifies that the Sessid is
indeed a valid session value and grants access to the page. The web application
then generates a fresh value for the variable Var_6 that will be used as identifier
for the new event (line 107) and creates a tuple with the details of the new
event (line 108). The web application performs an insert operation on the
database (line 109) and waits for the database to complete the operation
(line 110). Once the insert query is completed, the web application uploads the
value of the variable Image to the file-system by performing a write operation
(line 111). The web application waits for the file-system to complete the write
operation (line 112) and finally answers by sending the result of executing the
insert query (line 113).

6.3 Experimental results 127

Finally, the specification of the Cittadiverona web application handles two
additional requests for allowing remote code execution as formalized in Chap-
ter 5. The first requests allows the attacker to access the entire file-system
(lines 127-128) and the second allows the attacked to access the entire database
(lines 130-131) provided that he managed to upload a malicious file identified
by evil_file.

Listing 6.4: ASLan++ specification for the Cittadiverona case study
1 entity Webapplication(Actor , Honest : agent) {
2 symbols
3 Entity : agent;
4 Var_0 , Var_1 , Var_2 , Var_3 , Var_4 , Var_5 , Var_6 ,

Var_7 , User : param;
5 Image , File: fnode;
6 Tuple , Oldtuple : message;
7 Sessid : cookie;
8 WebNonce : nonce;
9

10 body{
11 while(true){
12 select{
13 % Administrators
14 on(? Entity*->*Actor:http_request(adminlogin , ?

Var_0.?Var_1 , nonec).? WebNonce):{
15 Tuple := Var_0.Var_1 .?.?;

16 query(jos_users , Tuple);

17 select{ on(! query(jos_users , Tuple)):{

18 if(Result = ?User .?.?.?){

19 select{ on(isAdmin(User)):{

20 Sessid := fresh();

21 sessions ->add((Sessid , usersession , User));

22 Actor*->*Entity:http_response(adminindex ,
Result , Sessid).WebNonce;

23 }}
24 }else{
25 Actor*->*Entity:http_response(adminlogin ,

Result , nonec).WebNonce;
26 }
27 }}
28 }
29

128 6 WAFEx

30 on(? Entity*->*Actor:http_request(adminindex ,?Var_0
,? Sessid).? WebNonce & sessions ->contains ((?
Sessid , usersession , ?User)) & isAdmin (?User))
:{

31 Tuple := ?.?.?.?.?.?. Var_0;

32 query(jos_jcalpro_events , Tuple);

33 select{ on(! query(jos_jcalpro_events , Tuple)):{

34 Actor*->*Entity:http_response(adminindex ,
Result , nonec).WebNonce;

35 }}
36 }
37

38 on(? Entity*->*Actor:http_request(adminindex , ?Var_0
.?Var_1 .?Var_2.?Var_3 , ?Sessid).? WebNonce &
sessions ->contains ((? Sessid , usersession , ?User)
) & isAdmin (?User)):{

39 Tuple := Var_0.Var_1.Var_2.Var_3;

40 insert(jos_users , Tuple);

41 select{on(! insert(jos_users , Tuple)):{

42 Actor*->* Webapplication:htto_response(adminindex ,
Result , nonce).WebNonce;

43 }}
44 }
45 on(? Entity*->*Actor:http_request(adminindex , ?Var_0

.?Var_1 .?Var_2.? Var_3.?Var_4 , ?Sessid).? WebNonce
& sessions ->contains ((?Sessid , usersession , ?

User)) & isAdmin (?User)):{
46 Oldtuple := Var_0 .?.?.?;

47 Tuple := Var_1.Var_2.Var_3.Var_4;

48 update(jos_users , Oldtuple , Tuple);

49 select{on(! update(jos_users , Oldtuple , Tuple)):{

50 Actor*->* Webapplication:htto_response(adminindex ,
Result , nonce).WebNonce;

51 }}
52 }
53 on(? Entity*->*Actor:http_request(adminindex ,?Var_0

.?Var_1 .?Image.? Var_3 .?Var_4 .?Var_5.?Var_6 , ?
Sessid).? WebNonce & sessions ->contains ((? Sessid
, usersession , ?User)) & isAdmin (?User)):{

6.3 Experimental results 129

54 Oldtuple := ?.?.?.?.?.?. Var_6;

55 Tuple := Var_0.Var_1.Image.Var_3.Var_4.Var_5.Var_6
;

56 update(jos_jcalpro_events , Oldtuple , Tuple);

57 select{ on(! update(jos_jcalpro_events , Oldtuple ,
Tuple)):{

58 writeFile(Image);

59 select{ on(! writeFile(Image)):{

60 Actor*->*Entity:http_response(adminindex ,
Result , nonec).WebNonce;

61 }}
62 }}
63 }
64

65 on(? Entity*->*Actor:http_request(adminindex , ?File
, ?Sessid).? WebNonce & sessions ->contains ((?
Sessid , usersession , ?User)) & isAdmin (?User))
:{

66 writeFile(File);
67 select{ on(! writeFile(File)):{

68 Actor*->*Entity:http_response(adminindex , none ,
nonec).WebNonce;

69 }}
70 }
71

72 on(? Entity*->*Actor:http_request(adminindex , ?File
, ?Sessid).? WebNonce & sessions ->contains ((?
Sessid , usersession , ?User)) & isAdmin (?User))
:{

73 readFile(File);
74 select{ on(! readFile(File)):{

75 Actor*->*Entity:http_response(adminindex , Result
, nonec).WebNonce;

76 }}
77 }
78

79 on(? Entity*->*Actor:http_request(adminindex ,none ,?
Sessid).? WebNonce & sessions ->contains ((? Sessid
, usersession , ?User)) & isAdmin (?User)):{

80 Actor*->*Entity:http_response(adminindex ,fs.db ,
nonec).WebNonce;

81 }
82

130 6 WAFEx

83 % User
84 on(? Entity*->*Actor:http_request(login ,? Var_0 .?

Var_1 ,nonec).? WebNonce):{
85 Tuple := Var_0.Var_1 .?.?;

86 query(jos_users , Tuple);

87 select{ on(! query(jos_users , Tuple)):{

88 if(Result = ?User .?.?.?){

89 Sessid := fresh();

90 sessions ->add((Sessid , usersession , User));

91 Actor*->*Entity:http_response(login ,Result ,
Sessid).WebNonce;

92 }else{
93 Actor*->*Entity:http_response(index ,Result ,

nonec).WebNonce;
94 }
95 }}
96 }
97

98 on(? Entity*->*Actor:http_request(register ,?Var_0 .?
Var_1.? Var_2.?Var_3 ,nonec).? WebNonce):{

99 Tuple := Var_1.Var_3.Var_2.Var_0;

100 insert(jos_users , Tuple);

101 select{ on(! insert(jos_users , Tuple)):{

102 Actor*->*Entity:http_response(register , Result ,
nonec).WebNonce;

103 }}
104 }
105

106 on(? Entity*->*Actor:http_request(addevent ,?Var_0 .?
Var_1.? Var_2.?Var_3 .?Var_4.?Image ,? Sessid).?
WebNonce & sessions ->contains ((? Sessid ,
usersession , ?User))):{

107 Var_6 := fresh ();

108 Tuple := Var_0.Var_1.Image.Var_2.Var_3.Var_4.Var_6;

109 insert(jos_jcalpro_events , Tuple);

110 select{on(! insert(jos_jcalpro_events , Tuple)):{

6.3 Experimental results 131

111 writeFile(Image);

112 select{ on(! writeFile(Image)):{

113 Actor*->*Entity:http_response(addevent ,Result ,
nonec).WebNonce;

114 }}
115 }}
116 }
117

118 on(? Entity*->*Actor:http_request(index ,? Var_0 .?
Var_1.? Var_2.?Var_3 ,nonec).? WebNonce):{

119 Tuple := Var_0.Var_0 .?. Var_1.Var_2.Var_3 .?;

120 query(jos_jcalpro_events , Tuple);

121 select{ on(! query(jos_jcalpro_events , Tuple)):{

122 Actor*->*Entity:http_response(index ,Result ,nonec
).WebNonce;

123 }}
124 }
125

126 % Malicious actions
127 on(? Entity *->* Actor : http_request(evil_file ,

none , nonec).? WebNonce & fs ->contains(file(
evil_file))):{

128 Actor -> i : fs;

129 }
130 on(? Entity *->* Actor : http_request(evil_file ,

none , nonec).? WebNonce & fs ->contains(file(
evil_file))):{

131 Actor -> i : db;

132 }
133 }
134 }
135 }
136 }

6.3.2.2 The analysis of Cittadiverona

In collaboration with Virtuopolitan S.r.l., I cloned Cittadiverona into a se-
cure environment where I was able to freely test the web application without
causing any harm to the real system. I started the analysis by performing
a vulnerability assessment by using common vulnerabilities scanners, in par-
ticular I used Arachni [5] and OWASP Zed Attack Proxy (ZAP) [62]. This

132 6 WAFEx

Table 6.1: Vulnerabilities identified in the Cittadiverona case study

SQLi Unrestrictedfile upload
File

inclusion
XSS

(Reflected)
XSS

(Stored) CSRF

5 2 0 6 2 No protection

assessment allowed to discover a number of common vulnerabilities, which are
summarized in Table 6.1.

However, a proper security analysis does not stop after such a vulnerabil-
ity assessment but continues with a penetration testing phase that aims at
understanding how the identified vulnerabilities could be used to harm the
web application. This is where WAFEx plays a fundamental role by helping
the security analyst in generating AATs where vulnerabilities are combined
to violate a security property.

I run WAFEx on the ASLan++ specification to test whether or not the
attacker could access the database (Listing 6.5).

Listing 6.5: Confidentiality goal for accessing the database in the Cittadi-
verona case study

[](!(iknows(db)))

I was able to generate a total of five AATs, four of which are similar to the
AATs already discussed for the Multi-Stage case study. This is not surprising
as Multi-Stage shares some basic functionalities (such as user creation, user
login, search engine) with Cittadiverona. In fact, Multi-Stage was designed
to mimic a real-world web application by implementing the most common
functionalities that web applications provide nowadays, and Cittadiverona is
a real-world example of how such functionalities are actually being deployed.

However, Cittadiverona is, of course, different from, and much more com-
plex than, Multi-Stage and thus it was possible to generate a new AAT differ-
ent from the previous ones showing a more complex way to access the database
by leveraging functionalities that Cittadiverona implements but Multi-Stage
does not.

Abstract Attack Trace #1

This first AAT (Figure 6.7) shows a simple attack where the attacker might
be able to exploit a SQLi in the login phase to directly access the entire
database. The attacker sends to the web application a request for the page
login by sending the constant malicious and Password(84) as login cre-
dentials, and the constant nonec meaning no cookie is sent (1). The web
application, when performing the query for checking the credentials (2), is
forced into executing one of the malicious actions I formalized in §5.5. In this
case, the database answers to the login query with the content of the database
{{bob.bobpasswd.bobname.bobsurname.bobphone.bobavatar}} (3) mean-
ing that the attacker used a SQLi attack to dump the entire database. The

6.3 Experimental results 133

Attacker Web Application File-System Database

login,malicious.Password(84),nonec

Server

login.{{bob.bobpasswd.
bobname.bobemail}}.nonec

query(jos_users, malicious.Password(75))

Honest Client

1
2

3
4

{{bob.bobpasswd.bobname.bobemail}}

Fig. 6.7: AAT #1 for accessing the database in Cittadiverona

Attacker Web Application File-System Database

login,malicious.evil_file,nonec

Server

writeFile(evil_file)
index,dummy_message,nonec

evil_file,none,nonec

{{bob.bobpasswd.bobname.bobemail}}

query(jos_users,malicious.evil_file)

Honest Client

1
2

3
4

5

6

Fig. 6.8: AAT #2 for accessing the database in Cittadiverona

result of executing the query is then sent back to the attacker as a response
to the login phase (4).

Abstract Attack Trace #2

I disabled the branch that allows the attacker to force the dump of the en-
tire database and ran the model checker again to generate a different AAT
(Figure6.8). The attacker sends to the web application a request for the page
login by sending the constant malicious and the constant evil_file as
login credentials (1). The web application performs a query to the database
(2) and, because of the constant malicious, the database is forced into exe-
cuting one of the malicious actions I formalized in § 5.5. In this case, the con-
stant malicious triggers the possibility of directly writing to the file-system.
The file being written is the file represented by the constant evil_file (3).
Since the write operation does not return any value, the web application sim-
ply answers to the attacker with dummy_message (4). The attacker can now
use the evil_file to have direct access to the database (5 and 6).

Abstract Attack Trace #3

I disabled the branch that allows the attacker to force the database into writing
to the file-system and ran the model checker again to generate a different
AAT (Figure 6.9). The attacker sends to the web application a request for

134 6 WAFEx

Attacker Web Application File-System Database

login,malicious.Password(75),nonec

Server

query(jos_users, malicious.Password(75))

login, bob.bobpasswd.
bobname.bobemail,n75(Phpsessid)

writeFile(evil_file)

Var_0(77).Var_1(77).Var_2(77).
Var_3(77).Var_4(77).evil_file

dashboard,Var_0(77).Var_1(77).Var_2(77).
Var_3(77).Var_4(77).evil_file,nonec

evil_file,none,nonec

{{bob.bobpasswd.bobname.bobemail},
{Var_0(77).Var_1(77).Var_2(77).
Var_3(77).Var_4(77).evil_file}}

Honest Client

1
2

3

4

5 6

7

9 8

10

11

bob.bobpasswd.bobname.bobemail

addevent,Var_0(73).Var_1(77).Var_2(77).V
ar_3(77).Var_4(77).evil_file,n80(Sessid)

insert(jos_jcalpro_events,Var_0
(77).Var_1(77).Var_2(77).Var_3(

77).Var_4(77).evil_file)

Fig. 6.9: AAT #3 for accessing the database in Cittadiverona

page login by sending the constant malicious and Password(75) as login
credentials (1). Once again the database is forced into executing one of the
malicious actions I formalized in § 5.5, which in this case would be to bypass
the login process and have access without knowing correct credentials (2 and
3). The attacker thus gains access as the user bob (4), who is a legitimate
user in the web application. The attacker can now take advantage of the page
addevent that gives the possibility to logged in users to create new events
in the web application. The attacker exploits this functionality to upload a
remote shell as an image for the newly created event (5). The request to
page addevent causes the execution of a query that inserts the details of the
new event in table jos_jcalpro_events (6) and returns a tuple to the web
application with the response from the database (7). The request to page
addevent also causes the upload to the file-system of the file evil_file (8).
The web application then answers to the attacker with the details of the newly
created event (9). Finally, like in the previous AAT, the attacker can now
take advantage of evil_file (10) to have direct access to the database (11).

Abstract Attack Trace #4

I generated a fourth, more complex AAT showing how the attacker can have
access to the database even when no SQLi attack is possible. I removed the
possibility for the attacker to perform any kind of SQLi on the database
and generated the AAT in Figure 6.10. In this AAT the interaction starts
with the honest client sending a request for page login providing credentials
for an administrator user (admin and adminpasswd 1). The web application

6.3 Experimental results 135

performs a query on the database (2) and answers with the details of the
administrator (3). The honest client is then granted access to the web ap-
plication and the session value n83(Phpsessid) is sent back to him along
with the result of executing the login query (4). The attacker now performs
a CSRF attack on the honest client by sending to him a malicious request
for page index along with the constant malicious (5). The CSRF attack
forces the honest client into performing a request to the page index using the
constant malicious as parameter (6). In the Cittadiverona case study, the
page search is used to search an event in the database, thus the web appli-
cation performs a query to the database using the constant malicious (7).
The execution of such a query does not produce any tuple, and therefore the
constant none is returned by the database (8). When page index answers
to a request, it reflects the value of the parameter searched along with the
result of the query. The web application then answers to the honest client by
sending back the constant malicious along with the result of executing the
query, which in this case is none (9). This is where the honest client receives
the constant malicious and the CSRF attack actually becomes a reflected
XSS attack. Recall that based on my formalization (§5.7), whenever the honest
client receives the constant malicious, he is forced into sending his knowledge
to the attacker. The honest client thus sends his knowledge, represented by
{n83(Phpsessid),nonec}, to the attacker (10). The attacker can now use
the session values n83(Phpsessid) to impersonate the administrator thus
performing a session hijacking and have access to administrative functionali-
ties. The attacker does so and performs a request for the backup functionality
accessible at page adminindex (11), which causes the web application to re-
spond with the entire file-system and database of the web application (12),
thus violating the security property.

Abstract Attack Trace #5

I disabled the possibility for the attacker to perform any SQLi and run the
analysis on the model to see if the attacker could find a way to access the
entire database. This generated the AAT in Figure 6.11.

The attacker logs in the web application by using credentials bob and
bobpasswd (1), and then the web application performs a query to verify the
credentials (2 and 3). The web application answers to the login request and
generates a new session n80(Sessid) that is sent back to the attacker (4).
The attacker is now logged in as a normal user and can insert events in the
database. He thus uses this functionality to store the constant malicious in
the database. The attacker performs a request for creating a new event by
sending the constant malicious as the title for a new event and the session
value n80(Sessid) that identifies him as a legitimately logged in user (5).
The web application performs an insert query on the database (6) and a
subsequent write on the file-system to store the image associated to the newly

136 6 WAFEx

Attacker Web Application File-System Database

adminlogin,admin.adminpasswd,nonec

Server

query(jos_users, admin.adminpasswd)

login, bob.bobpasswd.
bobname.bobemail,n83(Phpsessid)

Honest Client

index.malicious
index,malicious.

Var_1(83).Var_2(83).Var_3(83),none

search,malicious.none,nonec

query(jos_jcalpro_events,
malicious.Var_1(83).Var_2(83).Var_3(83))

none

{n83(Phpsessid),
nonec}

1
2

34

5

6
7

8
9

10

admin.adminpasswd.adminname.adminemail

adminindex,none,n83(Phpsessid)

adminindex,{file(Image(77)),
file(secretFile)}.{{admin.adminpasswd.adminname.adminemail,

bob.bobpasswd.bobname.bobemail}},nonec

11

12

Fig. 6.10: AAT #4 for accessing the database in Cittadiverona

created event (7). Finally, the web application answers to the attacker with
the details of the newly created event (8).

It is worth noting that the message from the web application to the at-
tacker (8) contains the same variables sent by the attacker (5) representing
the new event plus the constant n82(Var_6), which represents the id of the
new event. At this point, the honest client logs in the web application as an
administrator user, providing credentials admin and adminpasswd (9). The
web application performs a query to verify the credentials (10 and 11) and
answers to the honest client with a new session identified by n74(Sessid)
(12). The honest client can now view the events in the database and does
so by sending a request to view the event identified by n82(Var_6) that was
previously created by the attacker (13). The web application queries the
database (14) and retrieves the tuple inserted by the attacker (15). The web
application then answers to the honest client by sending the result of the
query, which contains the constant malicious (16). The formalization of the
honest client (§ 5.7) defines that whenever the honest client receives the con-
stant malicious, it is forced into sending his knowledge (which in this case
is {admin,adminpasswd,n74(Sessid),nonec}) to the attacker (17). The at-
tacker thus gains the knowledge of the honest client, which includes the cre-
dentials of the administrator admin, adminpasswd along with the constant
n74(Sessid) representing a valid and active session for the administrator.
This means that the attacker can hijack the administrator’s session. The at-
tacker does so and performs a request for the backup functionality (18), which

6.3 Experimental results 137

Attacker Web Application File-System Database

login,bob.bobpasswd,nonec

Server

login,bob.bobpasswd.bobname.
bobemail,n80(Sessid)

query(users, bob.bobpassword)

bob.bobpasswd.bobname.
bobsurname.bobphone.bobavatar

Honest Client

addevent,malicious.Var_1(73).Var_2(77).V
ar_3(77).Var_4(77).Image(77),n80(Sessid)

insert(jos_jcalpro_events,
eventi_aggiungi_evento,maliciou
s.Var_1(73).Var_2(77).Var_3(77)

.Var_4(77).Image(77))

writeFile(Image(77))
addevent,malicious.Var_1(73).Image(77).V
ar_2(77).Var_3(77).Var_4(77).n82(Var_6),

nonec

adminindex,admin.adminpasswd,nonec

query(users, admin.adminpasswd)

admin.adminpasswd.adminname.adminemail
adminindex,admin.

adminpasswd.adminname.adminemail,n74(Sessid)

adminindex,n82(Var_6),n74(Sessid) query(users,
n82(Var_6).Var_1(73).Var_2(77).Var_3(77).Va

r_4(77).Image(77))

malicious.Var_1(73).Image(77).Var_2(77).
Var_3(77).Var_4(77).n82(Var_6)

adminindex,malicious.Var_1(73).Image(77).Var
_2(77).Var_3(77).Var_4(77).n82(Var_6), nonec

{admin,adminpasswd,
n74(Sessid),nonec}

adminindex ,none,n74(Sessid)

adminindex,{file(Image(77)),
file(secretFile)}.{{admin.adminpasswd.adminname.adminemail,

bob.bobpasswd.bobname.bobemail}},nonec

1
2

34

5

6

78

9
10

1112

13
14

15

16

17

18

19

Fig. 6.11: AAT #5 for accessing the database in Cittadiverona

causes the web application to respond with the entire file-system and database
of the web application (19), thus violating the security property.

This AAT shows the exploitation of a stored XSS in order to perform
a session-hijacking attack on the administrator so that the attacker can log
in as administrator and access the database via the backup functionality. I
believe this AAT to be particularly representative of the strength of possibil-
ities provided by this approach. While the attack might look obvious to the
most skilled penetration testers, it is important to remember that, except for
WAFEx, no automatic tool is currently able to identify such an attack and
only a manual investigation can be effective.

6.3.2.3 Concretization

I ran WAFEx on a Mac Book laptop (Intel i5-4288U with 8G RAM and
Python3.5). The execution time of the model-checking phase for generating
the AAT in Figure 6.11 was around 80s. The AAT was successfully exploited
by WAFEx showing that it was indeed possible to perform the attack and
thus have access to the entire database.

138 6 WAFEx

6.4 Conclusions

In this chapter, I have described WAFEx, a prototype tool that I developed
to implement my approach into a model-based testing software to help the
security analyst in the exploitation phase of a pentest. I have described how
to use the Model Creator plug-in included in WAFEx in order to generate a
formal model of a web application and how to use WAFEx for generating and
testing AATs. Finally, I have described the application of WAFEx to two real-
world case studies: Multi-Stage and Cittadiverona; and shown how WAFEx
helped in identifying previously unknown attacks to Cittadiverona.

7

Related work

To the best of my knowledge, this work is the first attempt to show how
model-checking techniques and the standard DY attacker model can be used
for the generation of attack traces where multiple vulnerabilities are used to
violate security properties of web applications. There are, however, a number
of previous works that are closely related to what I presented in this thesis
and that are thus worth discussing: manual analysis and model-based testing.

7.1 Combination of vulnerability assessment and
penetration testing

A combination of vulnerability assessment and penetration testing remains
the leading methodology for the security analysis of web applications. The
vulnerability assessment phase has received much attention and several dif-
ferent tools have been proposed to help the security analyst in identifying
the presence of a vulnerability. On the other hand, penetration testing has
typically been left to the experience of the security analyst. This is because
the human component is crucial in evaluating the security of the web appli-
cation. Related to the vulnerability assessment phase, I mention the main,
freely available, tools that greatly support the security analyst in finding the
presence of vulnerabilities in web applications: sqlmap, sqlninja, DotDotPwn,
WFuzz, xss-proxy, Burp Proxy (Community Edition) and OWASP Zed Attack
Proxy (ZAP).

sqlmap [74] and sqlninja [75] are tools used to find SQLi entry points.
sqlmap supports many different databases, whereas sqlninja only supports
the Microsoft SQL server and provides features that are specific to attacking
the Microsoft SQL server that sqlmap does not provide. DotDotPwn [28] and
WFuzz [31] are used for fuzz testing when searching for injection points. Dot-
DotPwn is specifically tailored to test for directory traversal vulnerabilities,
whereas WFuzz is a general purpose fuzzer that given a library of payloads

140 7 Related work

and one or more injection points, performs many requests to the web appli-
cation trying every payload in every injection point. On the client side, it is
worth to mention the tool xss-proxy [89], which is used for advanced XSS
attacks. HTTP/S proxies also play an important role in understanding the
behavior of a web application. Specifically, it is worth to mention Burp Proxy
(Community Edition) [68] and OWASP Zed Attack Proxy (ZAP) [62].

As I already stated, none of these tools give any clue on how a vulnera-
bility can be used in the web application under analysis and they don’t say
if an attack that uses that vulnerability can actually be carried out. WAFEx,
on the other hand, aims at helping the security analyst understand how vul-
nerabilities related to web application can violate a given security property,
actually helping the penetration testing phase rather than the vulnerability
assessment phase.

7.2 Model-based testing

Model-based testing has been steadily maturing into a viable alternative
and/or complementary approach. I now describe model-based testing ap-
proaches that are closely related to my research.

In [3], Akhawe et al. presented a methodology for modeling web applica-
tions and considered five case studies modeled in the Alloy [42] language. The
idea is similar to this approach, but they defined three different attacker mod-
els that should find web attacks, whereas I have shown how the standard DY
attacker can be used. They also represent a number of HTTP details that are
not require in the formalization that I propose. Finally, and most importantly,
they don’t take combination of attacks into consideration.

In [18], Büchler et al. presented SPaCiTE, a formal approach for the secu-
rity analysis of web applications. SPaCiTE is a model-based security testing
tool that starts from a secure ASLan++ specification of a web application
and, by mutating the specification, automatically introduces security flaws.
SPaCiTE implements a mature concretization phase, but it mainly finds vul-
nerability entry points and tries to exploit them, whereas the main goal of my
methodology is to consider how the exploitation of one or more vulnerabilities
can compromise the security of the web application.

The “Chained Attack” approach of [20] considered multiple attacks to com-
promise a web application. The idea is close to the one I present in this paper.
However, the “Chained Attack” approach does not consider file-system vul-
nerabilities nor interactions between vulnerabilities, which means that with
that formalization it would be impossible to represent a SQLi to access the
file-system. Finally, the “Chained Attack” approach requires an extra effort of
the security analyst, who should provide an instantiation library for the con-
cretization phase, while I relay on well-known external state-of-the-art tools.

In [70], Rocchetto et al. model web applications to search for CSRF at-
tacks. They limit the analysis to CSRF only but their work inspired the intro-

7.2 Model-based testing 141

duction of CSRF in my formalization. Still, I did not use their formalization
as it is since I wanted to create a more comprehensive representation of the
honest client that could be used in every specification.

The methodology proposed by Armando et al. in [9, 7] is focused on bind-
ing the specification of security protocols to actual implementations. The
methodology starts with the definition of an abstract model (written using
a role-based language) of the HTTP messages composing the security proto-
col. A model checker is then used to derive a counterexample violating some
given security properties. The abstract messages, contained in the counterex-
ample, are then mapped to concrete messages used to test the web application.
The results differ from mine since WAFEx deals with web applications and
vulnerabilities related to them rather than with the security of protocols that
are employed by web applications.

In [65], Pellegrino et al. introduce Deemon, an automated testing frame-
work to discover CSRF attacks. The approach they propose is based on an
analysis of a web application to create a model that uses property graphs
to represent information such as execution traces and data flows. Deemon is
specifically tailored to finding CSRF and requires access to the source code of
the web application, whereas WAFEx can be used without having access to
the source code; moreover, I do not focus on finding any specific vulnerability
but I rather combine multiple vulnerabilities to violate a security property.

In [13], Backes et al. introduce an analysis technique for PHP applications
based on code property graphs. They start from the source code of a PHP
web application and create a graph structure representing a canonical repre-
sentation of the web application incorporating the syntax, control flow, and
data dependencies. Finally, they use queries for graph databases to describe
web applications vulnerable to specific vulnerabilities. They claim that their
approach works with high-level, dynamic scripting languages such as PHP but
it is unclear if it can be applied to non scripting and typed languages such as
Java servlet. In contrast, I designed WAFEx to be as technology-independent
as possible and thus WAFEx is not tied to a specific programming language or
environment. Moreover, as already stated for [65] and throughout this thesis,
the goal of WAFEx is to find attacks that, combining multiple vulnerabilities,
violate a security property of a web application.

8

Summary of contributions

In this thesis I have presented a formal, model-based testing approach for
the security analysis of web applications. More specifically, I have proposed
the formalization of the most dangerous vulnerabilities of web applications:
SQLi, XSS, CSRF and file-system related. To formally represent such vulner-
abilities, I have proposed the formalization of four entities representing the
vulnerable parties in a web application: the file-system, the database, the web
application itself and the honest client. The formalizations of the file-system,
the database and the honest client are general enough and can be reused in
any scenario. The formalization of the web application, on the other hand,
depends on the scenario being modeled and thus it is not possible to provide
a single entity that can be reused in every model. However, I have provided
a skeleton of a specification and a series of guidelines on how to formally
represent a web application. Using this formalization I have shown how the
DY attacker can be used in order to find and exploit vulnerabilities of web
applications. More specifically, I have shown how the DY attacker can find
multi-stage attacks to web applications that, to the best of my knowledge,
no other tools can find. Multi-stage attacks involve the combined exploit of
multiple vulnerabilities with the aim of finding complex attacks to web ap-
plications. The formalization I propose does not search for payloads that can
be used to exploit a particular vulnerability, but rather it exploits vulnerabil-
ities of web applications. Moreover, my formalization is independent from the
many different technologies used to implement web applications.

I have implemented a plug-in for the Burp Proxy that can be used to cre-
ate the formal model of a web application in the formal language ASLan++. I
have also implemented a prototype tool called WAFEx that takes two inputs:
the formal model of a web application written in ASLan++ and a concretiza-
tion file. WAFEx makes use of model-checking techniques in order to find
AATs violating security properties of web applications. Specifically, WAFEx
runs the CL-AtSe model checker on the ASLan++ model to generate an AAT.
If an AAT is generated, WAFEx automatically tests it against the real web
application. Testing an AAT requires the exploitation of one or more vulnera-

144 8 Summary of contributions

bilities which means that WAFEx needs to use appropriate payloads in order
to exploit vulnerabilities. Since the goal of this approach is not to find pay-
loads for exploiting vulnerabilities, WAFEx generates such payloads by using
state-of-the-art tools, specifically Wfuzz [31] and sqlmap [74].

I have first applied WAFEx to well-known vulnerable web applications
(WebGoat, DVWA and Gruyere) to check whether my approach was able to
identify the vulnerabilities I was interested in. The results I obtained in this
first analysis were very promising so that I took a step further and applied
WAFEx to two real-world case studies: Multi-Stage and Cittadiverona. The
use of WAFEx on these two case studies resulted in the generation of AATs
representing attacks that, to the best of my knowledge, no other tool for
the security analysis of web applications is able to identify. The results I
have presented in this thesis clearly show that model-checking techniques can
be used to identify complex attacks that so far only the manual analysis
carried out by a penetration tester could find. The results are promising but
further research is required for such an approach to be applied in a professional
environment.

9

Future work

The results I have presented in this thesis clearly show that model-checking
techniques can be used to identify complex multi-stage attacks to web ap-
plication that, so far, only the manual analysis carried out by a penetration
tester could find. As for any research work, there are several directions that
could be deepened to enhance the approach I propose and make it read to be
applied in a professional environment. I see two main ares for future work:
model creation and AATs generation.

The model creation of a web application is a crucial part in the formal
approach I propose. The creation of a model is a difficult task as it might
introduce errors on the specification or might result in non-termination of
the analysis. The Burp Proxy plug-in that I propose is a fist attempt at au-
tomatic model creation but I envision a more elaborate and fully automatic
model creation phase which is capable of extracting implementation details
such as the interaction between the web application and all the other entities
involved in the communication. In particular, useful interaction with my ap-
proach might come from adopting automatic model extraction techniques like
the one implemented in JModex [50].

Finally, let’s consider generation of AATs. As already stated, the CL-AtSe
model checker that is currently employed in WAFEx is not capable of gen-
erating multiple AATs. This is not an issue in the context of this thesis as
it can still be used to show that the approach I propose is actually capa-
ble for generating multi-stage attacks. However, a professional environment
requires the use of a model checker that is capable of generating multiple
AATs. This is why the model-checking phase needs to be improved by adopt-
ing an alternative solution or implement multiple AATs generation directly
into CL-AtSe. Furthermore, improvements might come from the implementa-
tion of new model-checking approaches such as [71] which might allow for a
faster analysis.

References

1. Acunetix. https://www.acunetix.com/.
2. Adobe. Flash. https://www.adobe.com/products/flashruntimes.html.
3. Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell, and Dawn

Song. Towards a Formal Foundation of Web Security. In CSF. IEEE, 2010.
4. Apache software foundation. Apache HTTP Server Tutorial: .htaccess files.

https://httpd.apache.org/docs/current/howto/htaccess.html.
5. http://www.arachni-scanner.com/.
6. Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta, Al-

berto Calvi, Alessandro Cappai, Roberto Carbone, Yannick Chevalier, Luca
Compagna, Jorge Cuéllar, Gabriel Erzse, Simone Frau, Marius Minea, Sebas-
tian Mödersheim, David von Oheimb, Giancarlo Pellegrino, SerenaElisa Ponta,
Marco Rocchetto, Michael Rusinowitch, Mohammad Torabi Dashti, Mathieu
Turuani, and Luca Viganò. The AVANTSSAR Platform for the Automated
Validation of Trust and Security of Service-Oriented Architectures. In TACAS,
LNCS 7214, pages 267–282. Springer, 2012.

7. Alessandro Armando, Roberto Carbone, Luca Compagna, Keqin Li, and Gian-
carlo Pellegrino. Model-Checking Driven Security Testing of Web-Based Appli-
cations. In 3rd International Conference on Software Testing, Verification and
Validation, ICST 2010, pages 361–370. IEEE Computer Society, 2010.

8. Alessandro Armando and Luca Compagna. SATMC: a SAT-based model checker
for security protocols. In JELIA, LNAI 3229, pages 730–733. Springer, 2004.

9. Alessandro Armando, Giancarlo Pellegrino, Roberto Carbone, Alessio Merlo,
and Davide Balzarotti. From model-checking to automated testing of security
protocols: Bridging the gap. In Tests and Proofs - 6th International Conference,
TAP 2012, pages 3–18. Springer, 2012.

10. AVANTSSAR. Deliverable 2.1: Requirements for modelling and ASLan v.1,
2008. www.avantssar.eu.

11. AVANTSSAR. Deliverable 2.2: ASLan v.2 with static service and policy com-
position., 2009. http://www.avantssar.eu.

12. AVANTSSAR. Deliverable 2.3 (update): ASLan++ specification and tutorial,
2011. http://www.avantssar.eu.

13. Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yam-
aguchi. Efficient and flexible discovery of php application vulnerabilities. In

https://www.acunetix.com/
https://www.adobe.com/products/flashruntimes.html
https://httpd.apache.org/docs/current/howto/htaccess.html
http://www.arachni-scanner.com/
www.avantssar.eu
http://www.avantssar.eu
http://www.avantssar.eu

148 References

2017 IEEE European Symposium on Security and Privacy (EuroS&P), pages
334–349, April 2017.

14. David Basin, Sebastian Mödersheim, and Luca Vigano. Ofmc: A symbolic model
checker for security protocols. International Journal of Information Security,
4(3):181–208, 2005.

15. Matt Bishop. About penetration testing. IEEE Security & Privacy, 5(6):84–87,
2007.

16. Abian Blome, Martín Ochoa, Keqin Li, Michele Peroli, and Mohammad Torabi
Dashti. VERA: A flexible model-based vulnerability testing tool. In 2013 IEEE
Sixth International Conference on Software Testing, Verification and Validation,
Luxembourg, Luxembourg, March 18-22, 2013, pages 471–478, 2013.

17. Matthias Büchler. Semi-Automatic Security Testing of Web Applications with
Fault Models and Properties. PhD thesis, Technical University Munich, 2015.

18. Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Semi-automatic
security testing of web applications from a secure model. In SERE.

19. Matthias Büchler, Johan Oudinet, and Alexander Pretschner. SPaCiTE – Web
Application Testing Engine. In 5th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2012, pages 858–859, 2012.

20. Alberto Calvi and Luca Viganò. An Automated Approach for Testing the Se-
curity of Web Applications Against Chained Attacks. In 31st ACM/SIGAPP
Symposium on Applied Computing (SAC). ACM Press, 2016.

21. Marcus Carey. Penetration Testing vs. Vulnerability Scanning - What’s
the Difference? https://www.alienvault.com/blogs/security-essentials/
penetration-testing-vs-vulnerability-scanning-whats-the-difference.

22. Steve Christey. The 2009 CWE/SANS top 25 most dangerous programming
errors. http://cwe.mitre.org/top25.

23. Bernardo Damele and Assumpção Guimarães. Advanced SQL injection to op-
erating system full control. In BlackHat EU, 2009.

24. Federico De Meo, Marco Rocchetto, and Luca Viganò. Formal Analysis of Vul-
nerabilities of Web Applications Based on SQL Injection. In Security and Trust
Management (STM), LNCS 9871. Springer, 2016.

25. Federico De Meo and Luca Viganò. A Formal Approach to Exploiting Multi-
stage Attacks Based on File-System Vulnerabilities of Web Applications. In
ESSoS, pages 196–212, 2017.

26. Federico De Meo and Luca Viganò. A Formal and Automated Approach to
Exploiting Multi-Stage Attacks of Web Applications. (submitted).

27. Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29, 1983.

28. DotDotPwn - The Directory Traversal Fuzzer. https://github.com/
wireghoul/dotdotpwn.

29. Adam Doupé, Marco Cova, and Giovanni Vigna. Why Johnny Can’t Pentest:
An Analysis of Black-Box Web Vulnerability Scanners. In DIMVA, LNCS 6201.
Springer, 2010.

30. Damn Vulnerable Web App (DVWA). http://www.dvwa.co.uk.
31. Edge-security. Wfuzz: The Web Bruteforcer. https://github.com/xmendez/

wfuzz.
32. Michael Felderer, Matthias Büchler, Martin Johns, Achim D. Brucker, Ruth

Breu, and Alexander Pretschner. Security Testing: A Survey. Advances in
Computers, 101:1–51, 2016.

https://www.alienvault.com/blogs/security-essentials/penetration-testing-vs-vulnerability-scanning-whats-the-difference
https://www.alienvault.com/blogs/security-essentials/penetration-testing-vs-vulnerability-scanning-whats-the-difference
http://cwe.mitre.org/top25
https://github.com/wireghoul/dotdotpwn
https://github.com/wireghoul/dotdotpwn
http://www.dvwa.co.uk
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz

References 149

33. Michael Felderer, Philipp Zech, Ruth Breu, Matthias Büchler, and Alexander
Pretschner. Model-based security testing: A taxonomy and systematic classifi-
cation. Software Testing, Verification and Reliability, 2015.

34. Jeff Forristal. ODBC and MS SQL server 6.5. Phrack, 8(54), 1998.
35. Fergal Glynn. Vulnerability Assessment and Penetration Testing.

http://www.veracode.com/security/vulnerability-assessment-and-
penetration-testing.

36. Greenbone Networks GMBH. Open Vulnerability Assessment System (Open-
VAS). http://www.openvas.org/.

37. Shashank Gupta and Brij Bhooshan Gupta. Cross-Site Scripting (XSS) attacks
and defense mechanisms: Classification and state-of-the-art. International Jour-
nal of System Assurance Engineering and Management, 2015.

38. William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A Classification of
SQL-Injection Attacks and Countermeasures. In ISSSE, 2006.

39. Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in
Operating Systems. Commun. ACM, 19(8):461–471, 1976.

40. ISECOM. Open Source Security Testing Methodology Manual (OSSTMM).
http://www.isecom.org/research/.

41. Daniel Jackson. Alloy Analyzer. http://alloy.mit.edu/alloy/index.html.
42. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT

Press, 2012.
43. Joomla! https://www.joomla.org.
44. Bruce Leban, Mugdha Bendre, and Parisa Tabriz. Gruyere: Web Application

Exploits and Defenses. https://google-gruyere.appspot.com/, 2015.
45. Franck Lebeau, Bruno Legeard, Fabien Peureux, and Alexandre Vernotte.

Model-Based Vulnerability Testing for Web Applications. In SECTEST’13,
pages 445–452. IEEE CS Press, 2013.

46. Rapid7 LLC. Metasploit. https://www.metasploit.com/.
47. Microsoft. ActiveX. https://www.microsoft.com/com/tech/activex.asp.
48. Microsoft. ASP documentation: Including Files in ASP Applications. https:

//msdn.microsoft.com/en-us/library/ms524876(v=vs.90).aspx.
49. Microsoft. Silverlight. https://www.microsoft.com/silverlight/.
50. Petru Florin Mihancea and Marius Minea. JMODEX: model extraction for

verifying security properties of web applications. In 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering, CSMR-WCRE 2014, Antwerp, Belgium, February 3-6, 2014, pages
450–453, 2014.

51. MITRE. Common Attack Pattern Enumeration and Classification (CAPEC).
https://capec.mitre.org/.

52. Mozilla. JavaScript. https://developer.mozilla.org/en-US/docs/Web/
JavaScript.

53. Multi-Stage Web Application. https://github.com/rhaidiz/multi-stage.
54. Netsparker Web Application Security Scanner. https://www.netsparker.com/

web-vulnerability-scanner/.
55. Oracle. MySQL. https://www.mysql.com.
56. Oracle. MySQL LOAD_FILE. http://dev.mysql.com/doc/refman/5.7/en/

string-functions.html#function_load-file.
57. Oracle. The Java EE 5 Tutorial: Reusing Content in JSP Pages. http://docs.

oracle.com/javaee/5/tutorial/doc/bnajb.html.

http://www.veracode.com/security/vulnerability-assessment-and-penetration-testing
http://www.veracode.com/security/vulnerability-assessment-and-penetration-testing
http://www.openvas.org/
http://www.isecom.org/research/
http://alloy.mit.edu/alloy/index.html
https://www.joomla.org
https://google-gruyere.appspot.com/
https://www.metasploit.com/
https://www.microsoft.com/com/tech/activex.asp
https://msdn.microsoft.com/en-us/library/ms524876(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/ms524876(v=vs.90).aspx
https://www.microsoft.com/silverlight/
https://capec.mitre.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/rhaidiz/multi-stage
https://www.netsparker.com/web-vulnerability-scanner/
https://www.netsparker.com/web-vulnerability-scanner/
https://www.mysql.com
http://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_load-file
http://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_load-file
http://docs.oracle.com/javaee/5/tutorial/doc/bnajb.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnajb.html

150 References

58. OWASP. DirBuster. https://www.owasp.org/index.php/Category:OWASP_
DirBuster_Project.

59. OWASP. OWASP File System. https://www.owasp.org/index.php/File_
System.

60. OWASP. OWASP Testing Guide v4. https://www.owasp.org/index.php/
OWASP_Testing_Project.

61. OWASP. Top 10 for 2013. https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project.

62. OWASP. Zed Attack Proxy Project (ZAP). https://www.owasp.org/index.
php/OWASP_Zed_Attack_Proxy_Project.

63. OWASP. WebGoat Project. https://www.owasp.org/index.php/Category:
OWASP_WebGoat_Project, 2011.

64. OWASP. Testing Guide v 4.0, 2015.
65. Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Chris-

tian Rossow. Deemon: Detecting CSRF with Dynamic Analysis and Property
Graphs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 1757–1771, 2017.

66. Michele Peroli, Federico De Meo, Luca Viganò, and Davide Guardini. Mob-
ster: A model-based security testing framework for web applications. Software
Testing, Verification and Reliability. (to appear).

67. PHP documentation: include. http://php.net/manual/it/function.include.
php.

68. Postswigger. Burp Proxy, 2014. https://portswigger.net/burp/proxy.html.
69. Andres Riancho. w3af — Web Application Attack and Audit Framework. http:

//www.arachni-scanner.com/.
70. Marco Rocchetto, Martín Ochoa, and Mohammad Torabi Dashti. Model-Based

Detection of CSRF. In SEC, IFIP AICT 428. Springer, 2014.
71. Marco Rocchetto, Luca Viganò, and Marco Volpe. An interpolation-based

method for the verification of security protocols. Journal of Computer Secu-
rity, pages 463–510, 2017.

72. Amirmohammad Sadeghian, Mazdak Zamani, and Shahidan M. Abdullah. A
Taxonomy of SQL Injection Attacks. ICICM, pages 269–273, 2014.

73. SANS Institute. Penetration Testing: Assessing Your Overall Security Before
Attackers Do. https://www.sans.org/reading-room/whitepapers/analyst/
penetration-testing-assessing-security-attackers-34635.

74. sqlmap: Automatic SQL injection and database takeover tool, 2013. http:
//sqlmap.org.

75. sqlninja: a sql server injection and takeover tool. http://sqlninja.
sourceforge.net/.

76. Dafydd Stuttard and Marcus Pinto. The Web Application Hacker’s Handbook:
Discovering and Exploiting Security Flaws (2nd Edition). John Wiley & Sons,
Inc., New York, NY, USA, 2011.

77. Chris Sullo and David Lodge. Nikto. http://www.cirt.net/nikto2.
78. Telerik. Fiddler. https://www.telerik.com/fiddler.
79. Trustwave SpiderLabs. Joomla SQL Injection Vulnerability Exploit Re-

sults in Full Administrative Access, 2015. https://www.trustwave.com/
Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-
Exploit-Results-in-Full-Administrative-Access.

80. Mathieu Turuani. The CL-AtSe Protocol Analyser. In RTA, LNCS 4098.
Springer, 2006.

https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://www.owasp.org/index.php/File_System
https://www.owasp.org/index.php/File_System
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
http://php.net/manual/it/function.include.php
http://php.net/manual/it/function.include.php
https://portswigger.net/burp/proxy.html
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
https://www.sans.org/reading-room/whitepapers/analyst/penetration-testing-assessing-security-attackers-34635
https://www.sans.org/reading-room/whitepapers/analyst/penetration-testing-assessing-security-attackers-34635
http://sqlmap.org
http://sqlmap.org
http://sqlninja.sourceforge.net/
http://sqlninja.sourceforge.net/
http://www.cirt.net/nikto2
https://www.telerik.com/fiddler
https://www.trustwave.com/Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-Administrative-Access
https://www.trustwave.com/Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-Administrative-Access
https://www.trustwave.com/Resources/SpiderLabs-Blog/Joomla-SQL-Injection-Vulnerability-Exploit-Results-in-Full-Administrative-Access

References 151

81. Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Software Testing, Verification and Reliability,
22(5):297–312, 2012.

82. Alexandre Vernotte, Cornel Botea, Bruno Legeard, Arthur Molnar, and Fa-
bien Peureux. Risk-Driven Vulnerability Testing: Results from eHealth Experi-
ments Using Patterns and Model-Based Approach. In RISK 2015, pages 93–109.
Springer, 2015.

83. Robert Vibhandik and Arijit Kumar Bose. Vulnerability assessment of web
applications – a testing approach. In ICeND, pages 1–6, 2015.

84. Luca Viganò. The SPaCIoS Project: Secure Provision and Consumption in the
Internet of Services. In Software Testing, Verification and Validation (ICST),
2013.

85. David von Oheimb and Sebastian Mödersheim. ASLan++ — a formal security
specification language for distributed systems. In Formal Methods for Compo-
nents and Objects, FMCO, LNCS 6957, pages 1–22. Springer, 2010.

86. Web Application Formal Exploiter (WAFEx). https://github.com/rhaidiz/
wafex.

87. Web Application Formal Exploiter (WAFEx) Model Creator. https://github.
com/rhaidiz/wafex-model-creator.

88. Wfuzz: The Web fuzzer. https://github.com/xmendez/wfuzz.
89. XSS-Proxy. http://xss-proxy.sourceforge.net/.

https://github.com/rhaidiz/wafex
https://github.com/rhaidiz/wafex
https://github.com/rhaidiz/wafex-model-creator
https://github.com/rhaidiz/wafex-model-creator
https://github.com/xmendez/wfuzz
http://xss-proxy.sourceforge.net/

A

Appendix

A.1 Modeling DVWA, WebGoat and Gruyere

DVWA, WebGoat and Gruyere are state-of-the-art testing environments vul-
nerable to the most dangerous vulnerabilities of web applications. The purpose
of these environments is to provide pentesters with a safe space where they
can learn how to exploit the main vulnerabilities afflicting the security of
web applications. They are structured in a series of different lessons imple-
menting similar vulnerable functionalities such as login, database search and
file-system access. The thing that changes from one environment to the other,
is the payload required to exploit a vulnerability. Since my formalization does
not consider payloads, meaning that I do not search for a payload that exploits
a vulnerability, it is possible to develop a single ASLan++ model represent-
ing the functionalities of interested that are shared by all these three testing
environments. I now describe an ASLan++ model of a web application that
I used to test DVWA, WebGoat and Gruyere. The ASLan++ code is shown
in Listing A.1 and represents a web application that provides the following
four pages:

• a page for creating a password;
• a page for querying the database;
• a page for uploading a file to the file-system;
• a page that includes and external resource in a web page.

The web application handles a request for the page insertpwd with two pa-
rameters Newpwd and Confpwd (line 9). The web application now checks whether
Newpwd and Confpwd are equal (line 10) and, if that is the case, performs an
insert operation on table users (line 11). The web application now waits for
the insert operation to be completed (line 12) and answers by sending the
result of executing the insert query (line 13).

The web application handles a request for the page querydb with parame-
ter Query (line 20) which is used to query the database. The web application
performs a query (line 21) and waits for the database to perform the query

154 A Appendix

(line 22). Finally, the web application answers with variable Result represent-
ing the result of executing the query (line 23).

The web application handles a request for the page upload with parame-
ter Path used to upload and write a file to the file-system (line 28). The web
application performs a writing operation on the file-system for writing file
Path (line 29) and waits for the file-system to perform the writing operation
(line 30). Finally, since the writing operation on the file-system does not pro-
duce an output, the web application simply answers by sending the constant
none (line 31).

The web application handles a request for the page include with parameter
Path used to read a file from the file-system (line 36). The web application
performs a reading operation on the file-system (line 37) and waits for the file-
system to perform the reading operation (line 38). Finally, the web application
answers by sending the variable Result representing the result of executing
the reading operation (line 39).

Listing A.1: ASLan++ code representing a web application used to test
DVWA, WebGoat and Gruyere

1 entity Webapplication(Honest , Actor , Database ,
Filesystem: agent) {

2 symbols
3 Entity : agent;
4 Path , Query , Newpwd , Confpwd : message;
5

6 body{
7 while(true){
8 select{
9 on(? Entity*->*Actor:http_request(insertpwd , ?

Newpwd .?Confpwd , nonec)):{
10 select{ on(Newpwd = Confpwd):{
11 insert(users , Newpwd);
12 select{ on(! insert(users , Newpwd)):{
13 Actor *->*Entity:http_response(insertpwd ,

Result , none);
14 }
15 }
16 }
17 }
18 }
19

20 on(? Entity*->*Actor:http_request(querydb , ?Query ,
none)):{

21 query(test , Query);
22 select{ on(! query(test , Query)):{
23 Actor*->*Entity:http_response(querydb , Query.

Result , none);
24 }

A.2 Exploiting a vulnerability 155

25 }
26 }
27

28 on(? Entity*->*Actor:http_request(upload , ?Path ,
none)):{

29 writeFile(Path);
30 select{ on(! writeFile(Path)):{
31 Actor*->*Entity:http_response(upload , none ,

none);
32 }
33 }
34 }
35

36 on(? Entity*->*Actor:http_request(include , ?Path ,
none)):{

37 readFile(Path);
38 select{ on(! readFile(Path)):{
39 Actor*->*Entity:http_response(include , Result

, none);
40 }
41 }
42 }
43 }
44 }
45 }
46 }

A.2 Exploiting a vulnerability

DVWA, WebGoat and Gruyere are divided in lessons the purpose of which is
to exploit a single vulnerability and thus applying WAFEx to these testing
environments results in the generation of a simple MSC. In Figure A.1 is
shown a MSC representing the messages involved in the exploitation of a
single vulnerability in DVWA, WebGoat and Gruyere. The attacker sends
a message to a victim entity Victim 1 . In my formalization, the attacker
communicates only with the web application or the honest client, thus the
victim entity is alway only one of these two entities. The message sent by
the attacker contains the malicious constant malicious which represents any
and all payloads for exploiting vulnerabilities of web applications as described
in § 5.3. Optionally, a number of HTTP requests and responses may occur
after the attacker sent the malicious payload 2 , representing the interleaving
communication between other entities. Finally, a message from the victim is
sent to the attacker with the result of triggering a malicious operation 3 .

Attacker Victim

page, malicious.?, cookie

1

page’, result, cookie’

3

2

Fig. A.1: Anatomy of exploiting a vulnerability of web applications with
WAFEx

	Introduction
	Motivation
	Contributions
	Publications related to this thesis
	Synopsis

	Part I:State of the art
	Web applications security
	Database related vulnerabilities
	Boolean-based blind SQLi
	Time-Based SQLi
	Error-Based SQLi
	UNION Query-Based SQLi
	Second-Order SQLi
	Stacked Queries SQLi
	Prevention techniques

	File-system related vulnerabilities
	Directory Traversal (a.k.a. Path Traversal)
	SQLi
	File Inclusion
	Forced Browsing (a.k.a. Direct Request)
	Unrestricted File Upload
	Prevention techniques

	Client-side related vulnerabilities
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (CSRF)
	Prevention techniques

	Conclusions

	Software analysis
	Static analysis
	Model Checking
	The AVANTSSAR platform
	ASLan connector
	The formal language ASLan++
	From ASLan++ to ASLan
	Validators

	Dynamic analysis
	Penetration Testing
	Penetration testing methodologies
	Anatomy of a penetration test
	Toolkit

	Model-Based Testing
	The SPaCIoS tool

	Conclusions

	Part II:Model-based Security Testing Framework (MobSTer)
	MobSTer
	Modeling web applications for MobSTer
	Users, data and knowledge
	The behavior of web applications
	Security Mechanisms & Testing-Related Information
	States of the transition system
	Actions
	Security goals
	The Alloy language
	Signatures and Relations
	Facts
	Predicates
	Assertion

	Model definitions in Alloy
	Users, data and knowledge

	Evaluation
	Implementation
	Initial Phase
	Browsing Phase
	Attack Phase
	Check Phase

	Results of the tests
	Access-control flaws
	AJAX security
	Cross-Site Scripting (XSS)
	Injection flaws

	Related work
	Conclusions

	Part III:Multi-stage analysis of web applications
	The formalization
	Data types
	The communication model
	The Web Attacker
	The File-system
	File-system content
	File-system operations
	Reading and writing behavior

	The Database
	Database content
	The behavior of queries

	The Web Application
	The HTTP protocol
	Client communication
	File-system and database communication.
	Sessions
	Remote code execution

	The honest client
	Security properties
	Multi Stage case study
	The specification

	Conclusions

	WAFEx
	Model creator
	Concretization
	Experimental results
	Case study: the Multi-Stage web application
	The abstract attack traces
	Concretization

	Case study: Cittadiverona
	The specification
	The analysis of Cittadiverona
	Concretization

	Conclusions

	Related work
	Combination of vulnerability assessment and penetration testing
	Model-based testing

	Summary of contributions
	Future work
	References
	Appendix
	Modeling DVWA, WebGoat and Gruyere
	Exploiting a vulnerability

