
Giuseppe Di Guglielmo

On the Validation of Embedded
Systems through Functional ATPG

Ph.D. Thesis

March 12, 2009

Università degli Studi di Verona

Dipartimento di Informatica

Advisor:
prof. Franco Fummi

Series N◦: TD-02-09

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy

M

Acknowledgment.
Writing a thesis is not something you just do by yourself at an unimpeded moment.
During the time period of three years, many people have been of great support.
Colleagues, friends, and family have helped me in accomplishing this assignment.
Therefore, I would like to take this opportunity to thank a number of them in
particular.

It is difficult to overstate my gratitude to my Ph.D. Advisor, Prof. Franco
Fummi. With his enthusiasm and his inspiration, he helped to make the hard
work fun for me. Throughout these months, he provided encouragement, sound
advice, and lots of good ideas.

I would like to thank the person who has taught me what it means to be a
researcher, Dott. Graziano Pravadelli. Nearly three years ago, a conversation with
Graziano started me on the path I traveled. Graziano has been instrumental in
ensuring my academic, professional, and human well being ever since. In every
sense, none of this work would have been possible without him.

I am indebted to my many colleagues for providing a stimulating and fun
environment in which to learn and grow. I am especially grateful to my office-
mates, Cristina Marconcini, Nicola Bombieri, and Francesco Stefanni. I would
also acknowledge all the ESD Group and EDALab colleagues for their support at
everyday work.

The last scientific acknowledgements goes to the students of ESD Laboratory,
each one of them gave a little, but fundamental contribution to this work.

I wish to thank my friends, for helping and tolerating me to get through the
hard times, and for all the emotional support, entertainment, and caring they pro-
vided, Alessandro Balzanello, Giordano Dalla Verde, Matteo Francescato, Oscar
Francescato, Paolo Gaburro, Laura Maschi, Anna Piccoli, Cristiana Rossi, Al-
ice Scala, Andrea Soave, Luca Stefanelli, Elisa Stevanella, Silvia Stizzoli, Matteo
Tosato, Viola Zerbetto.

I would also like to express my thanks and gratitude to my friend, colleague
and brother, Luigi Di Guglielmo for his endless support and encouragement at all
times.

Lastly, and most importantly, I wish to thank my parents, Maria Antonietta
Scanzano and Michele Di Guglielmo. They bore me, raised me, supported me,
taught me, and loved me.

Verona, March 12nd, 2009

Contents

1 Introduction . 1
1.1 Problem formulation . 2
1.2 Thesis Overview . 4

2 Background . 7
2.1 Embedded Systems: Modeling . 7

2.1.1 VHDL . 10
2.1.2 Verilog . 16
2.1.3 SystemC . 19
2.1.4 Implicit Modeling . 25

2.2 Embedded Systems: Validation . 30
2.2.1 Static Verification . 30
2.2.2 Dynamic Verification . 33
2.2.3 Test Generation . 36
2.2.4 Fault models . 46
2.2.5 Fault Injection . 50

2.3 Mutation Analysis . 52
2.3.1 The Mutation Analysis Process . 53
2.3.2 Using Mutation Analysis to Detect Faults 55
2.3.3 Practical use of Mutation testing . 55

2.4 Co-simulation . 61
2.4.1 Co-design scenario . 61
2.4.2 Classification of co-simulation methodologies 63

2.5 Constraint solving . 65
2.5.1 ECLiPSe: a Constraint Logic Programming System 65
2.5.2 NuSMV: a Model Checking System . 68

3 Motivation and Goals . 73
3.1 Defining a model to represent the DUV . 74
3.2 Defining a functional deterministic ATPG engine 75
3.3 Quantifying the effectiveness of generated test sequences 75
3.4 Defining an efficient simulation engine . 76

VI Contents

4 HDL Manipulation Infrastructure . 77
4.1 Introduction . 77
4.2 HIFSuite Overview . 78
4.3 HIF Core-Language and APIs . 80

4.3.1 HIF Basic Elements . 80
4.3.2 System Description by using HIF . 81
4.3.3 HIF Application Programming Interfaces 83

4.4 Conversion Tools . 86
4.4.1 HDL2HIF . 86
4.4.2 HIF2HDL . 86
4.4.3 Supported HDL Constructs . 88

4.5 Concluding remarks . 88

5 Methodology: Computational model . 89
5.1 Introduction . 90
5.2 The EFSM model . 91
5.3 Classification of EFSM Transitions . 93

5.3.1 Reference ATPG . 93
5.3.2 ATPG Efficiency . 93
5.3.3 Input-dependent HTT transitions . 94
5.3.4 Register-dependent HTT transitions . 96

5.4 Avoiding Input-dependent HTT transitions . 97
5.4.1 Generation of the Reference EFSM . 98
5.4.2 Generation of the Largest EFSM . 98
5.4.3 Generation of the Smallest EFSM . 98
5.4.4 Removal of Timing Discrepancies . 102

5.5 Avoiding Register-dependent HTT transitions 104
5.6 Modeling system events . 106
5.7 EFSM composition . 108

5.7.1 Serial Composition . 109
5.7.2 Parallel Composition . 109
5.7.3 Feedback Composition . 110

5.8 The HLDD model . 111
5.9 From EFSMs to HLDDs . 114
5.10 Experimental Results . 115

5.10.1 EFSM Traversing . 116
5.10.2 Fault Coverage . 117
5.10.3 EFSM and HLDD generation . 118

5.11 Published contributions . 119

6 Methodology: Automatic Test Pattern Generation 121
6.1 ATPG architecture . 123

6.1.1 Introduction . 123
6.1.2 Functional ATPG Framework . 124
6.1.3 Multi-Process Scheduling . 131
6.1.4 Experimental Results . 132

6.2 Deterministic EFSM-based engine . 134

Contents VII

6.2.1 Introduction . 134
6.2.2 The FATE ATPG Engine . 136
6.2.3 Experimental Results . 146

6.3 EFSM composition vs EFSM scheduling . 148
6.3.1 Experimental Results . 150

6.4 Combined use of HLDD and EFSM . 152
6.4.1 The HLDD&EFSM ATPG Framework 153
6.4.2 The HLDD-based Engine . 154
6.4.3 The EFSM-based Engine . 155
6.4.4 Experimental Results . 157

6.5 Published contributions . 157

7 Methodology: Functional fault model and testbench quality 159
7.1 The Bit Coverage Fault Model . 161

7.1.1 Bit-coverage Fault Injection. 164
7.2 The Mutation-based Fault Model . 164

7.2.1 Mutation Analysis using Program Schemata 166
7.2.2 Mutation operators for HDL descriptions 167

8 Methodology: Fault simulation . 169
8.1 Introduction . 169
8.2 Open issues . 171

8.2.1 The functional fault model . 172
8.2.2 Functional fault parallelization . 172
8.2.3 The parallel simulation engine . 174
8.2.4 The simulation kernel and the simulation language 174
8.2.5 The flipping bit problem . 175

8.3 Optimizations . 176
8.3.1 Optimized inputs management . 176
8.3.2 Mux computation optimization . 177
8.3.3 Splitting the netlist logic cones . 177
8.3.4 Optimizing the flops computations . 177
8.3.5 Dealing with the compiler . 177
8.3.6 The four value logic . 178
8.3.7 Function inlining . 178

8.4 Experimental results . 179

9 Application to Embedded Systems . 181
9.1 Vertigo reference design platform . 182
9.2 Mixing modeled hardware devices and applications 183

9.2.1 Co-simulation architecture . 185
9.2.2 Co-simulation methodology . 188
9.2.3 Multi-instance co-simulation . 193

9.3 Automatic Test Pattern Generation and Co-simulation 194

10 Conclusions . 197

VIII Contents

11 Published Contributions . 201
11.1 Journal papers . 201
11.2 International Conference . 201
11.3 PhD Forums . 203

References . 205

Achronisms

The singular and plural of an acronym are always spelled the same.

ABV Assertion-Based Verification
ADD Assignment Decision Diagram
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction Processor
ASSP Application Specific Standard Product
ATPG Automatic Test Pattern Generation
BDD Binary Decision Diagram
BGL Boost Graph Library
BMC Bounded Model Checking
BTG Block Transition Graph
CDC Controllability-Don’t-Care Set
CDCext External Controllability-Don’t-Care Set
CLP Constraint Logic Programming
CNF Conjunctive Normal Form
CP Configurable Platform
CS Controllability Set
CTL Computation Tree Logic
DAG Direct Acyclic Graph
DCG DUV dependent Component Generator
DPI Direct Programming Interface
DSP Digital Signal Processing
DUV Design Under Validation
EDA Electronic Design Automation
EEFSM Extended Event Finite State Machine
EFSM Extended Finite State Machine
ETD Easy-to-Detect
ETT Easy-to-Traverse
FATE Functional ATPG to Traverse unstabilized EFSM
FF Flip-Flops
FSM Finite State Machine

FSMD Finite State Machine with Data Path
FPGA Field Programmable Gate Array
GA Genetic Algorithm
GCD Greatest Common Divisor
HDL Hardware Description Language
HIF HDL Intermediate Format
HLDD High Level Decision Diagram
HTD Hard-to-Detect
HTT Hard-to-Traverse
IC Integrated Circuit
IEEE Institute of Electrical and Electronic Engineers
IIR In-memory Intermediate Representation
IP Intellectual Property
ISS Instruction Set Simulator
LEFSM Largest EFSM
LPV Linear Programming Verification
LTL Linear Time Logic
MSB Most Significant Bit
ODC Observability-Don’t-Care Set
PI Primary Input
PLI Programming Language Interface
PO Primary Output
PSL Property Specification Language
REFSM Reference EFSM
ROBDD Reduced Ordered Binary Decision Diagram
RTE Run Time Engine
RTL Register Transfer Level
RH Re-configurable Hardware
SBDD Shared Binary Decision Diagram
SEFSM Smallest EFSM
S2EFSM Stabilized SEFSM
SoC System-on-Chip
STG State Transition Graph
STL Standard Template Library
TBA To be Activated
TBP To be Propagated
TL Transactional Level
VHDL VHSIC Hardware Description Language (VHDL)
VHSIC Very High Speed Integrated Circuit

1

Introduction

In 1980, Gordon Moore stated a law according to which the number of transis-
tors on silicon chips was doubling every eighteen months. Although it is not a
real physical law, this prediction revealed to be incredibly exact. Between 1971
and nowadays, the density of transistors actually doubled every 1,96 years. As a
consequence, electronic devices became more and more powerful and less and less
costly.

Nowadays, embedded systems technology powers many of today’s innovations
and products. The rapid technologic advancement fuels the increasing chip com-
plexity, which in turn enables the latest round of products. Embedded systems
touch many aspects of everyday life, form the pocket-sized cell phone, and digital
camera, to the high-end server that searches an online database, verifies credit
cards found, and sends the order to the warehouse for immediate delivery. Also
expectations for these chips grow at an equal rate, despite the additional complex-
ity. For example for critical applications, like the chips that monitor the safety
processes in cars. It is not acceptable that these chips fail during the normal use
of the vehicle, nor it is acceptable, for example, to be denied access to an online
brokerage accounts because the server is down.

Then, an enormous amount of engineering goes into each of these chips, whether
it is a microprocessor, memory device o entire system on a chip. All types of chips
have a set of challenges that the engineers must solve for the final product to be
successful in the marketplace.

The verification flow has become a bottleneck in the development of today’s
digital systems. Chip complexity and market competitiveness has increased to the
point that design teams require to spend around 70% of their efforts in finding the
bugs that lurk in their design. In particular, the two main phases of the verification
flow are testing and functional validation. The latter aims to ensure that the design
satisfies its specification before manufacturing, by detecting and removing design
errors. Testing focuses on the detection of production defects quickly as chips
come off the manufacturing line. Even thought testing and functional validation
are often grouped together, the two disciplines have little in common. A chip that
successfully runs through testing may still add one to one and get three if the design
had poor functional validation. Testing only confirms that the manufactured chip

2 1 Introduction

is equivalent to the circuit design specified to the manufacturing process. It makes
no statement about the logical functionality of the chip itself.

However, the design teams dealing with the verification of a system have to
handle three constraints: schedule, costs and quality.

Digital systems success depends heavily on hitting the marketplace at the right
time, therefore schedule has become an imperative point. Then, the use of auto-
matic tools reduces both the verification time and the probability of committing
errors. A valid solution is represented by dynamic verification, that exploits simula-
tion based techniques and automatic test pattern generators (ATPGs) to generate
the required test sequences.

Customers expect that delivered products meet the quality standard. Obvi-
ously, as introduced before, for critical application quality is also essential. Fur-
thermore, if the marketplace perceives that a product is of poor quality, it can
have a devastating effect on the company.

Another critical constraint is cost that can influence the different verification
phases. Costs of undetected bugs grow over time. If a bug is detected early during
verification, it costs little to fix it. The designer reworks the high-level design
description and the verification time can show that the update fixed the ordinal
problem. A bug found in a system test, however, may cost hundreds of thousands
of dollars: hardware must be re-fabricated and there is additional time -to-market.
Finally, and most costly, a customer discovering bug not only invokes warranty
replacement but may tarnish the image of the company or brand of products.

Functional validation is the highest lever that affects all three constraints.
A chip can be produced early if the verification team is able to remove design
errors efficiently. Then, costs of re-fabricating a chip multiple times can drive the
development expenses to an unacceptable level and negatively affect the product
schedule. Functional validation reduces the number of re-spins and removes latent
problems, avoiding also quality problems of the developed products.

Another advantage of functional validation is that that designers have to work
at the higher abstraction level, and the design descriptions are more tractable
than gate-level ones. On the other side, efficient logic-level ATPGs are available for
digital system and already part of the state of the art, while high-level functional
ATPG frameworks are still in a prototyping phase.

1.1 Problem formulation

Most of the publications focusing on the field of Electronic Design Automation
(EDA) begin claiming the importance of validation [1] and testing [2] for shipping
successful digital systems. While the purpose of testing is to verify that the design
was manufactured correctly, validation aims to ensure that the design meets its
functional intent before manufacturing. In particular, functional validation of dig-
ital systems is the process of ensuring that the logical design of the device satisfies
the architectural specification by detecting and removing every possible design er-
ror. As digital systems become more complex with each generation, verifying that
the behavior is correct has become a very challenging task. Between 60% and 80%
of hardware design group effort is now dedicated to verification. The trend is even

1.1 Problem formulation 3

more crucial for embedded systems, which are composed of a heterogeneous mix of
hardware and software modules. The presence of design errors in the early phases
of the design flow may lead to a complete failure of time-to-market fulfillment.

Because validation is on the critical path of embedded system design flow, the
time it needs must be greatly reduced to satisfy the time-to-market requirements.
Two ways are particulary promising for accomplishing the goal: abstraction of
design level and automation of verification. A higher level of abstraction allows
us to work more efficiently without worrying about low-level details. After all,
verification is interested in ensuring functionality of a design, not caring about
how it is implemented. However, abstraction reduce visibility and control over
low-level details that could be exploited to arrange a more efficient verification
strategy. On the other hand, the use of automatic tools reduce both the verification
time and the probability of committing errors. Unfortunately, automation is not
always possible, especially in process that are not well-defined and continue to
require human ingenuity and creativity.

A good validation methodology must choose wisely the abstraction level and
the degree of the automation according to what is being verified. Investigating
about the correctness of synchronization between components of an embedded
system may require a different approach with respect to addressing the correct-
ness of each component alone. From this point of view, functional validation cannot
be dependent on a single tool. A mix of different static and dynamic techniques is
required, including hardware modeling and simulation, random and focused stim-
ulus generation, coverage analysis, formal checking software to compare model
behavior against specification. Tool-independent methodologies yield a more pre-
dictable and adaptable process, they have lower adoption cost, and they are not
dependent on the continued technical superiority of any one EDA tool vendor.
Thus, semiformal techniques, where formal and simulation-based approaches in-
tegrate each other, are arising more and more. In this way, respective limitations
can be mitigated yielding efficient and effective verification processes for an early
detection of design errors.

In this context, many functional validation techniques based on Automatic Test
Pattern Generators (ATPGs), have been proposed in the paste. They are applied
either to an explicit HDL description of the Design Under Validation (DUV), or
to mathematical models, such as for example, a Finite State Machine (FSM). All
these methods generate good test sequences for easy-to-detect faults, but hard-to-
detect faults may require a very long execution time. This thesis would develop a
methodology for addressing also hard-to-detect faults when a high-level ATPG is
applied to verify functional descriptions of sequential circuits.

The proposed methodology is based on the Extended Finite State Machine
model (EFSM), which allows to improve observability and controllability of faults
injected into functional descriptions of sequential circuits. The EFSM is a valuable
alternative to FSM model, preserving many characteristics of an FSM and reducing
the state explosion problem. In this case, control and datapath are mixed, but the
number of states is sensibly lower with respect to a corresponding FSM, since
the EFSM does not require an explicit representation of internal registers. The
EFSM paradigm can be very effective, from a design point of view, to describe
concurrent systems; moreover it has not been widely applied for verification, and

4 1 Introduction

particularly for automatic test pattern generation. The reason depends on the
difficulty of traversing an EFSM, which is a fundamental requirement to control
and to observe faults. In fact, moving from a state of the EFSM to another depends
on the value of primary inputs, but also on the value of internal registers.

In particular, this thesis proposes a procedure that generates a particular kind
of EFSM that is exactly equivalent to the HDL description of design under val-
idation (DUV). The proposed methodology changes the detectability properties
of the DUV by exploiting the different EFSM features, allowing to generate test
sequences for hard-to-detect faults. It can be applied to every sequential circuit im-
proving the observability and controllability of hard-to-detect faults. A functional
ATPG framework has been defined that is fast, since it relies on simulation, but
also very effective on covering corner cases as it can exploit the EFSMs features
to uniformly explore the state spaces of the DUV.

1.2 Thesis Overview

This thesis proposes a methodology based on both dynamic verification and semi-
formal techniques to perform testing and functional validation of an embedded
system. The thesis structure reflects all aspects that have to be addressed to define
a deterministic ATPG and to estimate the efficiency of generated test sequences
on high-level design errors.

Chapter 2 summarizes the necessary background that has been investigated
for three years to plan and implement the methodology described in this thesis.
Section 2.1 presents the state of the art for modeling and simulating embedded
systems, from most popular Hardware Description Languages (HDLs) to implicit
mathematical representations of digital systems functionalities. Section 2.2 is de-
voted to present an overview of formal and simulation-based methods to verify
embedded systems. In particular, it presents the main issues dealing with the dy-
namic verification, pattern generation and fault modeling. Section 2.3 introduces
the Mutation Analysis as a technique for software unit testing. Section 2.4 de-
scribes co-simulation concepts and strategies which allow to simulate and verify
HW/SW embedded systems before the real platform is available. In this field, there
is a large variety of approaches, that rely on different communication mechanisms
to implement an efficient interface between the SW and the HW simulators. An
overview is provided. Finally, Section 2.5 summarizes two different approaches
used to solve the constraint solving problem, based respectively on Constraint
Logic Programming and Model Checking.

Chapter 3 describes the motivation and goals driving this thesis work organized
into four main aspects related to ATPG-framework design: the definition of an
abstract model to represent the DUV, the definition of a functional deterministic
ATPG engine, the definition of a fault model to guide the pattern generation and a
metric to evaluate the generated patterns, and finally the definition of an efficient
simulation engine.

Chapter 4 describes the HDL manipulation infrastructure based on HIF Suite.
The HIF Suite is a set of tools and application programming interfaces that pro-
vide support for modeling and validation of hardware and software systems. The

1.2 Thesis Overview 5

core of the HIF Suite is the HDL Intermediate Format (HIF) language upon which
a set of front-end and back-end tools have been developed to allow the conversion
of HDL core into HIF code and vice-versa. Thus, HIF Suite allows designer to
manipulate and integrate heterogeneous components implemented by using differ-
ent hardware description languages (HDLs). Moreover, the tools proposed in the
following sections, rely on HIF APIs, for manipulating HIF descriptions in order
to support model generation, fault injection and post-refinement validation.

Chapter 5 presents the computational models adopted to describe the DUV.
The EFSM model is introduced (Section 5.2) and the testability of EFSMs is char-
acterized by classifying hard-to-traverse transitions (Section 5.3). Such transitions
are mainly responsible of hard-to-detect faults, since ATPGs spend a lot of com-
putational effort trying to find a path to activate them. In Section 5.4 and then
Section 5.5 is showed how such transitions can be replaced by manipulating the
EFSM model, thus producing a new EFSM (S2EFSM) with a higher degree of
testability. This allows deterministic ATPGs to more uniformly analyze the state
space of the resulting EFSM, thus, reducing the number of hard-to-detect faults.
In Section 5.6 a particular variant of EFSM has been defined to manage properly
both synchronous and asynchronous modules in a uniform way and then theoreti-
cal basis has been proposed to perform EFSM composition by bounding state and
transition growth (Section 5.7.The aim of composition is to improve functional
ATPG whose effectiveness and efficiency may be limited when separate EFSM are
used to model the design under test. Finally, the High Level Decision Diagrams
(HLDD) are presented as an alternative paradigm in Section 5.8 and in Section 5.9
is summarized how the HLDD models are generated starting from EFSM ones.

Chapter 6 describes the proposed ATPG engine and the techniques defined to
improve its determinism. Section 6.1 describes the architecture of the proposed
ATPG working on multiprocess DUVs. Section 6.2 presents the ATPG engine,
oriented to EFSM traversal and thus fault activation, that relies on learning, back-
jumping and constraint solving to deterministically generate the test vectors for
traversing all EFSM’s transitions. Section 6.3 compares the defined scheduling al-
gorithm and the EFSM-composition approach to deal with multiprocess designs.
Finally, in Section 6.4 describes an extension of the proposed ATPG which exploits
both EFSM and HLDD paradigms. HLDDs and EFSMs are deterministically ex-
plored by using propagation, justification, learning and backjumping. The integra-
tion of such strategies allows the ATPG to more efficiently analyze the state space
of the design under validation.

Chapter 7 describes the methodologies defined to measure the effectiveness of
the generated test sequence and to guide pattern generation. Section 7.1 describes
the high-level bit-coverage fault model and the injection technique adopted. Sec-
tion 7.2 describes how to exploit Mutation Analysis concepts, typical of the unit
test of software engineering, to define a fault model for hardware description.

Validation via fault injection and fault simulation is a widely adopted technique
to evaluate the correctness of a design implementation. However, the complexity of
industrial designs and the huge number of faults that must be injected into them
require efficient fault simulators, in order to make validation via fault simulation
an affordable task. To optimize fault simulation performances, some paralleliza-
tion techniques have been proposed at gate level. On the contrary, they have not

6 1 Introduction

been fully exploited at functional level, where functional fault models, instead
of gate-level ones, are considered. Thus, Chapter 8 analyzes the impact of such
parallelization techniques on functional faults. In particular, possible issues are
presented together with optimizations that can be implemented to speed up the
simulation.

Chapter 9 extends the proposed methodology to support co-simulation tech-
niques. In particular, the chapter shows how the approach proposed in this thesis
constitutes a fundamental block of the novel design and validation methodology
for embedded systems developed within the VERTIGO European Project (FP6-
2005-IST-5-033709), which has partially supported this research studies.

Finally, chapter 10 concludes this thesis pointing out its main results and ad-
dressing future works.

2

Background

This chapter describes general concepts related to modeling and validation of em-
bedded systems necessary to better understand the ideas presented in the subse-
quent chapters of this thesis. Section 2.1 is devoted to summarize the design flow
of digital systems spending particular effort to present some of the most popular
description languages and mathematical formalisms used for system modeling. The
intent of functional validation lies in ensuring that models meet their specification.
This topic is addressed in Section 2.2. Section 2.3 introduces Mutation Analysis,
which is a method of software testing, which involves modifying program’s source
code in small ways. These, so-called mutations, are based on well-defined muta-
tion operators that either mimic typical programming errors or force the creation
of valuable tests. The purpose is to help the tester develop effective tests or lo-
cate weaknesses in the test data used for the program or in sections of the code
that are seldom or never accessed during execution. Modeling complex embedded
platforms requires to co-simulate one or more CPUs, connected to some hardware
devices, running applications on top of an operating system. Therefore, Section 2.4
introduces co-simulation issues and summarizes some literature and industrial co-
simulation frameworks. Finally, Section 2.5 introduces constraint solving tools.
Constraint Logic Programming lies at the intersection of logic programming, opti-
mization and artificial intelligence. In the field of logic in computer science, Model
Checking refers to the following problem: given a simplified model of a system,
test automatically whether this model meets a given specification. Typically, the
systems are hardware or software systems, and the specification contains safety
requirements such as the absence of deadlocks and similar critical states that can
cause the system to crash. Both CLP and Model Checking have proved successful
tools for application in a variety of areas including functional validation.

2.1 Embedded Systems: Modeling

The design of an embedded system is a very challenging task which involves the
cooperation of different experts: system architects, SW developers, HW designers,
verification engineers, etc. Each of them operates on different views of the system

8 2 Background

Behavioral Synthesis and IP reuse

SystemC

HW/SW partition
Architecture mapping

SW HW
SystemC:

 HW

Reference

Architecture(s)

System level

Transactional level

RT Level

Functional/Behavioral level

HW

HDL Hardware partition

 HW

Gate Level

HW

Geometrical Level

Logic Synthesis

Physical Design

Fig. 2.1. Embedded system design flow.

starting from a very abstract informal specification and refining the model through
different abstraction levels.

Generally, designers adopt a top-down methodology starting from a high (be-
havioral) level and going down to the geometrical level, as described in Figure 2.1
where a general tool-independent design flow is shown. The translations between
abstraction levels are called synthesis steps, and generally they are performed by
using automatic tools, while it is purely manual in the higher levels.

At every level of abstractions, a model of a digital system can be view as a
black box, processing the information carried to its input to produce outputs.The
I/O mapping realized by the box defines the behavior of the system.

Historically, the highest level of abstraction for digital system is the behavioral
level, where the focus is centered on the logic function of the design ignoring every
implementation detail. Some EDA books make a more accurate classification, and
they refer to this level as the functional level, while a behavioral level model is
intended as a functional representation of the design coupled with a description
of the associated timing relations. Each one of these two abstraction levels keeps
quite low the complexity of digital system models allowing their rapid simulation.
However, the advent of more complex digital designs that integrate a mix of HW

2.1 Embedded Systems: Modeling 9

and SW components, as embedded systems and System-on-Chip (SoC), induced
to start the design flow at a much higher level, denoted as electronic system level
(ESL).

ESL design is an embedded system design developed at a level of abstraction
above RTL. ESL design enables functional validation and performance analysis of
complex architectures and protocols very early during the system development. At
this high level of abstraction, designers can run large numbers of test cases to iden-
tify and fix corner case problems that otherwise would be discovered only during
the system integration, too late to safely operate corrections in short times. With
an ESL design methodology, HW/SW partitioning can be paired with up-front
performance analysis that identifies bottlenecks long before physical implemen-
tation. The need for additional processing capacity and deployment of dedicated
hardware accelerators is identified while there is still time available to explore
different ways in order to meet requirements.

At system level, the design is considered an interconnection of independent
subsystems which communicate via block of words (messages), where a word is
a group of logic values. At this level there is no distinction between the HW
components and the embedded SW; indeed, every subsystems is represented by
a high-level algorithm. SystemC (see Section 2.1.3) is a very suited language for
system level modeling, because it joins the flexibility of C++ language and the
typical features of the more traditional hardware description languages, as VHDL
(see Section 2.1.1), Verilog (see Section 2.1.2), etc. This definitely allows an easier
HW/SW partitioning process, whose output is a transactional level model that
conforms to the characteristics of the reference architecture selected for the plat-
form mapping.

After HW/SW partitioning, the HW part follows a traditional design flow.
The HW model is possible partitioned in various behavioral/functional descrip-
tions that better characterize the different HW units. Then, high-level synthesis
translates the behavioral/functional model into a Register Transfer Level (RTL)
model, where the functionalities of the design are divided and represented by a
structural connection of combinational and sequential components (generally de-
scribed as finite state machines).

Finally, logic synthesis is used to translate the RTL model to a gate-level model,
where the design is mapped into a structural view of primitive components (AND,
OR, flip-flop, etc.) from which the physical mask of the circuit can be easily gen-
erated.

After every synthesis step, a verification/testing phase is mandatory to avoid
the propagation of errors between the different abstraction levels. Indeed, synthe-
sis is a dangerous process that may introduce further bugs. This can be due to
different causes: incorrect use of synthesis tools, incorrect code writing style that
may prevent the synthesis tool to adequately infer the required logic, bugs of the
synthesis tool, etc.

At each of the previously described abstraction levels, the system is described
through the use of a hardware design language which extends the features of the
traditional software languages to deal with typical hardware characteristics as
concurrency, timing, I/O communication, etc. There exist many Hardware Design
Languages (HDL), the features of the most popular ones are summarized in the

10 2 Background

B

A

F Y

B

A

Y

B

A

YG

B

A

YI

H

FA

B

Y

(a)

(b)

Fig. 2.2. Example of a structural description.

next three sections. On the contrary, Section 2.1.4 describes how digital systems
can be represented by means of some implicit mathematical formalisms that have
been reveled to be very efficient for the development of many verification tech-
niques.

2.1.1 VHDL

The VHSIC Hardware Description Language (VHDL) [3] is a language for de-
scribing digital electronic systems. It arose out of the United States government’s
Very High Speed Integrated Circuits (VHSIC) program, initiated in 1980. In the
course of this program, it became clear that there was a need for a standard lan-
guage for describing the structure and function of Integrated Circuits (IC). Hence
VHDL was developed, and subsequently adopted as a standard by the Institute of
Electrical and Electronic Engineers (IEEE).

VHDL was designed to fill a number of needs in the design process. It allows
description of the structure of a design, that is, how it is decomposed into sub-
designs, and how those sub-designs are interconnected. VHDL allows the specifica-
tion of design functionalities by using familiar programming language constructs.
Moreover, it allows a design to be simulated before being manufactured, so that
designers can quickly compare alternatives and test for correctness without the
delay and cost of hardware prototyping.

A digital electronic system can be described as a module with inputs and/or
outputs. The electrical values on the outputs are some function of the values on
the inputs. Figure 2.2(a) shows an example of this view of a digital system. The
module F has two inputs, A and B, and an output Y. Using VHDL terminology,
the module F is called a design entity, and the inputs and outputs are called ports.

One way of representing the function of a module is to describe how it is
composed of sub-modules. Each of the sub-modules is an instance of some entity,
and the ports of the instances are connected through signals. Figure 2.2(b) shows
how the entity F might be composed of instances of the entities G, H and I. This

2.1 Embedded Systems: Modeling 11

kind of description is called a structural description. Note that each of the entities
G, H and I might also have a structural description.

In many cases, it is not appropriate to describe a module structurally. One such
case is a module which is at the bottom of the hierarchy of some other structural
description. Such a description is called a functional or behavioral description. To
illustrate this, suppose that the function of the entity F in Figure 2.2(a) is the
exclusive-or function. Then, a behavioral description of F could be the Boolean
function Y = A.B +A.B.
More complex behaviors cannot be described purely as a function of inputs. In
systems with feedback, the outputs are also a function of time. VHDL solves this
problem by allowing description of behavior in the form of an executable program.

Once the structure and behavior of a module have been specified, it is possible
to simulate the module by executing its behavioral description. This is done by
simulating the passage of time in discrete steps. At some simulation time, a module
input may be stimulated by changing the value on an input port. The module reacts
by running the code of its behavioral description and scheduling new values to be
placed on the signals connected to its output ports at some later simulated time.
This is called scheduling a transaction on that signal. If the new value is different
from the previous value on the signal, an event occurs and other modules with
input ports connected to the signal may be activated.

The simulation starts with an initialization phase and then proceeds by repeat-
ing a two-stage simulation cycle. In the initialization phase, all signals are given
initial values, the simulation time is set to zero, and each module’s behavior pro-
gram is executed. This usually results in transactions being scheduled on output
signals for some later time.

In the first stage of a simulation cycle, the simulated time is advanced to the
earliest time at which a transaction has been scheduled. All transactions scheduled
for that time are executed and this may cause events to occur on some signals.

In the second stage, all modules which react to events occurring in the first
stage have their behavior program executed. These programs will usually schedule
further transactions on their output signals. When all of the behavior programs
have finished the execution, the simulation cycle repeats. If there are no more
scheduled transactions, the whole simulation is completed.

The purpose of the simulation is to gather information about the changes
in system state over time. This can be done by running the simulation under
the control of a simulation monitor. The monitor allows signals and other state
information to be viewed or stored in a trace file for later analysis. It may also allow
interactive stepping of the simulation process, much like an interactive program
debugger.

Figures 2.3 and 2.4 show small examples of a VHDL description of a two-bit
counter to give you a feel for the language and how it is used. Figure 2.3 shows
the description of an entity by specifying its external interface, which includes a
description of its ports. This specifies that the entity count2 has one input and two
outputs, all of which are bit values; that is, they can assume the values ’0’ or ’1’.
It also defines a generic constant called prop delay, which can be used to control
the operation of the entity (in this case its propagation is delayed). If no value
is explicitly given for this value when the entity is used in a design, the default

12 2 Background

ENTITY count2 IS
GENERIC (prop de lay : Time := 10 ns) ;

PORT (
c l o ck : IN BIT ;
q0 : OUT BIT ;
q1 : OUT BIT) ;

END count2 ;

Fig. 2.3. Example of VHDL entity.

ARCHITECTURE behavior OF count2 IS
BEGIN

count up : PROCESS (c l o ck)
VARIABLE count va lue : NATURAL := 0 ;

BEGIN
IF c l o ck = ’1 ’ THEN

count va lue := (count va lue + 1) mod 4 ;
q0 <= bit ’ va l (count va lue mod 2) AFTER prop de lay ;
q1 <= bit ’ va l (count va lue / 2) AFTER prop de lay ;

END IF ;
END PROCESS count up ;

END behavior ;

Fig. 2.4. Example of VHDL architecture.

value of 10ns will be used. An implementation of the entity is described in an
architecture body. There may be more than one architecture body corresponding
to a single entity specification, each of which describes a different view of the entity.
For example, a behavioral description of the counter could be written as shown in
Figure 2.4. In this description of the counter, the behavior is implemented by a
process called count up, which is sensitive to the input clock. A process is a piece
of code which is executed whenever any of the signals is sensitive to changes value.
This process has a variable called count value to store the current state of the
counter. The variable is initialized to zero at the start of simulation and it retains
its value between activation of the process. When the clock input goes from ’0’
to ’1’, the state variable is incremented, and transactions are scheduled on the two
output ports based on the new value. The assignments use the generic constant
prop delay to determine how long after the clock change the transaction should
be scheduled. When control reaches the end of the process body, the process is
suspended until another change occurs on the clock.

VHDL language is very similar to the Ada programming language. Comments
start with two adjacent hyphens (’--’) and extend to the end of the line. Identi-
fiers in VHDL are used as reserved words and as programmer defined names. Note
that the case of letters is not considered significant, so the identifiers cat and
Cat are the same. VHDL provides a convenient way of specifying literal values for
arrays of type bit. VHDL provides a number of basic, or scalar, types and a means
of forming composite types. The scalar types include numbers, physical quantities

2.1 Embedded Systems: Modeling 13

and enumerations (including enumerations of characters), and there are a number
of standard predefined basic types. The composite types provided are arrays and
records. VHDL also provides access types (pointers) and files.

Moreover, VHDL supports a physical type that is a numeric type for represent-
ing some physical quantity, such as mass, length, time or voltage. The declaration
of a physical type includes the specification of a base unit, and possibly a number of
secondary units, being multiples of the base unit. An array in VHDL is an indexed
collection of elements all of the same type. Arrays may be one-dimensional (with
one index) or multidimensional (with a number of indices). In addition, an array
type may be constrained, in which case the bounds for an index are established
when the type is defined, or unconstrained, in which the bounds are established
subsequently. VHDL provides basic facilities for records, which are collections of
named elements of possibly different types. The use of a subtype allows the values
taken on by an object to be restricted or constrained subset of some basic type.

Expressions in VHDL are much like expressions in other programming lan-
guages. An expression is a formula combining primaries with operators. Primaries
include names of objects, literals, function calls and parenthesized expressions.

The logical operators and, or, nand, nor, xor and not operate on values of
type bit or boolean, as well as on one-dimensional arrays of these types. For array
operands, the operation is applied between corresponding elements of each array,
yielding an array of the same length as the result. For bit and boolean operands,
and, or, nand, and nor are ’short-circuit’ operators; that is, they only evaluate
their right operand if the left operand does not determine the result. So, and, and
nand only evaluate the right operand if the left operand is true or ’1’; and or, and
nor only evaluate the right operand if the left operand is false or ’0’.

The relational operators =, /=,<, <=, > and >= must have both operands of
the same type, and yield boolean results. The equality operators (= and /=) can
have operands of any type. For composite types, two values are equal if all of their
corresponding elements are equal. The remaining operators must have operands
which are scalar types or one-dimensional arrays of discrete types.

The sign operators (+ and −) and the addition (+) and subtraction (−) oper-
ators have their usual meaning on numeric operands. The concatenation operator
(&) operates on one-dimensional arrays to form a new array with the contents of
the right operand following the contents of the left operand. It can also concate-
nate a single new element to an array, or two individual elements to form an array.
The concatenation operator is most commonly used with strings.

The multiplication (∗) and division (/) operators work on integer, floating point
and physical types. The modulus (mod) and remainder (rem) operators only work
on integer types. The absolute value (abs) operator works on any numeric type.
Finally, the exponentiation (∗∗) operator can have an integer or floating point left
operand, but it must have an integer right operand. A negative right operand is
only allowed if the left operand is a floating point number.

Like other programming languages, VHDL provides subprogram facilities in
the form of procedures and functions. VHDL also provides a package facility for
collecting declarations and objects into modular units. Packages also provide a
measure of data abstraction and information hiding.

14 2 Background

’0’

15 ns

Fig. 2.5. Example of timing

A subprogram declaration in this form simply names the subprogram and spec-
ifies the parameters required. The body of statements defining the behavior of the
subprogram is deferred. For function subprograms, the declaration also specifies
the type of the result returned when the function is called. This form of subpro-
gram declaration is typically used in package specifications, where the subprogram
body is given in the package body, or to define mutually recursive procedures.

VHDL allows two subprograms to have the same name, provided the number
or base types of parameters differ. The subprogram name is then said to be over-
loaded. When a subprogram call is made using an overloaded name, the number
of actual parameters, their order, their base types and the corresponding formal
parameter names (if named association is used) are used to determine which sub-
program is meant. If the call is a function call, the result type is also used.

A digital system is usually designed as a hierarchical collection of modules.
Each module has a set of ports which constitute its interface to the outside world.
In VHDL, an entity is such a module, which may be used as a component in a
design, or which may be the top level module of the design. The entity declarative
part may be used to declare items which are to be used in the implementation of the
entity. Usually such declarations will not be included in the implementation itself,
so they are only mentioned here for completeness. Also, the optional statements in
the entity declaration may be used to define some special behavior for monitoring
the operation of the entity.

The entity header is the most important part of the entity declaration. It
may include specification of generic constants, which can be used to control the
structure and behavior of the entity, and ports, which channel information into
and out of the entity.

A signal assignment schedules one or more transactions to a signal (or port).
The target must represent a signal, or be an aggregate of signals. If the time ex-
pression for the delay is omitted, it defaults to 0fs. This means that the transaction
will be scheduled for the same time as the assignment is executed, but during the
next simulation cycle. Each signal has a projected output waveform associated
with it, which is a list of transactions giving future values for the signal. A signal
assignment adds transactions to this waveform. For example, the signal assignment
s <= ‘0’ after 10 ns; will cause the signal s to assume the value ‘0’ 10ns af-
ter the assignment is executed. We can represent the projected output waveform
graphically by showing the transactions along a time axis. So if the above assign-
ment were executed at time 5ns, the projected waveform would be as shown in

2.1 Embedded Systems: Modeling 15

wait s tatement : :=
wait [s e n s i t i v i t y c l a u s e] [c o n d i t i o n c l a u s e] [t imeout c l au s e] ;

s e n s i t i v i t y c l a u s e : := on s e n s i t i v i t y l i s t
s e n s i t i v i t y l i s t : := s igna l name { , s igna l name }
c o n d i t i o n c l a u s e : := until cond i t i on
t imeout c l au s e : := for t ime exp r e s s i on

Fig. 2.6. Syntax of a VHDL wait statement.

Figure 2.5. When simulation time reaches 15ns, this transaction will be processed
and the signal updated.

The primary unit of behavioral description in VHDL is the process. A process
is a sequential body of code which can be activated in response to changes in
state. When more than one process is activated at the same time, they execute
concurrently. A process statement is a concurrent statement which can be used
in an architecture body or block. The declarations define items which can be
used locally within the process. Note that variables may be defined here and used
to store state in a model. A process may contain a number of signal assignment
statements for a given signal, which together form a driver for the signal. Normally
there may only be one driver for a signal, so the code that determines a signal value
is confined to one process. A process is activated initially during the initialization
phase of simulation. It executes all of the sequential statements and then repeats,
starting again with the first statement. A process may suspend itself by executing
a wait statement (Figure 2.6).

The sensitivity list of the wait statement specifies a set of signals to which the
process is sensitive while it is suspended. When an event occurs on any of these
signals (that is, whenever the value of the signal changes), the process resumes
and evaluates the condition. If it is true or if the condition is omitted, execution
proceeds with the next statement, otherwise the process re-suspends. If the sensi-
tivity clause is omitted, then the process is sensitive to all of the signals mentioned
in the condition expression. The timeout expression must evaluate to a positive
duration and indicates the maximum time for which the process will wait. If it is
omitted, the process may wait indefinitely. If a sensitivity list is included in the
header of a process statement, then the process is assumed to have an implicit
wait statement at the end of its statement part. The sensitivity list of this implicit
wait statement is the same as that in the process header. In this case, the process
may not contain any explicit wait statements.

Often, a process describing a driver for a signal contains only one signal as-
signment statement. VHDL provides a convenient short-hand notation called a
concurrent signal assignment statement for expressing such processes.

When VHDL descriptions are written, they are done so in a design file then
a compiler is invoked to analyze them and insert them into a design library. A
number of VHDL constructs may be analyzed separately for inclusion in a design
library. These constructs are called library units. Primary library units are en-
tity declarations, package declarations and configuration declarations. Secondary
library units are architecture bodies and package bodies. These library units de-

16 2 Background

pend on the specification of their interface in a corresponding primary library unit,
so the primary unit must be analyzed before any corresponding secondary unit.
A design file may contain a number of library units. Libraries are referred to us-
ing identifiers called logical names. These names must be translated by the host
operating system into an implementation dependent storage name.

2.1.2 Verilog

Verilog [4] was introduced in 1985 by Gateway Design System Corporation, now
a part of Cadence Design Systems, Inc.’s Systems Division. Until May 1990, with
the formation of Open Verilog International (OVI), Verilog HDL was a proprietary
language of Cadence. Cadence was motivated to open the language to the public
domain with the expectation that the market for Verilog HDL-related software
products would grow more rapidly with broader acceptance of the language.

Verilog allows a hardware designer to describe designs at a high-level of ab-
straction, such as at the architectural or behavioral level, as well as at the lower
implementation levels (i.e., gate and switch levels) leading to integrated circuits
layouts and chip fabrication. A primary use of HDL is the simulation of designs
before the designer must commit to fabrication. This handout does not cover all of
Verilog but focuses on the use of Verilog at the architectural or behavioral levels.
The handout emphasizes design at the register transfer level.

The Verilog language provides the digital designer with a means of describing
a digital system at a wide range of abstraction levels, while, at the same time,
providing access to computer-aided design tools to aid in the design process at
these levels.

Verilog allows hardware designers to express their design with behavioral state-
ment and to put off the details of implementation to a later stage of design. An
abstract representation helps the designer to explore architectural alternatives
through simulations and to detect design bottlenecks before detailed design be-
gins.

From the simulation point of view, Verilog is a discrete event time simulator;
that is, events are scheduled for discrete times and placed in an ordered-by-time
wait queue. The earliest events are at the front of the wait queue and the later
events are behind them. The simulator removes all the events for the current
simulation time and processes them. During the processing, more events may be
created and placed in their proper place in the queue for later processing. When
all the events of the current time have been processed, the simulator advances time
and processes the next events at the front of the queue.

Figure 2.7 shows a simple Verilog program. Some instructions are C-like, such
as assignment statements and comments have a C++ flavor; for example, they
are shown by “//” to the end of the line. The Verilog language describes a digital
system as a set of modules; in this example, there is only a single module called
simple.

In the module simple, A and B are declared as 8-bit registers and C is a 1-bit
register or flip-flop. Inside the module, the one always and two initial constructs
describe three threads of control; that is, they run concurrently. Within the initial
construct, statements are executed sequentially, such as in C or other traditional

2.1 Embedded Systems: Modeling 17

imperative programming languages. The always construct is identical to the initial
construct, except that it loops forever as long as the simulation runs.

The notation #1 constrains the execution of the statement after one unit of
simulated time. Therefore, the thread of control caused by the first initial con-
struct will delay for 20 time units before calling the system task $stop to end the
simulation.

The $display system task allows the designer to print a message, such as
printf does in the C language. In every time unit when one of the values of the
listed variables changes, the $monitor system task prints a message. The system
function $time returns the current value of simulated time.

module s imple ;
// The r e g i s t e r A i s incremented by one . Then f i r s t four b i t s
// o f B i s s e t to ” not ” o f the l a s t four b i t s o f A. C i s the
// ”and” r e d u c t i o n o f the l a s t two b i t s o f A.
// d e c l a r e r e g i s t e r s and f l i p −f l o p s
reg [0 : 7] A, B;
reg C;
// The two ” i n i t i a l ” s and ” always ” w i l l run c o n c u r r e n t l y
i n i t i a l begin : s t o p a t

// Wil l s t op the e x e c u t i o n a f t e r 20 s i m u l a t i o n u n i t s .
#20; $stop ;

end
// These s ta tements done at s i m u l a t i o n time 0 (s i n c e no #k)
i n i t i a l begin : I n i t

// I n i t i a l i z e the r e g i s t e r A. The o the r r e g i s t e r s have
// v a l u e s o f ”x”
A = 0 ;
// Disp lay a header
$display (”Time A B C”) ;
// P r in t s the v a l u e s anytime a v a l u e o f A, B or C changes
$monitor (”%0d %b %b %b” , $time , A, B, C) ;

end
// main process w i l l l oop u n t i l s i m u l a t i o n i s over
always begin : main process

// #1 means do a f t e r one u n i t o f s i m u l a t i o n time
#1 A = A + 1 ;
#1 B [0 : 3] = ˜A [4 : 7] ; // ˜ i s b i t w i s e ” not ” opera tor
#1 C = &A[6 : 7] ;
// b i t w i s e ”and” r e d u c t i o n o f l a s t two b i t s o f A

end
endmodule

Fig. 2.7. An example of a digital model in Verilog.

The structure of the module simple is typical of Verilog programs; there is an
initial construct to specify the length of the simulation, another initial construct

18 2 Background

to initialize registers and specify which registers must be monitored, and an always
construct for the digital system one is modeling. Notice that all the statements in
the second initial are done at time = 0, since there are no delay statements, i.e.,
#<integer>.

The Verilog language describes a digital system as a set of modules. Each of
these modules has an interface to other modules to describe how they are intercon-
nected. Usually a Verilog file includes one module but this is not a constraint. The
modules may run concurrently, but usually there is one top level module which
specifies a closed system containing both test data and hardware models. The top
level module executes instances of other modules.

As for VHDL entities, Verilog modules can represent pieces of hardware ranging
from simple gates to complete systems, like a microprocessor for example. Modules
can either be specified behaviorally or structurally (or a combination of the two).
A behavioral specification defines the behavior of a digital system (module) using
traditional programming language constructs, e.g., if, assignment statements, etc.
A structural specification expresses the behavior of a digital system (module) as
a hierarchical interconnection of sub modules. At the bottom of the hierarchy, the
components must be primitives or specified behaviorally. Verilog primitives include
gates (e.g., nand) as well as pass transistors (switches). The structure of a module
is shown in Figure 2.8.

module <module name> (<por t l i s t>) ;
<d e c l a r e s>
<module i tems>

endmodule

Fig. 2.8. Module structures.

The <module name> is an identifier that uniquely names the module. The
<port list> is a list of input, inout and output ports which are used to con-
nect to other modules. The <declares> section specifies data objects as registers,
memories and wires, as well as procedural constructs such as functions and tasks.

The <module items> may be initial constructs, always constructs, contin-
uous assignments or instances of modules.

The semantics of the module construct in Verilog is very different from sub-
routines, procedures and functions in other languages. A module is never called.
It is instantiated at the start of the program and stays around for the life of
the program. A Verilog module instantiation is used to model a hardware circuit
where we assume no one unsolders or changes the wiring. Each time a module is
instantiated, we give its instantiation a name.

Verilog makes an important distinction between procedural assignment and
the continuous assignment assign. Procedural assignment changes the state of a
register, i. e., sequential logic, whereas the continuous statement is used to model
combinational logic. Continuous assignments drive wire variables and are evaluated

2.1 Embedded Systems: Modeling 19

and updated whenever an input operand changes value. Continuous assignments
use the keyword assign, whereas procedural assignments have the form <reg vari-
able> = < expression>, where the <reg variable> must be a register or memory.
Procedural assignments may only appear in initial and always constructs.

The Verilog language has two forms of the procedural assignment statement:
blocking and non-blocking. The two are distinguished by the = and <= assignment
operators. The blocking assignment statement (= operator) acts much like that in
traditional programming languages. The whole statement is done before control
passes on to the next statement. The non-blocking (<= operator) evaluates all the
right-hand sides for the current time unit and assigns the left-hand sides at the
end of the time unit.

The primary data type of Verilog to model digital hardware is for modeling
registers (reg) and wires (wire). The reg variables store the last value that was
procedurally assigned to them, whereas the wire variables represent physical con-
nections between structural entities such as gates. A wire does not store a value.
A wire variable is really only a label on a wire.

In addition to modeling hardware, there are other uses for variables. Verilog
has several data types that do not have a corresponding hardware realization.
These data types include integer, real and time. The data types integer and
real behave pretty much as in other languages (e.g., C). Be warned that a reg
variable is unsigned and that an integer variable is a signed 32-bit integer. This
has important consequences when you subtract.

Verilog has a rich collection of control statements which can be used in the
procedural sections of code, i.e., within an initial or always block. Most of
them will be familiar to the programmers of traditional programming languages
like C or Pascal. The main difference is that instead of C { } brackets, Verilog
uses begin and end. In Verilog, the { } brackets are used for concatenation of bit
strings.

Finally, the Verilog language provides two types of explicit timing control over
when simulation time procedural statements are to occur. The first type is a delay
control in which an expression specifies the time duration between initially en-
countering the statement and when the statement actually executes. The second
type of timing control is the event expression, which allows statement execution.

2.1.3 SystemC

SystemC [5] is a new modeling language based on C++ that is intended to en-
able system level design and Intellectual Property(IP) exchange. The emergence
of the system-on-chip era is creating many new challenges at all stages of the
design process. At the systems level, engineers are reconsidering how designs are
specified, partitioned and verified. Today, with systems and software engineers
programming in C/C++ and their hardware counterparts working in hardware
description languages such as VHDL and Verilog, problems arising from the use
of different design languages, incompatible tools and fragmented tool flows are
becoming common. The SystemC standard is controlled by a steering group com-
posed of thirteen major companies in the EDA and electronics industries. For the
past year the technical members of this organization have been focusing on devel-
oping system level modeling extensions for SystemC. SystemC was developed as

20 2 Background

a standardized modeling language intended to enable system level design and IP
exchange at multiple abstraction levels for systems containing both hardware and
software components. The source code for the SystemC reference simulator can
be freely downloaded from web site (http://www.systemc.org) under an Open
Community Licensing agreement.

SystemC is a C++ class library and methodology that can be used to effectively
create a cycle-accurate model of software algorithms, hardware architecture and
interfaces of your SoC and system-level designs. It is possible to use SystemC and
standard C++ development tools to create a system-level model, quickly simulate
to validate and optimize the design, explore various algorithms and provide the
hardware and software development team with an executable specification of the
system. An executable specification is essentially a C++ program that exhibits the
same behavior as the system when executed. C or C++ is the language choice for
software algorithm and interface specifications because they provide the control
and data abstractions necessary to develop compact and efficient system descrip-
tions. Most designers are familiar with these languages and the large number of
development tools associated with them.

The SystemC class library provides the necessary constructs to model system
architecture including hardware timing, concurrency and reactive behavior that are
missing in standard C++. Adding these constructs to C would require proprietary
extensions to the language, which is not an acceptable solution for the industry.
The C++ object-oriented programming language provides the ability to extend
the language through classes, without adding new syntactic constructs. SystemC
provides these necessary classes and allows designers to continue to use the familiar
C++ language and development tools.

There are many benefits to creating an accurate executable specification of your
complex system at the beginning of your design flow. These benefits are expressed
as follows:

• An executable specification avoids inconsistency and errors and helps ensure
completeness of the specification. This is because in creating an executable
specification, you are essentially creating a program that behaves the same way
as the system. The process of creating the program unearths inconsistencies
and errors, and the process of testing the program helps ensure completeness
of the specification.

• An executable specification ensures unambiguous interpretation of the speci-
fication. Whenever implementers are in doubt about the design, they can run
the executable specification to determine what the system is supposed to be
doing.

• An executable specification helps validate system functionality before imple-
mentation begins.

• An executable specification helps create early performance models of the sys-
tem and validates system performance.

• The testbench used to test the executable specification can be refined or used as
is to test the implementation of the specification. This can provide tremendous
benefits to implementers and drastically reduce the time for implementation
verification.

2.1 Embedded Systems: Modeling 21

SystemC supports hardware-software co-design and the description of the archi-
tecture of complex systems consisting of both hardware and software components
in a C++ environment. The following features of SystemC version 2.2 allow it to
be used as a co-design language:

• Modules: SystemC has a notion of a container class called a module. This is a
hierarchical entity that can have other modules or processes contained in it.

• Processes: Processes are used to describe functionality. Processes are contained
inside modules. SystemC provides three different process abstractions to be
used by hardware and software designers.

• Ports: Modules have ports through which they connect to other modules. Sys-
temC supports single-direction and bidirectional ports.

• Signals: SystemC supports resolved and unresolved signals. Resolved signals
can have more than one driver (a bus), while unresolved signals can only have
a single driver.

• Rich set of port and signal types: To support modeling at different levels of
abstraction, from the functional to the RTL, SystemC supports a rich set of
port and signal types. This is different from languages like Verilog that only
support bits and bit-vectors as port and signal types. SystemC supports both
two-valued and four-valued signal types.

• Rich set of data types: SystemC has a rich set of data types to support multiple
design domains and abstraction levels. The fixed precision data types allow for
fast simulation, the arbitrary precision types can be used for computations with
large numbers, and the fixed-point data types can be used for DSP applications.
SystemC supports both two-valued and four-valued data types. There are no
size limitations for arbitrary precision SystemC types.

• Clocks: SystemC has the notion of clocks (as special signals). Clocks are the
timekeepers of the system during simulation, and the system supports multiple
clocks, with arbitrary phase relationship.

• Cycle-based simulation: SystemC includes an ultra light-weight cycle-based
simulation kernel that allows high-speed simulation.

• Multiple abstraction levels: SystemC supports untimed models at different lev-
els for abstraction, ranging from high-level functional models to detailed clock
cycle accurate RTL models. It supports iterative refinement of high-level mod-
els into lower levels of abstraction.

• Communication protocols: SystemC provides multi-level communication se-
mantics that enable you to describe SoC and system I/O protocols with differ-
ent levels for abstraction.

• Debugging support : SystemC classes have run-time error checking that can be
turned on with a compilation flag.

• Waveform tracing : SystemC supports tracing of waveforms in VCD, WIF and
ISDB formats.

The SystemC design approach offers many advantages over the traditional
approach for system level design. The SystemC design methodology for hardware
is shown in Figure 2.9. This technique has a number of advantages over the current
design methodology, including the following:

22 2 Background

Simulation

Refinement

Rest of Process

SystemC Model

Synthesis

Fig. 2.9. SystemC modeling technique.

• Refinement methodology. With the SystemC approach, the design is not con-
verted from a C level description to an HDL in one large effort. The design
is slowly refined in small sections to add the necessary hardware and timing
constructs to produce a good design. Using this refinement methodology, the
designer can more easily implement design changes and detect bugs during
refinement.

• Written in a single language. Using the SystemC approach, the designer does
not have to be an expert in multiple languages. SystemC allows modeling from
the system level to RTL, if necessary.

The SystemC approach provides higher productivity because the designer can
model at a higher level. Writing at a higher level can result in smaller code, that
is easier to write and simulates faster than traditional modeling environments.

Testbenches can be reused from the system level model to the RTL model,
which saves conversion time. Using the same testbench also gives the designer
higher confidence that the system level and RTL model implement the same func-
tionality.

2.1 Embedded Systems: Modeling 23

Modules are the basic building block within SystemC to partition a design.
They also allow designers to break complex systems into smaller more manageable
pieces. Modules help split complex designs among a number of different designers
in a design group. Modules allow designers to hide internal data representation
and algorithms from other modules. This forces designers to use public interfaces
to other modules, and the entire system becomes easier to change and easier to
maintain. For example, a designer can decide to completely change the internal
data representation and implementation of a particular module. However, if the
external interface and internal function remain the same, the users of the module
do not know that the internals were changed. This allows designers to optimize
the design locally.

Modules are declared with the SystemC keyword SC MODULE and they can con-
tain a number of other elements such as ports, local signals, local data, other
modules, processes and constructors. These elements implement the required func-
tionality of the module. Module ports pass data to and from the processes of a
module. Port mode are declared as in, out, or inout. The data type of the port
is also declared as any C++ data type, SystemC data type or user defined type.

FifoRead

Data

Load

Empty

Full

Fig. 2.10. Example of a module.

Figure 2.10 shows a FIFO module with a number of ports. The ports on the left
are input ports or inout ports, while the ports on the right are output ports. Each
port has an identifying name. Graphic symbols like the one shown above typically
do not contain port types, so it is not clear from the symbol which port types are
present. The SystemC description of this module is shown in Figure 2.11. Each port
on the block diagram has a matching port statement in the SystemC description.
Port modes sc in, sc out, and sc inout are predefined by the SystemC class
library.

Signals can be local to a module and are used to connect ports of lower level
modules. These signals represent the design’s physical wires that interconnect de-
vices on the physical implementation. Signals carry data, while ports determine
the direction of data between module. Signals are not declared with a mode such as
in, out, or inout. The direction of the data transfer is dependent on the port modes
of the connecting components. The local signals are declared using the SystemC
template class sc signal. The type of signal being passed is entered between the
angle brackets (<>). In the example the type of signal is a SystemC data type
sc uint. Notice that there is an extra space inserted between the 32> and the >

24 2 Background

SC MODULE(f i f o) {
s c i n <bool> load ;
s c i n <bool> read ;
s c inout <int> data ;
sc out<bool> f u l l ;
s c out<bool> empty ;
. . .
s c s i g n a l <s c u in t <32> > q , s ;
. . .

SC CTOR(f i f o) {
. . .
}
. . .

}

Fig. 2.11. A SystemC description for the module of Figure 2.10.

in the declaration. This is required to allow the description to compile. The three
modules in this design are instantiated in the constructor SC_CTOR.

The real work of the modules is performed in processes. Processes are func-
tions that are identified to the SystemC kernel and called whenever signals that
these processes are “sensitive to” change value. A process contains a number of
statements that implement the functionality of the process. These statements are
executed sequentially until the end of the process occurs, or until the process is
suspended by one of the wait function calls.

Processes look very much like normal C++ methods and functions with slight
exceptions. Processes are methods that are registered with the SystemC kernel.
There are a number of different types of processes including method processes,
thread processes and clocked thread processes. The process type determines how
the process is called and executed. Processes can contain calls to a function named
wait() that will halt their execution at different points. Signal value changes cause
the process to receive events and execute statements in a process.

The module constructor SC CTOR creates and initializes an instance of a module.
The constructor creates the internal data structures that are used for the module
and initializes these data structures to known values. The module constructors in
SystemC are implemented such that the instance name of the module is passed
to the constructor at instantiation (creation) time. This helps identify the module
when errors occur or when reporting information from the module.

SystemC provides the designer with the ability to use any and all C++ data
types as well as unique SystemC data types to model systems. The SystemC data
types include the following:

• sc_bit 2 value single bit type
• sc_logic 4 value single bit type
• sc_int 1 to 64 bit signed integer type
• sc_uint 1 to 64 bit unsigned integer type
• sc_bigint arbitrary sized signed integer type
• sc_biguint arbitrary sized unsigned integer type

2.1 Embedded Systems: Modeling 25

• sc_bv arbitrary sized 2 value vector type
• sc_lv arbitrary sized 4 value vector type
• sc_fixed templated signed fixed point type
• sc_ufixed templated unsigned fixed point type
• sc_fix untemplated signed fixed point type
• sc_ufix untemplated unsigned fixed point type

Many operations and conversions are also implemented between these and stan-
dard data types.

SystemC simulation is cycle-based: processes are executed and signals are up-
dated at clock transitions. The SystemC library includes a cycle-based scheduler
that handles all events on signals, and it schedules processes when the appropri-
ate events occur at their inputs. SystemC simulation follows the evaluate-update
paradigm where all processes that are ready to be executed are executed, and only
then their output signals are updated.

The scheduler in SystemC executes the following steps during simulation:

1. All clock signals that change their value at the current time are assigned their
new values.

2. All SC_METHOD/SC_THREAD processes with inputs that have changed are exe-
cuted. The entire body of SC_METHOD function processes are executed, while
SC_THREAD processes are executed until the next wait() statement suspends
execution of the process. SC_METHOD/SC_THREAD processes are not executed in
a fixed order.

3. All SC_CTHREAD processes that are triggered have their outputs updated and
are saved in a queue to be executed later in step 5. All outputs of SC_METHOD/
SC_THREAD processes that were executed in step 1 are also updated.

4. Steps 2 and 3 are repeated until no signal changes its value.
5. All SC_CTHREAD processes that were triggered and queued in step 3 are exe-

cuted. There is no fixed execution order of these processes. Their outputs are
updated at the next active edge (when step 3 is executed), and therefore they
are saved internally.

6. Simulation time is advanced to the next clock edge and the scheduler goes
back to step 1.

If processes communicate using signals, the process execution order should not
affect the simulation results. However, if global variables and pointers are used,
process execution order affects the simulation results. Note that these simulation
semantics are similar to Verilog simulation semantics with deferred signal assign-
ments and VHDL simulation semantics.

Testbenches are used to provide stimulus to a design under test and the check
design results. The testbench can be implemented in a number of ways: The stimu-
lus can be generated by one process and results checked by another; or the stimulus
can be embedded in the main program and results checked in another process.

2.1.4 Implicit Modeling

Generally digital systems are described explicitly by using hardware description
languages, as the ones presented in the previous sections of this chapter. This

26 2 Background

is principally due to the convenience of having an executable or simulatable de-
scription of the design that allows a rapid prototyping of its functionalities. A not
less relevant aspect for the adoption of HDL is the availability of many synthesis
tools that allow to efficiently convert a HDL-based high-level representation of
the system in one at a lower abstraction level, up to the gate-level. However, for
verification purposes, implicit representations of the system can be more suited
than HDL descriptions. Next paragraphs summarize some of the most popular
formalism used to implicit represent digital systems.

Conjunctive Normal Form

The functionalities of a circuit can be represented as a boolean function. Boolean
variables and functions assume only two possible values: 0 stands for false, 1 stands
for true. A literal is either a boolean variable (for instance, v1) or its complement
(v̄2). A clause Ci is a set of literals {lki

} (for instance, C1 = {v1, v̄2}). A Con-
junctive Normal Form (CNF) is a boolean formula used to represent a boolean
function f on a set of boolean variables {vj} and it is defined as a conjunction
(logical AND, ·) of the clauses {Ci} each of which is interpreted as the disjunction
(logical OR, +) of its literals. For example the boolean function f (v1, v2, v3, v4)
represented by the formula v1v2v3 + v̄1v4 + v̄2v4 is expressed in CNF, where the
set of clauses is {C1, C2, C3} and C1 = {v1, v2, v3}, C2 = {v̄1, v4}, C3 = {v̄2, v4}.

Conjunctive normal form is the classical formalism accepted by SAT-solvers.

Binary Decision Diagrams

Binary Decision Diagrams (BDD) [6] are another formalism frequently used to im-
plicitly represent digital systems. A binary decision diagram is a Directed Acyclic
Graph (DAG); the root node of the DAG identifies the function, f , represented
by the BDD, the internal nodes are labeled with the variables belonging to the
true support of f (i.e. the set of variables on which f actually depends), and the
terminal nodes are labeled with the values 0 and 1. As an example, the BDD for
the function f (v1, v2, v3, v4) = v1v2v3 + v̄1v4 + v̄2v4 is given in Figure 2.12.

A particular kind of BDD are the Reduced Ordered Binary Decision Diagrams
(ROBDD). They do not contain duplicated and redundant nodes, and in addition,
they are ordered, that is, all the variables appear in the same order along all
paths from the root to the terminal nodes. Given an ordering, the reduced BDD
for a function is unique. Hence, BDD are canonical representations, that is, two
functions f and g are equivalent (i.e. f = g) if and only if they have the same
BDD.

Assignment Decision Diagram

An Assignment Decision Diagram (ADD) [7] can be considered as an extension of
the classical graph that represents the data path of an RTL description. In this
structure it is possible to identify the read and the write nodes, the operator nodes,
and the assignment decision nodes. An example of ADD is shown in Figure 2.13.

2.1 Embedded Systems: Modeling 27

V1

V2

V3

V4

f

1 0

1

1

1
1

0

0

0

0

Fig. 2.12. A BDD for function f (v1, v2, v3, v4) = v1v2v3 + v̄1v4 + v̄2v4.

a 7

<

|

&

&

<

State ST0

R

< - +

P Q

Assignment Condition

Assignment Decision

Assignment Values

c

c

v v

Fig. 2.13. An Assignment Decision Diagram.

The critical point is the assignment decision node: it can be identified an as-
signment value part, which is constituted by the set of read nodes and operation
nodes that represent the computation of values that are to be assigned to a stor-
age unit or output port; and an assignment condition part which consists of read

28 2 Background

nodes and operation nodes that produce the boolean value which is the guarding
condition for the assignment value.

The assignment decision part consists of an assignment decision node that
selects a value from the set of values that are provided at its value inputs. If
one of the conditions to the assignment decision node evaluates to true, then the
corresponding input value is selected.

The assignment target is represented by the write node. The write node is
associated with the selected value from the corresponding assignment decision
node. A value is assigned to the write node only if one of the condition inputs
to an assignment decision node evaluates to true. Since only one value can be
assigned to a target at a time, all assignments conditions for a given target are
mutually exclusive. The interesting observation is in the fact that an ADD tries
to model the influence of input ports and variables over the assignment operation,
considering in a distinct way the effects over output and conditional operations.

Finite State Machine

A Mealy-type Finite State Machine (FSM) M is a model of computation defined
as the 6-tuple: M =

{
I,O, S, s0, δ, λ

}
where:

• I is the input alphabet;
• O is the output alphabet;
• S is a set of states;
• s0 ∈ S is the unique reset state;
• δ : I × S → S is the next-state function;
• λ : I × S → O is the output function.

In the Moore machine, the output value depends only on the current state
and it does not depend on the current input values. In this case the λ function is
defined as: λ : S → O.

A FSM, M , can also be represented by a State Transition Graph (STG). Every
vertex of such a graph corresponds to a state of M , and it is labeled with an
element of S, while every edge corresponds to a transition, and it is labeled with
an element of I ×O.

A structural representation of the FSM model is the Huffman model (Fig-
ure 2.16), that separates the next state and the output functions from the memory
elements that store the state of the FSM.

The description through the FSM formalism of some classes of sequential cir-
cuits requires a number of states that become intractable very fast and therefore
different representations are adopted, such as the FSM + Data Path model [8] or
the Extended FSM model [9].

A Finite State Machine with Data-path (FSMD) is a finite state machine with
an elaboration unit (data-path).
Given:

• the set V = {v1, v2, . . . , vv} of variables;
• the set Exp ={f(v1, v2,. . . , vv)|v1, v2, . . . , vv ∈ V } of functions;
• the set Asg = {(v1, v2, . . . , vv) ← e|(v1, v2, . . . , vv) ∈ V, e ∈ Exp} of elements

that can be associated with V ;

2.1 Embedded Systems: Modeling 29

• the set Stat = σ(a, b)|a, b ∈ Exp of state variables defined as a logic relation
between two functions of the Exp set;

a finite state machine with a computation unit, FSMD, is defined by a 6-tuple
FSMD = {S, I ∪B,O ∪A, δ, λ, s0} where:

• S is a set of states;
• I is the input alphabet;
• B is a subset of Stat;
• O is the output alphabet;
• A is a subset of Asg;
• δ : I × S → S is the transition function;
• λ : I × S → O is the output function;
• s0 ∈ S is the initial state.

The Extended Finite State Machine (EFSM) is a generalization of the classical
FSM model that provides a compact representation of local data variables and
preserves many nice properties of the traditional state machine model. The EFSM
can be defined as a 5-tuple EFSM = {S, I,O,D, T} where:

• S is a set of states;
• I is a set of inputs;
• O is a set of outputs;
• D is an n-dimensional linear space D1 ×D2...×Dn;
• T is a transition relation, T : S ×D × I → S ×D ×O.

The model differs from the classical FSM model, since each transition from
a state to another one does not present only the label with the required input
and the associated produced output, in the classical form (i)/(o), but it is more
complex.

A transition (s1 → s2) with label (f, i)/(u, o) can be interpreted as: if the
machine E is in configuration 〈s1, x〉, where f(x) = 1 (the transformation u can
be applied to the value x, that represents an internal variable), and the input i is
received, then E moves to the configuration 〈s2, u(x)〉 while generating output o.
This transition can be realized only if the vector x satisfies some particular prop-
erties about the applicability of the transformation u(x), and this the function f is
introduced. Each EFSM can be represented using a graph that is called extended
state transition graph.

Kripke Structure

Formal models of concurrent systems can be represented by Kripke structures.
Given a formula of first order logic, that represents a concurrent system, it is
straightforward to extract the Kripke structure that models the system [10]. Let
AP a set of atomic propositions, a Kripke structure K over AP is a 4-tuple K =
{S, S0, R, L} where:

• S is a finite set of states;
• S0 ⊆ S is the set of initial states;

30 2 Background

• R ⊆ S × S is a transition relation that must be total, that is, for every state
s ∈ S there is a state s1 ∈ S such that R(s, s1);

• L : S → 2AP is a function that labels each state with the set of atomic propo-
sitions true in that state.

2.2 Embedded Systems: Validation

Verification of embedded system can be performed by using two different strategies:
static verification, presented in Section 2.2.1, and dynamic verification, described
in Section 2.2.2. While static verification consists of using formal methods to ensure
the correctness of a design, dynamic verification relies on simulation. Both tech-
niques present different advantages, but neither formal verification nor dynamic
verification can assure the guarantee of shipping bugs-free systems. Recently, to
join advantages of both techniques, great interest comes from assertion-based veri-
fication which unifies the mathematical rigor of formal techniques and the intuitive
and fast approach of simulation and coverage metrics.

2.2.1 Static Verification

Static verification, also noted as formal verification, applies the formalism of math-
ematical proofs to state about the correctness of the Design Under Validation
(DUV). It is static, in contrast to dynamic verification, because it verify the pres-
ence of errors without the need of explicitly simulate the behavior of the model.

A formal verification framework has three basic elements: a mathematical
model of the system to be verified, a formal language to framing the correctness
problem, and a methodology for proving the statement of correctness. Depending
on these three factors we can distinguish between two main formal verification
mechanism, that apply with different intent in the EDA field: model checking and
equivalence checking. For model checking the correctness problem consists of show-
ing if the model satisfies the specification represented as logic formulas. Its main
application is to find design errors in the early stage of the design flow. On the
contrary, equivalence checking address the problem of verifying if two models im-
plements the same functionalities. Its main application is to find discrepancies
between descriptions of the same system at different abstraction levels.

Model Checking

Model checking was introduced by Clarke and Emerson [11] and independently by
Quielle and Sifakis [12] in 1981. It is an automatic technique for verifying finite
state concurrent systems that instead of proving the validity of a logical formula
for all models, it determines the truth value of the formula in a specific finite
model.

Applying model checking to a design consists of three tasks:

• Modeling. The DUV has to be converted into a formalism accepted by a model
checking tool. From a formal point of view, the designs are represented by using
Kripke structures, but practically speaking the designs can be described by
using traditional HDL or other specific model checker dependent languages.

2.2 Embedded Systems: Validation 31

• Specification. Before verification, it is necessary to define the properties that
the design must satisfy. This specification is usually given by using temporal
logics. However, nowadays the advent of assertion-based verification allow one
to specify properties by using more HDL-like languages (e.g., PSL, OVA, PEC,
cf.

• Verification. An automatic tool (model checker) is used to show if the model
satisfies the specification. Given sufficient resources in terms of time and mem-
ory space, the automatic procedure always terminates answering “yes” or “no”.

Formally, the model checking problem can be described as follows: given a
Kripke structure K = {S, S0, R, L} that represents a finite state concurrent system
and a temporal logic formula ϕ expressing some desired specification, find the set
S′ of all states in S that satisfy ϕ: S′ = {s ∈ S | K, s � ϕ}. Normally, some states
of the concurrent system, S0, are designated as initial states. The system satisfies
the specification provided that all of the initial states are in the set S′.

For branching time logic, as CTL, the model checking problem is computation-
ally tractable. The algorithm developed by Clarke and Emerson for CTL model
checking is polynomial in both the size of the model and in the length of its tem-
poral logic specification. The method first builds a complete state transition graph
of the system, then the truth value of a property is determined by propagating
formulas in this graph until a fixed point is reached.

For LTL, the model checking problem is PSPACE-complete [13]. LTL model
checking is performed by translating the formula to be verified into an automaton
by means of a tableau construction [11]. A tableau is a graph derived from the
formula from which a model for the formula can be extracted if and only if the
formula is satisfiable. Each state in a tableau is associated with a set of formulas
which are true in that state. Since the number of states in the tableau is exponential
in the size of the formula, the method is not really practical. However, Lichtenstein
and Pnueli [14] realized the complexity of checking LTL formulas and discovered
that although the complexity appears exponential in the length of the formula, it
is linear in the size of the state graph. Based on this observation, they argued that
the high complexity of linear time model checking can be still acceptable for short
formulas.

Also CTL∗ model checking is a PSPACE-complete problem [15]. The basic
idea for CTL∗ model checking is to combine the state labeling technique from
CTL model checking with LTL model checking.

The explicit representation of the model by means of a state transition graph
is the main problem that prevents to apply model checking to systems with many
concurrent parts where the number of states in the graph becomes too large to
handle. To avoid this limitation, McMillan [16] realized that, by using an implicit
symbolic representation of the state transition graph, much larger systems can
be verified.This symbolic representation is based on BDD, and it allows model
checker to operate on sets of states and transitions rather than on individual
states and transitions. Each state is encoded by an assignment of boolean values
to the set of state variable associated to the system. Thus, the transition relation
can be expressed as a boolean formula in terms of two sets of variables, one set
encoding the old state and the other encoding the new state. This formula is then
represented by a BDD. Given a Kripke structure K = {S, S0, R, L}, and the lattice

32 2 Background

under the set inclusion ordering of all subsets of S [11], the symbolic model checking
algorithm is based on computing fixpoints of particular functions, called predicate
transformers, which map P(S) to P(S).

Because the symbolic representation captures some of the regularity in the
state space determined by the DUV, it is possible to verify systems with a number
of states whose magnitude is many orders larger than explicit state algorithms can
do. By using the original CTL model checking algorithm of Clarke and Emerson,
it is possible to verify examples with up to 105 states. On the contrary, symbolic
model checking allows one to handle designs with up to 10120 states. In conclusion,
the main advantages of model checking with respect to other approaches can be
summarized as follows:

• Easy to learn and use. Model checking is fully automatic, and its application
requires no user supervision or expertise in mathematical disciplines such as
logic and theorem proving;

• Easy to catch bugs. When the design fails to satisfy a property, model check-
ing always produces a counterexample that demonstrates a behavior which fal-
sifies the property. This trace allows one to “easily” understand and fix the
problem. In such a sense, model checking is a very effective technique to detect
design errors.

On the contrary, the main drawbacks of model checking are:

• State explosion problem . Even if the advent of model checkers based on
BDD symbolic representation sensibly increases the applicability of model
checking to medium-large systems, state explosion is still a problem for com-
plex digital systems where a great number of parallel transitions can occur.
To overcame this problem, some techniques, as decomposition, abstraction,
symmetry, compositional minimization, etc. must be adopted. However, these
techniques risk to make the adoption of model checking less easy and intuitive
for users lacking a deep formal background.

• Accuracy of verification results. As already mentioned in the introduction
of this thesis, model checking can prove the presence of bugs, but it cannot
prove it absence. In fact, properties proven by model checking can be inade-
quate to assure an effective correctness of the DUV. The problem of accuracy
of the model checking process is the main topic of this dissertation.

Equivalence Checking

Equivalence checking is a formal verification process that mathematically proves
the equivalence of two different models of the design under validation.

Generally, equivalence checking is used at a lower abstraction level with respect
to model checking, and it is more suited to detect errors that depend on circuit
transformations rather than design errors.

Commonly, equivalence checking compares two models of the same digital sys-
tem described at two different abstraction levels. For example, a popular use of
equivalence checking is to verify that a netlist obtained by synthesis correctly im-
plements the original RTL code. In fact, synthesis tools are large software systems
history shows to be prone to error.

2.2 Embedded Systems: Validation 33

A different use of equivalence checking consists of comparing two netlists to
ensure that some netlist post-processing, such as scan-chain insertion, clock-tree
synthesis or even manual modifications, did not change the functionality of the
circuit.

The most successful equivalence checkers [17, 18, 19] try to make full use of
structural similarity of circuits to be compared. In particular, they try to estab-
lish some strong relationships (like equivalence or implication) between internal
points of the circuits traversing their FSM representations. These relationships are
deduced in topological order proceeding from inputs to outputs until the equiva-
lence of corresponding primary outputs of the two circuits is deduced. Circuits are
considered to be structurally similar and so easy for equivalence checking if they
have many internal points that are related by these strong relationships.

As for model checking, BDD provide a very efficient formalism also to perform
equivalence checking.

Equivalence of two combinational circuits 1 may be verified by following the
following basic algorithm: “for each circuit, build the BDD for the outputs in
terms of the primary inputs; since BDD are a canonical representation, the two
combinational circuits implement the same function if and only if they have the
same BDD”.

Equivalence of sequential circuits is performed reasoning about sequential cir-
cuits as finite state machines, rather than as just a bunch of gates. The problem
of comparing two state machines can be converted into the problem of finding all
of the reachable states of FSM. Given two FSM to compare, tie the input lines
together, send the outputs to a comparator, and clock the two machines together
in lockstep. This combination is just another, bigger FSM. The original two FSM
have identical behavior if and only if the new machine indicates the outputs are
equal for all reachable states.Computing the set of reachable states using BDD
requires three basic ideas:

• representing sets of states using BDD;
• computing images, where the image of that BDD is a new BDD that represents

the set of all possible states that the FSM could be in exactly one clock tick
later;

• iterating by using images to compute all reachable states.

As with combinational verification, this approach for sequential equivalence is lim-
ited by the size of the generated BDD, which is highly sensitive to the function be-
ing verified and the variable order used. Thus, many valuable papers on equivalence
checking aim to define efficient algorithms for the traversal of FSM [20,21,22,23].

2.2.2 Dynamic Verification

A widely adopted alternative to formal verification, is represented by dynamic
verification [24] (or simulation-based verification) that faces the correctness of a
design by means of simulation-based techniques. In dynamic verification the model
1 A combinational circuit is a digital circuit without state-holding elements or feedback

loops, so the output is a function of the current input. A circuit with state-holding
elements is called a sequential circuit.

34 2 Background

functionalities are essentially verified by generating a high number of input stimuli
(test set) that are simulated to observe the behavior of the DUV at primary
outputs. The test set, generated at a specific abstraction level, can be re-used
(and possibly incremented) at the lower levels after each synthesis step up to
manufacturing test.

What we need to perform dynamic verification is: a HDL description of the de-
sign, a simulator for the selected HDL, a testbench to apply stimuli (i.e., vectors
for combinational circuits, and sequence of vectors for sequential circuits) to the
primary input of the design, and a “method to establish the correctness” of the de-
sign with respect to the results of the simulation. While the first three ingredients
are almost straightforward, the last one is the crucial aspect of dynamic verifica-
tion. If state explosion is the big problem of formal verification, the big problem of
dynamic simulation is represented by the lack of exhaustiveness of the verification
process based on simulation. Thus, as it happens for formal verification, dynamic
verification is very good in finding bugs, but it cannot ensure their absence.

Simulation can hypothetically provide an exhaustive answer to the problem of
design correctness only if the set of all possible input stimuli applied to the design
results, after design simulation, in a set of values for the primary outputs consistent
with the set of expected values. Unfortunately, that is almost impossible for two
reasons: the set of expected values cannot be always available, and the set of input
stimuli for sequential circuits is infinite. Thus, the quality of dynamic verification,
and in particular the quality of the generated set of stimuli, is measured by means
of code coverage or fault coverage. Depending on what of these two strategies is
used, we can distinguish between two kind of dynamic verification: logic simulation
and fault simulation.

Logic Simulation

In logic simulation the quality of the set of stimuli is measured by using code
coverage. This is a class of metrics that has been used in software engineering [25]
for quite some time to analyze if testbenches forgot to verify some functionalities.

Code coverage tools work in the following manner. First the source code must
be instrumented to add checkpoints at strategic locations to records whether a
particular construct has been exercised. The instrumentation method varies from
tool to tool. Some may use file I/O features available in the language, others
may use special feature built into the simulator. The instrumented code is then
simulated using all available, not instrumented, testbenches, the cumulative traces
from all simulations are collected, and reports are generated to determine various
coverage metrics.

The most popular metrics adopted in logic simulation are:

• Statement Coverage. It measures how much of the total lines of code are
executed by the test set. To bring the statement coverage metric up to 100%,
a desirable goal, it is necessary to understand what conditions are required
to cause the execution of the uncovered statements. Then, it is necessary to
understand why they never occurred. It is because the test set does not contain
a stimulus able to activate the condition or it is because the condition can never
occur? In the first case, a larger number of (or higher quality) test cases must

2.2 Embedded Systems: Validation 35

be generated. On the contrary, if the condition can never occur, the code in
question is effectively unreachable. Thus, either the code (and the condition)
could be removed, or the design requires some most general refinement to allow
the activation of the condition.

• Condition Coverage. It measures the various ways paths through the code
are executed. Consider for example an if statement whose condition is ((a <
10) or (a > 20)). The then part of such a statement can be executed in two
ways: when the value of a is less than 10 (first term of the condition) and when
the value of a is greater than 20 (second term of the condition). Thus, it is
evident that the statement coverage of a code can be 100%, while the condition
coverage is lower. To increase condition coverage, it is necessary to identify the
possible terms of conditions that are not executed, and if these terms can never
be excited or they cannot be activated by the current test set.

• Path Coverage. It measures all possible ways you can execute a sequence
of statements. Again it is important to determine the possible conditions that
cause the uncovered path to be executed, and if these conditions can never
occur or they cannot be activated by the current test set. Full 100% path
coverage is very difficult to achieve, since the number of path in a sequence of
statements grow exponentially with the number of control-flow statements.

What does 100% code coverage means? Not much, it indicates how thoroughly
the generated test set exercises the source code, but it does not provide precise
indications about the correctness of the DUV. However, code coverage can help to
identify possibly corner cases that are not exercise by the testbench, and that can
be symptoms of design errors.

Fault Simulation

Fault simulation consists of simulating a design in presence of logical faults (faults
in the following), which try to emulate the effect of physical faults on the behavior
of a system description. Faults can be modeled by means of different fault mod-
els, targeting various kinds of errors that may affect a design, depending on the
considered abstraction level.

Comparing the fault simulation results with those of the fault-free simulation
of the same design, simulated by using the same test set, we can determine the
fault coverage as the ratio between the number of fault detected by the test set
and the number of simulated faults. In that sense, the fault coverage is an alter-
native measure to evaluate the quality of dynamic verification. Indeed, as for code
coverage, we cannot completely ensure the correctness of the design by relying on
the fault coverage. In fact, even a test set which achieve 100% fault coverage may
still fail to detect faults modeled by a different fault model. Furthermore a not
full fault coverage highlight the presence of undetected fault that may be either
hard-to-test, requiring to improve the test set, or undetectable, requiring a more
accurate analysis to avoid the presence of design errors.

The following paragraphs overview the basic concepts of test generation al-
gorithms and addresses the related state of the art, describing some of the most
relevant existing approaches to test pattern generation. Some of the more interest-
ing fault models proposed in the literature to simulate possible erroneous behaviors

36 2 Background

of digital systems and the most common techniques used to activate faults during
fault simulation and test pattern generation are described. Section 7.1 is entirely
devoted to the bit coverage fault model which is adopted in the methodology
presented in this thesis.

2.2.3 Test Generation

A defect is an error introduced into a device during the manufacturing process. A
fault model is a mathematical description of how a defect alters design behavior.
A fault is said to be detected by a test pattern if, when applying the pattern to the
design, any logic value observed at one or more of the circuit’s primary outputs
differs between the original design and the design with the fault.

The test generation process for a targeted fault consists of two phases: fault
activation and fault propagation.

Fault activation establishes a signal value at the fault model site that is opposite
of the value produced by the fault model.

Fault propagation moves the resulting signal value, or fault effect, forward by sen-
sitizing a path from the fault site to a primary output.

The test generation process can fail to find a test for a particular fault in at
least two cases. First, the fault may be intrinsically undetectable, such that no
patterns exist that can detect that particular fault. The classic example of this is
a redundant circuit, designed so that no single fault causes the output to change.
In such a circuit, any single fault will be inherently undetectable.

To create the test set, fault simulation tools commonly exploit stimuli generator
engines known as Automatic Test Pattern Generator (ATPG). The aim of test
pattern generation algorithms is to find a possibly compact set of input sequences
that detects all modeled faults. To accomplish this goal an ATPG works as follows:

1. it selects a target fault;
2. it generates an input sequence;
3. it simulates the fault-free design and the faulty design by applying such se-

quence;
4. it marks the target fault as detected if and only if, at some instance during

simulation, there is a difference between outputs of the fault-free design and
the corresponding outputs of the faulty design;

5. for efficiency aspects, it fault simulates the same sequence for all of the other
not yet detected faults;

6. it repeats steps from 1 to 5 up to one of the following conditions is reached:
a) the desired fault coverage threshold is achieved;
b) the desired fault coverage threshold is not achieved, but remaining faults

are shown to be undetectable;
c) available resources run out.

An ideal test generation algorithm should produce an effective test sequence
with a low cost, in terms of required time and memory resources. The effectiveness
of the test sequence is measured by the achieved fault coverage for the given fault
model, and by the number of generated test cases. Finally, its cost is affected by

2.2 Embedded Systems: Validation 37

the fault model used, the type of circuit under test, the level of abstraction of the
circuit description, and the required test quality.

Justification, Implication and Backtracking

Several ATPG algorithms are based on the concepts of justification, implication
and backtracking defined for gate-level descriptions.

The justification is the process of assigning values to gate inputs when the logic
value of the gate output is known.

The values assigned during justification process can uniquely determine the
values on some other signals, and this process is called implication; finally, due to
the presence of re-convergent paths fanouts in the circuit, the assignment of new
signal values during implication can conflict with values of these signals assigned
in the earlier steps of the test generation.

If this happens, the effects of the last decision have to be reversed and a new
decision has to be made to allow the ATPG process to continue. This process is
called backtracking. The decision making and backtracking strategies have a strong
impact on the efficiency of the ATPG process. However, the proposed pattern that
is based on the phases of justification, implication and backtracking is only a gen-
eral scheme, and there are a number of different ways to implement an algorithm
that perform these operations both at gate or at higher levels of abstraction.

Automatic Test Pattern Generator (ATPG)

The most relevant contributions to functional test generation algorithms can clas-
sified in two macro-classes: deterministic ATPG and (pseudo-)random ATPG.

The first class can be divided in three further categories: ATPG based on finite
state machines, ATPG based on controllability, observability and structural de-
scription of data paths, and ATPG based on assignment decision diagrams. These
techniques make a selective exploration of the input sequences space and generate
a limited number of high-quality test sequences. This generation is performed by
explicitly exploiting information related to the design under validation. Even if
a deterministic generation may require a great effort in terms of time, these ap-
proaches are particularly suited to investigate corner cases and random-resistant
faults.

On the contrary, random based ATPG found their effectiveness on the great
number of generated input sequences rather than on their quality. A pure random-
based ATPG does not require any information about the DUV and it represents a
simple and fast solution to cover the most part of easy-to-detect faults. However,
this is not enough to guarantee the absence of design errors, thus random based
ATPG are enhanced by using different kinds of heuristic and statistical techniques
which guide the sequences generation by exploiting run-time information. In this
case we talk of pseudo-random ATPG where genetic algorithm-based ATPG can
be considered the most promising approach.

An extensive description of each of these different categories is in the following.

38 2 Background

ATPG based on Finite State Machines

One of the most investigated classes of functional test generation algorithms, cor-
responds to those ATPG that rely on the identification of the control structure
that drives the behavior of the system. In fact, given a high-level description of
the circuit, no matter if it is realized in a classic HDL or in a C-based description,
these methods extract the Finite State Machine associated with the description.
Sometime the FSM is defined implicitly in the specification of the component
under test, and in this case these algorithms try to automatically transform the
high-level description into an appropriate data structure that can be represented
as a FSM.

There are several examples of ATPG that use this approach [26,27,28,29], but
one of the most important contributions on the application of such a technique
is described in [9]. The algorithm presented in this work can be considered fun-
damental, because it outlines principles typically used in the world of algorithms
based on FSM descriptions.

The different steps of the algorithm proposed in [9] are:

1. an EFSM model is automatically extracted from a VHDL or C description;
2. a stabilized EFSM model is derived from the initial EFSM model generated

during the first step;
3. a functional test sequence, that guarantees that every statement in the VHDL

or C model is exercised at least once, is derived from the stabilized model.

The work presents and accurately explains the algorithm used during the first two
phases to obtain an automatic identification of the EFSM and for the stabilization
of the obtained model, but the interesting part is the one devoted to the test vectors
generation starting from the optimized EFSM. In order to exercise at least once all
the statements in the hardware description, all the transitions have to be traversed
in the EFSM model. After the stabilization process is completed, each transition
in the final stabilized block transition graph originates from a transition in the
initial EFSM model. Therefore, traversing all transitions in the stabilized block
transition graph guarantees covering all transitions in the initial EFSM model and
thus in the original HDL. In practice, the problem of finding a suitable test vector
is reduced to the problem of finding the shortest path that covers all edges in a
directed graph at least once, and this is a well known problem in the world of
Operational Research. Applying a breadth first strategy, the complexity of this
procedure is O(e2) where e is the number of transitions in the stabilized block
transition graph.

A more recent and very efficient approach is proposed in [30]. The authors
develop an ATPG that relies only on exploring embedded characteristics within
the sequential circuit, in order to achieve very high fault coverage. Furthermore,
these characteristics should be obtained with only logic-simulation to reduce the
computation costs. To do this, they address the following issues:

1. state partitioning by extracting the spectral information of the states that the
current test sequence has traversed;

2. state and transition coverage within each partitioned state set.

2.2 Embedded Systems: Validation 39

State partitioning and grouping are an inherent part of this work. It is simply di-
viding the flip-flops in a circuit into smaller groups. Essentially, state partitioning
breaks the global state into groups of flip-flops. However, the way the flip-flops
should be divided is a difficult problem. Since the quality of the partitioned space
is important, methods in computing the partitions and groups are critical. The
spectral information embedded in the states traversed from a given test sequence
can help partition the state variables. In particular, the flip-flops whose state-
transition behavior contain dominant frequencies are grouped together. In the
frequency domain, these flip-flops are observed to have correlation with one an-
other. Furthermore, disjoint partitioning may not be the optimal way to divide
the flip-flops. In other words, state groups are allowed to share some common
flip-flops. These overlapped state grouping can help the ATPG by observing how
some specific flip-flops can contribute to different partitioned state spaces. Next,
the STG for each partial state space is dynamically constructed during the ATPG
search. By traversing the states and arcs inside each partial STG (similar to the
method in finite state machine testing), the vectors generated help to exercise the
circuits state subspaces. In terms of FSM testing, the idea is to map out the fi-
nite state machine embedded in the design and exercise the states and transitions
within it. However, FSM testing remains to be a difficult problem when dealing
with large sequential circuits with many flip-flops. In this work, since the num-
ber of flip-flops in each partitioned state set is limited to k, the largest number
of states in any set is thus 2k, the author avoid the state explosion keeping the
size of k to be less than 16. In addition, if the flip-flops that belong to the con-
troller of the circuit can be identified and grouped, the extracted STG can give a
view from the control-unit perspective, thereby providing additional guidance as
vectors are generated. Finally, since only logic simulation is needed, the proposed
technique can also contribute to generating effective simulation vectors for design
validation. Experimental results show that higher fault coverages can be achieved
with very low computational needs, when compared to ATPG that are based on
logic simulation.

ATPG based on Controllability, Observability and Structural Description of Data
Paths

The class of ATPG that are based on the importance of the concept of observability
has been continuously growing during the last years, so that this approach to the
problem is today the most interesting one for researchers [31, 32, 33]. The basic
idea of all the ATPG based on observability is very simple and intuitive: check to
see whether effects of possible faults activated by program stimuli can be observed
at the circuit outputs.

Assume that model A and model B are both exercised thoroughly using a
functional vector set (see Figure 2.14). Controllability metrics will report 100%
statement coverage for both models. However, it may be that statements in model
A are only exercised with vectors for which c = 0, implying that the variables
assigned in these statements never affect the observed output F for any simulated
vector. The previous example shows the importance of observability for the test
vectors generation. There are different papers in the literature that propose ATPG
based on this concept.

40 2 Background

Model A

Model A

1

0

c

F

Fig. 2.14. Example of not observable behavior

One of the most relevant works of this area is the OCCOM approach described
in [34] and subsequently enhanced in [35,36,37]. All these approaches are based on
the use of tags that represent the possibility that incorrect values are computed
in some locations. Each location corresponds to a variable assignment within the
HDL model of the design under validation. The goal of the methodology is to
determine if a tag injected in a particular location is propagated up to the out-
puts of the circuit, to understand if incorrectly computed values may follow the
same propagation path. The problem is that the propagation of the tag toward
the output depends on the values applied at other locations in the circuit, in the
sense that other data values may block the tags from reaching any circuit out-
put. Therefore, the quality of a set of vectors is determined by calculating how
many injected tags are propagated to the outputs, and this percentage is called
tag coverage. To compute this coverage the tag-calculus is introduced, that is an
algebra that computes the effects of operations over operators that contain tags.
The considered description language is not the entire VHDL/Verilog, but only a
subset of it. Moreover, some preprocessing transformations of the specification are
needed to apply the OCCOM approach to the given description. Any operation
that can be described as an assignment plus a series of other logical or arithmetic
or control operations, is split in a chain of different assignments, in order to allow
the evaluation of the test vectors over that model using the proposed method.
Then, the test generation algorithm tries to identify test patterns that increase as
much as possible the tag-coverage of the description under analysis. The algorithm
solves the tags activation and propagation problem by solving a Hybrid Satisfiabil-
ity (HSAT) problem, whose goal is to find an input assignment that produces the
required output values, or prove that none exists. The algorithm proposed in [37]
solves the HSAT problem by using SAT and linear programming techniques. It
operates according to the following steps:

1. A tag list is set up. This is analogous to the fault list in stuck-at fault test
generation. As the algorithm proceeds, tags are removed from the list every
time a vector is found to cover them. Ideally, the tag list should be empty
when the algorithm completes.

2. An upper bound on the number of time frames, tmax, that will be used for
vector generation is selected.

3. If there is no uncovered tag the algorithms stops. Otherwise, it selects an
uncovered tag to generate a vector for. The position of the variable Vf and of

2.2 Embedded Systems: Validation 41

the operator Vop corresponding to this tag is identified in the graph G(V,E)
encapsulating the dependencies between operators.

4. t denotes the number of time frames that the design will be expanded to in
the current attempt. t is set to one.

5. The graph G(V,E) is unrolled t times. Vf and all variables in its transitive
fanout are marked.

6. HSAT constraints for both tagged and untagged versions of the circuit are
generated. For the tagged circuit, it has been ignored constraints with no
marked variables in them, and replace the untagged version of the variable
with the tagged one in all the involved operators. For the untagged circuit,
constraints are only generated for the portion of the circuit in the fanin of the
marked output.

7. Constraints are added by expressing the requirement that the tag be detected
on at least one of the marked variables which is also an output of the circuit.

8. The HSAT problem is solved.
9. If there is no solution to the HSAT problem and t < tmax, t is incremented by

one and the algorithm reverts to step 5.
10. If there is no solution to the HSAT problem and t = tmax, the algorithm

returns reporting that the tag cannot be covered within tmax time frames.
11. For the vector generated, tag simulation is performed using an algorithm that

detects all the tags that can be covered by this vector. The algorithm updated
the tag list and reverts to step 3.

The algorithm is very effective for all those circuits with a low sequential depth.
However, the fact that the algorithm is unable to find a vector that highlights the
observability of a variable within several time frames can be considered a symptom
that the corresponding tag is difficult to test.

ATPG based on Assignment Decision Diagrams

The use of assignment decision diagrams can be considered as one of the most
recent and innovative proposals in the world of ATPG. The ADD is a data structure
able to track the dependency between input and output, also in the case that these
dependencies are affected by the value of other variables, not directly involved into
the assignment, as for example the variables involved in control instructions. The
use of ADD is also based on the availability of a design specification, where the
number of primitive elements in the circuit is usually much lower than the elements
of gate-level descriptions, thus reducing the problem size.

In [7], the authors illustrate how is it possible to use this data structure to
obtain test vectors that are very effective, in particular from the point of view
of observability. It is important to underline that the proposed algorithm works
under a certain number of constraints:

1. the RTL design in VHDL or Verilog should have a single clock line;
2. the circuit should not present any complicated asynchronous behavior other

than the set/reset signal;
3. if the presence in the circuit of a black box or intellectual property is assumed,

then each input of the block should be propagated to an output or a combina-
tion of outputs of the block in a fixed number of cycles and each output of the

42 2 Background

black box should be justified from an input or combination of inputs of that
block in a fixed number of cycles;

4. each FSM description in the RTL circuit should have a reset state or a single
input line that takes the FSM to a fixed state.

The algorithm proposed by Ghosh and Fujita first converts the HDL descrip-
tion into a graph-like structure, i.e., the ADD. Then the testing algorithm iden-
tifies arithmetical operation modules, logic arrays, registers, latches, memories,
multiplexers, interconnected and random logic block from the ADD. Each of these
elements is then tested by justifying test vectors to its inputs from the primary
inputs and propagating test responses from its outputs to the primary outputs.
The process of justification and propagation is done symbolically on the ADD rep-
resentation with the help of a nine valued algebra and a branch and bound search
procedure that requires backtracking similar to the sequential ATPG. After this
operation, the result is a set of justifications and propagation paths from primary
inputs to primary outputs that exercises the elements of the RTL circuit. The re-
sulting path that may span across many clock cycles is termed a test environment
for the element under test. Then, a test translation procedure uses test vectors
from a well known test set for the RTL element or a pre-computed test set from a
test set library and plugs them into the test environment to obtain a system-level
test set for the element. Finally, the system-level test sets for various RTL elements
are concatenated together to obtain the complete test set for the circuit.

There are at least two interesting points in this approach: the first is the ADD
data structure, the second is the use of pre-compiled libraries to fill the test envi-
ronment according to the particular type of system under test. The justification
and propagation technique adopted by the authors is quite similar to the classical
approaches adopted in any ATPG, and it is based on a nine value algebra for
the identification of observability and controllability requirements. Sometime it
is impossible to reach the desired properties with a single input vector, therefore
the algorithm introduces the concept of time frame, and the ADD is replicated t
times, where t is the number of required time frames. The second interesting point
is the fact that the result of the justification and propagation process is not a test
vector, but a symbolic string that will be filled in a second phase by using a series
of pre-computed solutions stored in a library. The content of the test library is
specialized according to the particular kind of component under test: this means
that if we want to test a logic array, for example, it could be adopted a specific
strategy that is particularly suited for detecting faults in that specific kind of com-
ponent, and this strategy will be different with respect to the strategy adopted for
a different component, such as a storage element.

ATPG based on Genetic Algorithms

Genetic Algorithms (GA) are sound and incomplete search procedures. They are
very suitable for exploring spaces with either low or not at all search exploitable
information. In fact, they can extract implicit information during the genetic evo-
lution. The search process is performed evolving an initial random population by
applying genetic operators (i.e., mutation and crossover). The evolution process
is terminated as soon as either the optimal solution is found or the last evolution

2.2 Embedded Systems: Validation 43

has been performed. This second terminal condition is the reason why GA are
an incomplete search method that cannot generally guarantee to find the optimal
result. A general GA is completely defined by the following parameters, which are
recalled here to relate them to functional testing.

• Gene definition. The optimal solution is obtained by evolving a population of
potential solutions. The first step in the definition of a GA is defining what a
gene represents.

• Gene representation. Each gene will be manipulated by the genetic operator in
order to obtain a solution close to the optimal one. An effective representation
may have a deep impact on the GA performance.

• Population. It represents the set of genes evolved during generations. The pop-
ulation may contain either a constant or variable number of individuals. The
population size could be increased after some generations without any improve-
ment.

• Fitness function. This function measures the quality of each individual and
drives the GA closer and closer to the solution. Definition of a good fitness
function can imply the success/unsuccess of the genetic experiments, thus its
definition requires a large effort.

• Selection strategy. This step of the GA defines how to select a set of genes from
which deriving the genes of the next population.

• Mutation operators. The goal of these operators is to introduce small variants
into the gene population to avoid the premature convergence to a solution too
far from the optimal solution. Generally, they are applied with a probability,
which decreases during the genetic evolution. For more accurate GA, a set
o mutation operators may be defined. The applied operator may be selected
either randomly or in relation to the current state of the population evolution.

• Crossover operators. These operators derive from a set of genes the next gen-
eration of genes. They try to mix the positive factors of genes included into
the current generation. They are applied with an operator probability. A set
of different crossover operators can be defined to be able to apply the most
appropriate of them with respect to the genetic evolution.

The characterization of the previous parameters to the functional test generation
problem is as follows.

• Gene definition. For a genetic ATPG, a gene represents either a test sequence
[38,39], if the design under test is sequential, or a test vector for combinatorial
circuits [40].

• Gene representation. The binary representation is commonly adopted to rep-
resent genes [41, 42, 43, 44]. By including other symbols, such as ’X’ and ’-’, it
is possible to define more efficient and accurate genetic operators.

• Population. It contains a set of genes. Thus, it is composed of a set of vectors
or sequences [45].

• Fitness function. An efficient GA for functional validation can be structured
in different phases. Each one of them can be characterized by different fitness
functions. For example, the first part of the genetic experiment may be focused
on the coverage optimization [46, 47, 48, 42, 43]. While the second phase may

44 2 Background

try to compact the generated test set [49,50] in order to obtain a compact test
set with a high fault coverage.

• Selection strategy. Roulette and tournament selection strategies are commonly
adopted to select the set of test sequences to be modified [51,45,49,52].

• Mutation operators. These operators can flip bits of test patterns, in order
to discover alternative test sequences, which represent small variants of the
previously generated test sequences [45, 48]. A feasibility check is performed
on the applied mutations and only feasible test sequences are inserted into the
next generation. The feasibility check may be performed by exploiting design
information. The effectiveness of these operators can be increased by defining a
set of mutation operators, which are selected according to the genetic evolution.

• Crossover operators. These operators are liable to increase the variety of the
generated test sequences [53, 46], and to widely explore the search space. A
feasibleness check could be performed for generated sequences according to
formal specifications. The operator effectiveness can be increased by applying
linkage learning techniques [54] in order to reduce the disrupting power of this
operator. By defining a set of crossover operators, it is possible to select the
most appropriate one accordingly to the current phase of the genetic evolu-
tion [50,43].

The goal of GA is to generate functional test sequences for VLSI designs. The
structure of a general GA for functional test generation is presented in Figure 2.15.
The initial randomly generated population is composed of input sequences. The

11101010010

01001001010

10101010101

01010101010

00101001000

10010111111

10010101010

01001010101

01001010000

01010100101

00010010101

01001000101

01010010101

01001010101

01001000010

10101001010

10101010100

10010101000

00010010101

01001000101

01010010101

01001010101

01001000010

10101001010

11101010010

01001001010

10101010101

01010101010

00101001000

10010111111

10010101010

01001010101

01001010000

01010100101

10101010100

10010101000

01010101010

00101001000

10010111111

10010101010

01001010101

01001010000

01010100101

10101010100

10010101000

00010010101

01001000101

01010010101

01001010101

01001000010

10101001010

11101010010

01001001010

10101010101

Initial Population

S
eq

ue
nc

e

 Design

 Under

 Test

Error Simulator

01011101110

00101001100

10010111111

10010101010

01001010101

01001010000

01010100101

10101010100

10010101000

00010010101

01001000101

01010010101

01001010101

01001000010

10101001010

11101010010

01001001010

10101010101

11010010101

01001000101

01010010101

01001010101

01001000010

10101001010

11101010010

01001001010

10101010101

01010101010

00101001000

10010111111

10010101010

01001010101

01001010000

01010100101

10101010100

10010101000

11101010010

01001001010

10101010101

01010101010

00101001000

10010111111

10010101010

01001010101

01001010000

01010100101

00010010101

01001000101

01010010101

01001010101

01001000010

10101001010

10101010100

10010101000

Test set

Genetic

Algorithm

Genetic ATPG

Error model

Fig. 2.15. A general architecture of a GA-based functional TPG

2.2 Embedded Systems: Validation 45

fitness of each sequence will be evaluated by the fault simulator. The result of the
defined GA based TPG is a set of test sequences for the current design under test.

Sequential ATPG: Time frame expansion

Figure 2.16 illustrates the Huffman model of a sequential circuit. Symbols I, O, S
and N are used to represent primary inputs, primary outputs, present state line
and next state line, respectively.

Combinational
Part

M
em

ory
E

lem
ents

I

S N

O

Fig. 2.16. Huffman model of a sequential circuit.

In any clock cycle ci, arbitrary test values can only be assigned to the primary
inputs of the circuit while the values on the next state lines depend on the values
on the present state lines at the end of the clock cycle ci−1.

Therefore, the functionality of a sequential circuit can be represented using an
iterative array of combinational logic, as shown in Figure 2.17.

Combinational
Part

Combinational
Part

time-frame i

I

S

O

N

I

S

O

N

I

S

O

N

time-frame i-1 time-frame i+1

Combinational
Part

Fig. 2.17. Unrolled sequential circuit.

Each copy of a combinational logic is called time-frame. The present state
values in time-frame k correspond to the next state values in the time-frame k−1.

46 2 Background

Due to the time-frame unfolding, a single fault in the original sequential circuit is
represented by a multiple fault in the iterative logic array model.

The fault initialization and fault propagation may require several clock cycles,
i.e., the circuit may have to go through several time-frames. If activating the faults
requires particular assignment on present state lines, the fault initialization has
to be carried out such that these present state lines are justified by assigning
signal values in the previous time frame. This process continues until no signal
assignment on the present state lines is required. Similarly, after the fault has
been activated, it may not be possible to propagate the fault effect to the primary
outputs in the same time-frame, i.e., it may take several time-frames for the fault
effect to become observable on the primary outputs. Obviously, it is harder to
discover faults that need several time-frames to be propagated to the primary
outputs. There are several issues affecting the complexity of sequential ATPG.
Handling highly sequential circuits might not be possible due to the large number
of time-frames required. Consider a 20-bit counter. Detecting the stuck-at-0 fault
on the most significant bit (MSB) would require a sequence of 219 vectors, that are
necessary to set the MSB to 1, and thus this many time-frames would be needed
by the ATPG. This is a perfect example of a small but highly sequential circuit
that cannot be easily handled by any existing logic-level ATPG tool.

However, sequential circuits combined with lower-cost design-for-testability
techniques such as partial scan design offers an attractive, alternative test so-
lution.

2.2.4 Fault models

Fault models represent one of the main aspects for the development of tests for
digital circuits. The aim of a fault model is to simulate the effect of the presence
of physical faults into the design.

The functional test generation considers mainly two classes of fault models:

Functional fault models. They are based on the input/output relationship of higher
level primitives which may represent a large number of gates.

Behavioral fault models. They are described on top of the procedural description
of the design functionality.

The main contributions on fault modeling have been derived from the research
activities of four prominent professors: Jacob Abraham, John Hayes, James Arm-
strong, and Sumit Ghosh. Abraham, in [55,56,57,58,59], has described alternative
fault models for each abstraction level. Hayes introduced in [H85] a new generic
fault model, called induced faults that effectively represents functional faults. His
other contributions have been presented in [60, 61, 62, 63]. Armstrong focused his
research on functional and behavioral fault models [64,65,66,67,68,69,70]. The fail-
ure modes of the language constructs of a generic hardware description language
are the basis of fault models introduced by Ghosh in [71,72,73].

Functional faults

An extensive review of research efforts aimed at deriving realistic models at higher
levels which can accurately represent the faults at lower levels have been presented

2.2 Embedded Systems: Validation 47

in [56]. The considered models can accurately represent the faults at lower levels.
The most interesting functional models concerns: general fault models for func-
tional blocks, models for small functional modules, and fault models for micropro-
cessors. A general fault model assumes that given a combinational function with
N inputs, it can be transformed into any other combinational function of N inputs.
Therefore, its test can be guaranteed by applying the 2N distinct input combina-
tions. This approach is not feasible when N is large, even if it could be applied if
the function is defined as an interconnection of subfunctions. The exhaustive gen-
eral fault model could then be used effectively to test these subfunctions. Models
for several basic functional modules can be exploited for testing larger functions.
For example, a common functional module often found in digital circuits is the
decoder. Its can be described as a design with N inputs and 2N outputs. Each in-
put pattern activates exactly one output line corresponding to the input address.
In [74], a functional fault model for decoders has been defined by analyzing all
single transistor-level faults. This fault model considers three alternatives:

1. The selected output is not the correct one.
2. In addition to the correct line, an incorrect line is activated.
3. No output is selected.

It has been proven that this simple model can effectively represent all of the
potential physical shorts and opens in the gate description of a decoder. A similar
approach has been applied to study fault models for multiplexer [55], another basic
building block. This component is composed by: N data inputs, log2N control
inputs and one output. The control inputs select the data input value that has to
be copied on the output. The defined fault model for this component summarizes
its faulty behaviors as:

1. It is not possible to drive a 0 or a 1 on all the data inputs.
2. It is not possible to drive a 0 or a 1 on all the control inputs.

Similar functional fault model have been defined for other basic functional blocks.
Even though the complexity of a microprocessor is several orders of magnitude
higher than the one of the previous examples, a functional fault models have been
derived at the register transfer in [59]. It has been defined by representing the
microprocessor as a set of functions: register decoding, data transfer, data ma-
nipulation, and instruction sequencing. Then, a functional fault model has been
described for each of these functions. This approach has been further improved
in [57] by hierarchical decomposition of instructions to micro-instructions and
micro-instruction to micro-orders. The defined fault model for generic micropro-
cessors can be represented as combination of the follow functional fault models:

• Fault model for the register decoding function. When the register Ri should be
selected:
1. The Rj is selected instead of Ri.
2. The Rj and Ri are both selected.
3. No register is selected.

• Fault model for the data transfer function. It is defined as:
1. Any line can be stuck at 0 or 1.
2. Any pair of lines i,j can be coupled.

48 2 Background

• Fault model for the data manipulation function. No specific fault model is
provided. In fact, it is assumed that the complete test set for any given ALU
can be easily determined.

• Fault model for the instruction sequencing function. The presence of a fault
can determine one of the following behavior:
1. One or more micro-orders can be inactive.
2. Usually inactive micro-orders become active.
3. A set of microinstructions is active in addition to, or instead of, the normal

microinstructions.

The presented approach includes several advantages:

• High-level of abstraction. It provides a functional fault model even for higher
functional models.

• Low complexity. Providing fault models for high-level block, it makes tractable
complex systems.

• General approach. It allows derivation of tests for complex design (e.g., micro-
processors), even if implementation details are not known. In fact, this approach
focus on the functionality instead of its specific implementation.

Behavioral faults

Behavioral fault models are used in [73] to represent complex failures in VLSI
designs. Faults are simulated by deliberately introducing faulty values for state/-
timing parameters or replacing correct parts of the design with faulty versions.
The severe limitation of this approach is the correct selection of the fault model,
which represents the actual failures. The most suitable methodology is based on
the adoption of a library of fault models of complex devices that are based on ac-
tual failures. This approach has been extended in [71,72] by a set of fault models
based on the failure modes of the language constructs of a generic hardware de-
scription language. The C programming language is adopted to describe hardware
with assurances that its language constructs may be extended to other hardware
description languages. The presented fault models attempt to identify a link be-
tween hardware description language constructs and potential hardware faults.
The main features of the proposed behavioral fault models are:

• Sequential state faults. The states of a sequential component can be alterna-
tively expressed by either an integer, boolean or a real variable. The fault can
manifest itself by permanently assuming either the value V1 or V2, where V1

and V2 represent the lower and upper bounds of the logical value system.
• Function call faults. Two different failures can be manifested by a function call,

which can permanently return either V1 or V2, where V1 and V2 represent the
lower and upper bounds of the function return value range.

• f or construct faults. In the construct for (C) {S}, the set of statements S can
be either not executed at all or infinitively execute regardless of the condition
C.

• s witch construct faults. Faulty switch (id) constructs may select alternatively:
any value in the variable (id) range, none or all the specified cases.

2.2 Embedded Systems: Validation 49

• i f (C)t hen (S1) e lse (S2) statement faults. The faulty behavior of this con-
struct can force the execution of either S1, S2 independently from the value of
the condition C or S1 and S2 are executed when C evaluates to false and true
respectively.

• The assignment faults. The assignment X = Y may fail, such that X remains
unchanged or assumes the lower or upper bounds of the value system, or X
assumes the lower or upper bounds depending on a probability function.

Though relationships to possible hardware faults are proposed, there is no detailed
analysis to justify these assertions. A further shortcoming of these models is the
restriction to the lower bound or upper bound of the value system. Multiple bit
signals must all be stuck at 0 or stuck at 1 rather than allowing for only a single
stuck line.

Model perturbation

The fault models based on the concept of model perturbation have been introduced
for the first time [69]. These fault models are based on the alteration of the HDL
description. This approach has been customized for VHDL descriptions in [66].
Eight behavioral fault classes have been identified:

• Stuck-then. It represents a failure of the if-then-else construct to ever exe-
cute the else statements.

• Stuck-else. It represents a failure of the if-then-else construct to ever execute
the then statements.

• Assignment control. It represents a failure of the VHDL assignment operator
to assign a new value to a signal.

• Dead process. No statement within the process will never be executed.
• Dead clause. It represents a failure of the VHDL CASE construct to execute one

of the alternative sequences of statements (clauses).
• Micro-operation. It represents a failure of an operator to perform its intended

function. The operator may fail to any other operator in its class.
• Local stuck-data. It represents failure of a signal or variable to have the correct

value. The local stuck-data fault is restricted to the expression into which it is
mapped.

• Global stuck-data. It represents failure of a signal or variable to change value
within the device model.

Later, the former fault classes have been subdivided into two broad cate-
gories [65]: control faults and micro-operation faults. Control faults alter the se-
quences of the executed micro-operation. This group contains the former: stuck-
then, stuck-else, assignment control, dead process and dead clause. Whereas micro-
operation faults invert single micro-operations with others (e.g., AND
 OR, INC

 DEC and ADD
 SUB). The crucial aspects of this model concerns the selec-
tion of the micro-operation to perturb [75] and to determine whether any of these
faults can actually occur in hardware.

The concept of equivalent faults has been applied to the previous fault model
in [64] in order to define a new fault model. Stuck-then/stuck-else faults can be
removed from the behavioral fault list if stuck-at faults are defined for unnamed

50 2 Background

signals corresponding to the conditional expressions of the IF statement. Likewise,
a micro-operation fault for a logic operator is detected by a test for a stuck-
at fault on one of its arguments. Finally, a dead-clause fault is equivalent to an
assignment control fault under the assumption of a single behavioral fault model.
The new behavioral fault model renames stuck-at faults to behavioral stuck-at
faults. Assignment control faults are renamed behavioral stuck-open faults and
micro-operation faults for arithmetic or relational operators are renamed micro-
operation faults. Applying these equivalence reductions, the new fault model is
composed by three fault types:

• Behavioral stuck-at fault. Each bit of signal, virtual signal, a fan-out stem, or
a fan-out branch can be permanently stuck-at logic 1 or 0.

• Behavioral stuck-open fault. The value of the source expression of an assignment
statement is not correctly transferred to its target.

• Micro-operation fault. An arithmetic or a relational operator is faulted to an-
other operator.

This fault model has been effectively applied to define the B-algorithm pre-
sented in [64]. The main concerns of this model are related to the effective corre-
lation to actual hardware faults.

2.2.5 Fault Injection

Fault injection is a technique that aims at modifying the behavior of a digital
design in order to simulate the effect of a potential fault. It is mainly applied
for validating fault tolerant systems and to develop detailed fault simulators. The
faulty behavior is explicitly induced by the artificial modification of the design
behavior. Fault injection techniques for hardware description can be classified in
three main categories:

Hardware Implemented Fault Injection. It is performed directly at physical level
by either modifying the environment surrounding the hardware (e.g., heavy ion
radiation, electronic interferences) or altering the values on the design pins.

Software Implemented Fault Injection. The goal of these techniques is to repro-
duce at software level the faulty behavior deriving from software or hardware
faults. These faults can be induced by the modification of the memory data or
the modification of the executed code.

Simulated fault injection. The logic values of the simulated design are altered by
modifying the simulator logic.

The simulated fault injection techniques are the most interesting techniques for
the topic of this dissertation.

Figure 2.18 shows an accurate taxonomy for simulated fault injection tech-
niques discussed in [76]. Fault injection techniques based on simulator commands
have been presented in [77]. Simulator commands are exploited to modify the value
of the model signals and variables without altering code description. HDL code
modification techniques are based either on saboteurs [78,77] or on mutants of the
model components [65,71]. Other techniques are based on the extension of the HDL
language with specific data types and signals, or modifying the HDL resolution

2.2 Embedded Systems: Validation 51

HDL-based
fault injection

Simulator
commands

HDL code
modification

Saboteurs

Other

Signals

Variables

Other
techniques

Fig. 2.18. A simulated fault injection taxonomy.

function [79,80]. The main disadvantage of these approaches is the requirement of
ad-hoc HDL compilers and control algorithms to manage the language extensions.

Simulator commands

These techniques exploit the simulator commands to modify the value of the model
signals and variables [77]. The fault injection campaign are described as script
file loaded before the simulation start. In order to be able to modify the fault
injection parameters (e.g., injection place, injection instant, fault duration, fault
value, observation time) without altering the command code, they are defined via
simulator macros [81].

Saboteurs

A saboteur is an artificial HDL component added to the original design [77]. The
goal of the saboteur is the properties of the target signal (e.g., value, timing re-
sponse) when the corresponding fault is injected. It presence does not affect the
design behavior during the normal operation of the system. In [77] has been pre-
sented a saboteur taxonomy: serial simple, serial complex and parallel. In [76] this
set has been extended with bi-directional saboteurs and some of the former ver-
sions have been adapted to be applicable to buses. The saboteur library defined
in [76] contains:

• Serial simple saboteur. It interrupts the connection between an output (driver)
and its corresponding receptor (input), modifying the reception value.

• Serial simple bi-directional saboteur. It has two input/output signals, plus a
read/write input that determines the perturbation direction.

• Serial complex saboteur. It interrupts the connection between two outputs and
their corresponding receptors, modifying the reception values.

52 2 Background

• Serial complex bi-directional saboteur. It has four input/output signals, plus a
read/write input that determines the perturbation direction.

• n-bit Unidirectional simple saboteur. It is used in unidirectional buses of n bits
(address and control). It is composed of n serial simple saboteurs.

• n-bit Bi-directional simple saboteur. It is used in bi-directional buses of n bits
(data and control). It is composed of n bi-directional serial simple saboteurs.

• n-bit Unidirectional complex saboteur. It is used in unidirectional buses of n
bits (address and control). It is composed of n/2 serial complex saboteurs.

• n-bit Bi-directional complex saboteur. It is used in bi-directional buses of n bits
(data and control).It is composed of n/2 bi-directional complex saboteurs.

Saboteurs are inserted on signals interconnecting sub-components of designs.
A saboteur can be developed as a multiplexer [82], where the control input select
the faulty or the fault free behavior.

2.3 Mutation Analysis

Mutation analysis has a rich and varied history, with major advances in con-
cepts, theory, technology, and social viewpoints. This history begins in 1971, when
Richard Lipton proposed the initial concepts of mutation in a class term paper
titled “Fault Diagnosis of Computer Programs”. It was not until the end of the
1970’s, however, before major work was published on the subject [83, 84, 85]; the
DeMillo, Lipton, and Sayward paper [85] is generally cited as the seminal refer-
ence.

PIMS [83, 86, 87, 88], an early mutation testing tool, pioneered the general
process typically used in mutation testing of creating mutants (of Fortran IV
programs), accepting test cases from the users, and then executing the test cases on
the mutants to decide how many mutants were killed. In 1987, this same process (of
add test cases, run mutants, check results, and repeat) was adopted and extended
in the Mothra mutation toolset [89,90,91,92], which provided an integrated set of
tools, each of which performed an individual, separate task to support mutation
analysis and testing. Because each Mothra tool is a separate command, it was easy
to incorporate, and thus experiment with, additional types of processing. Although
a few other mutation testing tools have been developed since Mothra [93, 94, 95],
Mothra is likely the most widely known mutation testing system extant.

Despite the relatively long history of mutation testing, the software develop-
ment industry has failed to employ it. The two primary reasons why industry
has failed to use mutation testing are the inability to successfully integrate unit
testing into software development processes, and difficulties with providing full
and economical automated technology to support mutation analysis and testing.
These two reasons for the lack of commercial success of mutation are primarily
technological in nature. During the 1990s, a number of technological and theoreti-
cal advances were made in the application of mutation analysis and testing. Most
of these advances are orthogonal, that is, they affect different aspects of mutation
testing.

Before going into detail about these advances, a discussion of how mutation is
used is given from a procedural point of view. Following that, a number of advances

2.3 Mutation Analysis 53

for applying mutation are discussed, which leads to a new process for how mutation
can be applied. A test tool is presented that provides almost complete automation
to the tester. A programmer submits a software module, and after a few minutes of
computation, the tool responds with a set of test cases that are assured to provide
the software with a very effective test, and a set of outputs that can be examined
to find failures in the software. Furthermore, these input-output pairs can be used
as a basis for debugging when failures are found. To be used by industry, this
technology must be integrated with compilers, debuggers, and report generators.

2.3.1 The Mutation Analysis Process

Mutation analysis induces faults into software by creating many versions of the
software, each containing one fault. Test cases are used to execute these faulty
programs with the goal of distinguishing the faulty programs from the original
program. Hence the terminology; faulty programs are mutants of the original, and
a mutant is killed by distinguishing the output of the mutant from that of the
original program.

Mutants either represent likely faults, a mistake the programmer could have
made, or they explicitly require a typical testing heuristic to be satisfied, such as
execute every branch or cause all expressions to become zero. Mutants are limited
to simple changes on the basis of the coupling effect, which says that complex
faults are coupled to simple faults in such a way that a test data set that detects
all simple faults in a program will detect most complex faults The coupling effect
was first hypothesized in 1978 [85], then supported empirically in 1992 [96], and
has been demonstrated theoretically in 1995 [97,98].

Mutation analysis provides a test criterion, rather than a test process. A testing
criterion is a rule or collection of rules that imposes requirements on a set of
test cases. Test engineers measure the extent to which a criterion is satisfied in
terms of coverage; a set of test cases achieves 100% coverage if it completely
satisfies the criterion. Coverage is measured in terms of the requirements that are
imposed; partial coverage is defined to be the percent of requirements that are
satisfied. Test requirements are specific things that must be satisfied or covered;
for example, reaching statements are the requirements for statement coverage and
killing mutants are the requirements for mutation. Thus, a test criterion establishes
firm requirements for how much testing is necessary; a test process gives a sequence
of steps to follow to generate test cases. There may be many processes used to
satisfy a given criterion, and a test process need not have the goal of satisfying a
criterion. In precise terms, mutation analysis is a way to measure the quality of
the test cases and the actual testing of the software is a side effect. In practical
terms however, the software is tested, and tested well, or the test cases do not kill
mutants. This point can better be understood by examining a typical mutation
analysis process.

When a program is submitted to a mutation system, the system first creates
many mutated versions of the program. A mutation operator2 is a rule that is
applied to a program to create mutants. Typical mutation operators, for example,
2 The terminology varies; they are also sometimes called mutant operators, mutagenic

operators, mutagens, mutation transformations, and mutation rules [99]

54 2 Background

replace each operand by every other syntactically legal operand, or modify expres-
sions by replacing operators and inserting new operators, or delete entire state-
ments. Figure 2.19 graphically shows a traditional mutation process. The solid
boxes represent steps that are automated by traditional systems such as Mothra,
and the dashed boxes represent steps that are done manually.

Next, test cases are supplied to the system to serve as inputs to the program.
Each test case is executed on the original program and the tester verifies that the
output is correct. If incorrect, a bug has been found and the program should be
fixed before that test case is used again. If correct, the test cases are executed
on each mutant program. If the output of a mutant program differs from the
original (correct) output, the mutant is marked as being dead. Dead mutants are
not executed against subsequent test cases.

Input test
program

Create
mutants

Input test
cases

Program

Tests

Run T on P

P (T)
correct

?
Fix P

Run T on
each live
mutant

All
mutants

dead
?

Analyze and mark
equivalent
mutants

F T

T F
Quit

Fig. 2.19. Traditional Mutation Testing Process. Solid boxes represent steps that are
automated and dashed boxes represent steps that are manual.

Once all test cases have been executed, a mutation score is computed. The
mutation score is the ratio of dead mutants over the total number of non-equivalent
mutants. Thus, the tester’s goal is to raise the mutation score to 1.00, indicating
that all mutants have been detected. A test set that kills all the mutants is said
to be adequate relative to the mutants.

If (as is likely) mutants are still alive, the tester can enhance the set of test
cases by supplying new inputs. Some mutants are functionally equivalent to the
original program. Equivalent mutants always produce the same output as the

2.3 Mutation Analysis 55

original program, so cannot be killed. Equivalent mutants are not counted in the
mutation score. Note that even if the tester has not found any faults by using the
previous set of test cases, the mutation score gives some indication of the extent of
the testing. Moreover, the live mutants point out inadequacies in the test cases. In
most cases, the tester creates test cases to kill specific live mutants. This process of
adding new test cases, verifying correctness, and killing mutants is repeated until
the tester is satisfied with the mutation score. A mutation score threshold can be
set as a policy decision to require testers to test software to a predefined level.

2.3.2 Using Mutation Analysis to Detect Faults

Many research papers about mutation have obscured the issue of how and when
failures are found when using mutation. In standard IEEE terminology [100], a
failure is an external, incorrect behavior of a program (an incorrect output or a
runtime failure). A fault is the group of incorrect statements in the program that
causes a failure. Failures in the software are detected when test cases are executed
against the original program. The tester must decide whether the output of the
program on each test case is correct. If the output is correct, the process continues
as described above. If the output is incorrect, then a failure has been found and
the process stops until the associated fault can be corrected. This leads to the
fundamental premise of mutation testing, as coined by Geist [101]: in practice, if
the software contains a fault, there will usually be a set of mutants that can only
be killed by a test case that also detects that fault.

2.3.3 Practical use of Mutation testing

One of the barriers to the practical use of mutation testing is the unacceptable
computational expense of generating and running vast numbers of mutant pro-
grams against the test cases. The number of mutants generated for a software unit
is proportional to the product of the number of data references and the number
of data objects [102]. Typically, this is a large number for even small software
units. Because each mutant program must be executed against at least one, and
potentially many, test cases, mutation analysis requires large amounts of compu-
tation. This is shown in Figure 2.19 in the box labeled “Run test cases on each live
mutant”. It is by far the most computationally expensive step in mutation testing.

The other barrier to more widespread use of mutation testing is the amount
of manual labor involved in using this technique. For example, manual equivalent
mutant detection is quite tedious and developing mutation adequate test cases can
be very labor-intensive.

Recent advances show promise in bringing down both of these barriers. In the
follow, first advances have been described for reducing the computational expense
of mutation analysis and then review research work is presented, that has been
successful in partially automating much of the labor intensive portions of mutation
testing.

56 2 Background

Reducing the Computational Cost of Mutation Analysis

Recall that the major cost of mutation analysis arises from the computational
expense of generating and running vast numbers of mutant programs. Approaches
to reduce this computational expense usually follow one of three strategies: do
fewer, do smarter, or do faster.

• The do fewer approaches seek ways of running fewer mutant programs without
incurring intolerable information loss.

• The do smarter approaches seek to distribute the computational expense over
several machines or factor the expense over several executions by retaining
state information between runs or seek to avoid complete execution.

• The do faster approaches focus on ways of generating and running each mutant
program as quickly as possible.

Selective Mutation - a do fewer approach

Mothra used 22 mutation operators, of which the six most populous account for
40% to 60% of all mutants. This is typical of mutation systems - the goal was
to include as much testing as possible by defining as many mutants as possible.
These six mutants, and others, are in some sense redundant; that is, test sets that
are generated to kill only mutants generated from the other mutant operators
are very effective in killing mutants generated from the six. Wong and Mathur
suggested the idea of constrained mutation to be applying mutation with only the
most critical mutation operators being used [103]. This idea was later developed
by Offutt et al. as an approximation technique called selective mutation that tries
to select only mutants that are truly distinct from other mutants [102,104].

Results showed that of the 22 mutation operators used by Mothra, 5 turn out to
be key operators. In experimental trials, those five operators provided almost the
same coverage as non-selective mutation, with cost reductions of at least four times
with small programs, and up to 50 times with larger programs. The 5 sufficient
operators are ABS, which forces each arithmetic expression to take on the value 0, a
positive value, and a negative value, AOR, which replaces each arithmetic operator
with every syntactically legal operator, LCR, which replaces each logical connector
(AND and OR) with several kinds of logical connectors, ROR, which replaces
relational operators with other relational operators, and UOI, which inserts unary
operators in front of expressions. Future mutation systems will have the goal of
minimizing the number of mutation operators - getting as much testing strength
as possible with as few mutants as possible.

Mutant Sampling - a do fewer approach

First proposed by Acree [105] and Budd [106], in sampling only a randomly se-
lected subset of the mutant programs are run. The effects of varying the sampling
percentage from 10% to 40% in steps of 5% were later investigated by Wong [107].
A 10% sample of mutant programs, for example, was found to be only 16% less
effective than a full set in ascertaining fault detection effectiveness.

An alternative sampling approach is proposed by Sahinoglu and Spafford [108]
that does not use samples of some a priori fixed size but rather, based on a Bayesian

2.3 Mutation Analysis 57

sequential probability ratio test, selects mutant programs until sufficient evidence
has been collected to determine that a statistically appropriate sample size has
been reached.

Weak Mutation - a do smarter approach

Research systems such as Mothra execute mutant programs until they terminate,
then compare the final output of the program with the output of the original
program. Originally proposed by Howden [109], weak mutation is an approximation
technique that compares the internal states of the mutant and original program
immediately after execution of the mutated portion of the program. That is, weak
mutation ensures that the necessity condition is satisfied, but not the sufficiency
condition.

Weak mutation has been discussed theoretically [110, 111, 112] and studied
empirically [113, 114, 115, 116]. Howden’s original proposal stated that the states
should be compared after the mutated statement, without elaborating on exactly
when. Morell’s concept of extent [110] and Woodward and Halewood’s firm mu-
tation [111] suggested that the comparison could be done at any point after the
mutated statement.

The Leonardo system [117, 116], which was implemented as part of Mothra,
did two things. It implemented a working weak mutation system that could be
easily compared with strong mutation, and evaluated the extent/firm concept by
allowing comparisons to be made at four different locations after the mutated
component:

1. after the first evaluation of the innermost expression surrounding the mutated
symbol,

2. after the first execution of the mutated statement,
3. after the first execution of the basic block that contains the mutated statement,

and
4. after each execution of the basic block that contains the mutated statement

(execution stops as soon as an invalid state is detected).

Experience with Leonardo indicated that weak mutation was able to generate tests
that were almost as effective as tests generated with strong mutation, and that
at least 50% and usually more of the execution time was saved. Moreover, it was
found that the most effective point at which to compare the program states was
after the first execution of the mutated statement.

Other do smarter approaches

Using novel computer architectures to distribute the computational expense over
several machines represents another ” do smarter” strategy. Work has been done to
adapt mutation analysis systems to vector processors [118], SIMD machines [119],
Hypercube (MIMD) machines [120, 121], and Network (MIMD) computers [122].
Because each mutant program is independent of all other mutant programs, com-
munication costs are fairly low. At least one tool was able to achieve almost linear
speedup for moderate sized program functions [120].

In another do smarter approach, Fleyshgakker and Weiss describe algorithms
that improve the run time complexity of conventional mutation analysis systems

58 2 Background

at the expense of increased space complexity [123]. By intelligently storing state
information, their techniques factor the expense of running a mutant over several
related mutant executions and thereby lower the total computational costs. In the
best case, these techniques can improve the speed by a factor proportional to the
average number of mutants per program statement.

Schema-based Mutation Analysis - a do faster approach

Most mutation systems have worked by interpreting many slightly different ver-
sions of the same program. Although interpretation-based systems make the man-
agement of the mutant executions convenient, this conventional method has signif-
icant problems. Automated mutation analysis systems based on the conventional
interpretive method are slow, laborious to build, and usually unable to completely
emulate the intended operational environment of the software being tested. To
solve these problems, Untch developed a new execution model for mutation, the
Mutant Schema Generation (MSG) method [124,94].

Instead of mutating an intermediate form, the MSG method encodes all mu-
tations into one source-level program, a metamutant. This program is then com-
piled (once) with the same compiler used during development and is executed in
the same operational environment at compiled-program speeds. Because mutation
systems based on mutant schemata do not need to provide the entire run-time
semantics and environment, they are significantly less complex and easier to build
than interpretive systems, as well as more portable. Benchmarks show TUMS, an
MSG-based prototype mutation analysis system, to be significantly faster than
Mothra, with speed-ups as high as an orderof-magnitude observed.

Other do faster approaches

Another way of avoiding interpretive execution is the separate compilation ap-
proach, wherein each mutant is individually created, compiled, linked and run.
The Proteum system [95] is an example of this approach. When mutant run times
greatly exceed individual compilation/link times, a system based on such a strat-
egy will execute 15 to 20 times faster than an interpretive system. When this
condition is not met, however, a compilation bottleneck [121] may result.

To avoid compilation bottlenecks, DeMillo, Krauser, and Mathur developed a
compiler-integrated program mutation scheme that avoids much of the overhead
of the compilation bottleneck and yet is able to execute compiled code [93]. In this
method, the program under test is compiled by a special compiler. As the compi-
lation process proceeds, the effects of mutations are noted and code patches that
represent these mutations are prepared. Execution of a particular mutant requires
only that the appropriate code patch be applied prior to execution. Patching is
inexpensive and the mutant executes at compiled-speeds.

Reducing Burdensome Manual Tasks

Manually developing test cases that are mutation adequate requires a great deal
of effort. Additionally, determining which mutant programs are equivalent to the
original program is a very tedious and error-prone activity. Progress has been made
on partially automating both of these tasks and is described next.

2.3 Mutation Analysis 59

Automatic Test Data Generation

One of the most difficult technical tasks in testing software is that of generating
the test case values needed to satisfy the testing criterion. In his dissertation [91],
Offutt developed a technique called constraint-based test data generation (CBT),
which creates test data that comes reasonably close to satisfying mutation. CBT
is based on the observation that a test case that kills a mutant must satisfy three
conditions. The first is that the mutated statement must be reached; this is called
the reachability condition. The second condition requires the execution of the
mutated statement to result in an error in the program’s state; this is called the
necessity condition. The third condition, the sufficiency condition, states that the
incorrect state must propagate through the program’s computation to result in an
output failure. Godzilla is a test data generator that uses constraint-based testing
to automatically generate test data for Mothra [92].

Godzilla describes these conditions as mathematical systems of constraints.
Reachability conditions are described by constraint systems called path expres-
sions. Each statement in the program has a path expression that describes all
execution paths through the program to that statement. The path expression is
an assertion that is true if the statement is reached. The necessity condition is
described by a constraint that is specific to the mutant operator and requires that
the computation performed by the mutated statement create an incorrect inter-
mediate program state. Because expressing the sufficiency condition as a set of
constraints requires knowing in advance the complete path a program will take
(in general, undecidable), Godzilla does not attempt to automatically satisfy this
condition directly.

Godzilla conjoins each necessity constraint with the appropriate path expres-
sion constraint. The resulting constraint system is solved to generate a test case
such that the constraint system is true. Experimentation [125] has verified that
constraint-based testing creates test cases that kill over 90% of the mutants for
most programs. CBT uses control-flow analysis, symbolic evaluation, and informa-
tion about mutants to create the constraints, and a constraint satisfaction tech-
nique called domain reduction to generate test values.

CBT suffers from several shortcomings that prevent it from working in some
situations and hamper its applicability in practical situations. Many of these short-
comings stem from weaknesses associated with symbolic evaluation and include
problems handling arrays, loops, and nested expressions. Godzilla occasionally fails
to find test cases, and for some programs it fails a large percentage of the time.
This is partly because of problems with the technique, partly because of insuffi-
ciently general approaches to handling expressions, and partly because Godzilla
employed relatively unsophisticated search procedures.

More recently, a test data technique called the dynamic domain reduction pro-
cedure was developed to address most of these problems [126, 127]. The dynamic
domain reduction procedure (DDR) uses part of the CBT approach, and also
draws from Korel’s dynamic test data generation approach [128,129] and symbolic
evaluation. It uses a direct domain reduction method for deriving values, rather
than function minimization methods as used by Korel or linear programming-like
methods as used by Clarke [130]. Korel’s dynamic method [129] executes a pro-
gram along one specific path by starting with a particular input. When a branching

60 2 Background

point is reached, if the current inputs will cause the appropriate branch to be taken,
the inputs will remain the same. If a different branch is required, then the inputs
are dynamically modified to take the correct branch using function minimization.
DDR also works by choosing a specific path, but there are no initial values, and
the values are derived in-process from initial input domains.

Unlike dynamic symbolic evaluation [131,132], DDR creates sets of values that
represent conditions under which a path will be executed. Thus, the results of
dynamic symbolic evaluation attempt to represent all possible values that will
execute a given path, while dynamic domain reduction only results in a small set
of possible values. While this is more limited, it is also more practical for real
programs.

The dynamic nature of DDR, which combines analysis of the software with sat-
isfaction of constraints and test data generation, allows better handling of arrays
and expressions. DDR also incorporates a sophisticated back-tracking search pro-
cedure to partially solve a problem that caused previous methods to fail. Because
of the historical basis, the DDR procedure will always work when CBT does, and
also in many cases when CBT does not.

The DDR procedure walks through the program control flow graph, generating
test data along the way. Each input variable is initially given a large set of poten-
tial values (its domain) and, as branches are taken in the control flow graph, the
domains for the variables involved in the predicates are reduced so that the ap-
propriate predicates would be true for any assignment of values from the domain.
When choices for how to reduce the domains must be made, a search process is
initiated and choices are systematically made to try to find a choice that allows
the subsequent edges on the path to be executed. When the procedure is finished,
the remaining values for the variables’ domains represent sets of test cases that
will cause execution of the path. If any variable’s domain is empty, the search
process failed due to one of two possible reasons. One, the path is infeasible, so
no satisfying values could be found. Two, it was very difficult to find values that
execute the path; this could be because the constraints were too complicated or
there are relatively few inputs that will execute the path.

Partial Automatic Equivalent Mutant Detection

A major problem with practically applying mutation is that of equivalent mutant
programs. Equivalent mutants can be thought of as ”dead-weight” in the testing
process - they do not contribute to the generation of test cases, but require lots
of time and attention from the tester. Equivalent mutants have traditionally been
detected by hand, which is very expensive and time-consuming, and restricts the
practical usefulness of mutation testing.

Although recognition of equivalent programs is in general undecidable [133],
the idea of using compiler-optimization techniques to recognize some if not most
equivalent mutants was suggested by Baldwin and Sayward in 1979 [134]. This
technique was tried in a limited way by hand in Tanaka’s 1981 thesis [135]. Offutt
and Craft [136] refined, extended, and implemented the Baldwin and Sayward
suggestions in a tool that was integrated with Mothra. This led directly to the
idea of using constraint-based testing to detect equivalent mutants, which was

2.4 Co-simulation 61

implemented in a tool that detected almost 50% of the equivalent mutants [137,
138].

The constraint-based technique uses mathematical constraints to automatically
detect equivalent mutants. The general idea is that if a constraint system that is
created to kill a mutant is infeasible, then that mutant is equivalent. Although
recognizing infeasible constraints is a difficult problem that cannot be solved in
general, heuristic approximations have been developed that are quite effective.
This approach also subsume all of the previous compiler-optimization techniques.

Hierons, Harman, and Danicic have gone one step further and use program
slicing to detect equivalent mutants [139]. This approach in turn subsumes the
constraint-based technique.

Unfortunately, no automated system will be able to detect all equivalent mu-
tants, thus to complement the technique of recognizing equivalent mutants, we
suggest that the remaining equivalent mutants can be safely ignored. Although
this requires the tester to be willing to accept less than full mutation coverage,
results indicate that the loss will not usually be significant, and the testing will
still be more effective than testing with most other testing techniques. Although
this approach is not completely satisfying from a theoretical point of view, it is an
eminently practical engineering solution to a practically impossible problem.

2.4 Co-simulation

Co-simulation strategies allow to simulate and verify HW/SW embedded systems
before the real platform is available. In this field, there is a large variety of ap-
proaches, that rely on different communication mechanisms to implement an effi-
cient interface between the SW and the HW simulators. In the follow Section 2.4.1
presents the main aspects of co-simulation frameworks in a co-design scenario,
afterwards Section 2.4.2 summarizes existing work on HW/SW co-simulation.

2.4.1 Co-design scenario

Embedded systems are mostly heterogeneous devices that comprise components
as general purpose processors, DSP, custom ASICs and FPGAs. A tough obstacle
in designing such systems is actually their partitioning in the hardware and soft-
ware parts that are developed and tested with totally different tools and method-
ologies. Furthermore, hardware and software cannot be developed independently,
since their interaction is a key point of the system behavior. In fact, a software
developer needs to be aware of the underling hardware features to write effec-
tive programs (e.g., precise timing of the instructions, organization of the memory
hierarchy), while hardware designers must know the characteristics of the appli-
cation (e.g., memory access patterns, synchronization among tasks), in order to
provide optimized components. Moreover, hardware components and software rou-
tines must be properly interfaced to warrant the correct behavior of the system.

In this scenario, it is convenient to adopt a co-design strategy, since it allows
to develop both sides of the system (hardware and software) concurrently, thus
avoiding the design loops where hardware and software are developed in succession

62 2 Background

and then refined several times until the convergence to a satisfactory system is met
[140]. In such a co-design flow, a key component is a co-simulation tool that allows
to verify the hardware, the software, and their interaction. Within a co-simulation
environment, in fact, both hardware and software are evaluated concurrently, each
one at the most convenient abstraction level. For this reason, a large number of co-
simulation frameworks have been developed by academic groups and EDA vendors.
However, while they all propose valuable solutions for HW/SW co-simulation, they
lack a comprehensive methodology which addresses all the following aspects.

• Minimal knowledge of the current design. Frequently, an existing design must
be extended without a complete knowledge of the basic components. This is
due to IP-core protection and/or to the presence of legacy modules. Then,
the methodology must be minimally intrusive for the description of HW and
SW components, thus allowing the co-simulation of the new modules with the
current design without requiring free access to the implementation details of
the latter.

• Heterogeneous co-simulation. An homogeneous strategy allows HW and SW
components to be modeled and simulated by using the same description lan-
guage, and the same simulator. This is useful in the early definition of the
system functionality. However, it abstracts away the real nature of the mixed
HW/SW system, and it is generally not suited to model the design after
HW/SW partitioning. Moreover, homogeneous co-simulation cannot be eas-
ily applied to incrementally extend an existing system. Thus, heterogeneous
approaches are preferable, since they allow a more flexible framework. In this
case, SW components are implemented by using a high-level programming lan-
guage (e.g., C/C++) and they run on an instruction set simulator (ISS) or on
a real programmable device. On the contrary, HW components are modeled by
hardware description languages (e.g., VHDL, SystemC), and they are validated
by using the appropriate simulators.

• Flexibility with respect to the SW execution environment. Generally, an ISS
is adopted to simulate the SW components of the system, when the real pro-
grammable device is not yet available. Thus, the co-simulation framework must
be able to co-simulate HW modules, described by using some hardware descrip-
tion languages, with a SW program running on both an ISS or a programmable
device mounted on a real board. Using a unique interface mechanism allows a
seamless replacement of the ISS with the real board, thus significantly simpli-
fying the prototyping of the system.

• Timing-accurate co-simulation. In order to obtain realistic estimation of the
system performance a timed synchronization between the SW and the HW do-
mains is required. This represents a challenging task when different simulators
are used for SW and HW components, basically because they do not share
a common clock. Therefore, the co-simulation methodology must integrate a
mechanism to exchange timing information and keep the synchronization be-
tween the ISS/board and the HW simulator.

2.4 Co-simulation 63

2.4.2 Classification of co-simulation methodologies

Several co-simulation frameworks have been proposed in the literature [141, 142,
143, 144, 145, 146, 147, 148]. In spite of the variety of architectural targets, perfor-
mance efficiency and description languages, we can classify these different solutions
into two main categories: homogeneous and heterogeneous co-simulation frame-
works. Notice that in this work we stick to the conventional distinction between
homogeneous and heterogeneous schemes, based on the homogeneity or hetero-
geneity of the description languages used.

Homogeneous frameworks use a single engine for the simulation of both HW
and SW components. The Ptolemy [141] and Polis [142] frameworks are pioneering
works in that direction. In these approaches, homogeneity is achieved by abstract-
ing away the distinction between hardware and software parts that are described as
functional blocks. Homogeneous frameworks simplify the design modeling and they
provide good simulation performance. However, they are suitable only in a very ini-
tial phase of the design, prior to HW/SW partitioning. Conversely, heterogeneous
frameworks ensure a more accurate tuning between HW and SW components.
Most of these frameworks essentially address the same problem: how to efficiently
link event-driven hardware simulators and cycle-based instruction set simulators.
Earlier HW/SW co-simulation frameworks [145, 146, 147] are mainly focused on
multi-language system descriptions, i.e., a HDL for hardware, and a programming
language for software. All these heterogeneous co-simulation solutions are quite
similar since their main effort is focused on solving the issue of controlling and
synchronizing two (or more) simulation engines. This heterogeneous style is sub-
optimal in terms of simulation performance and easiness of integration, but it was
the only possible choice when VHDL or Verilog simulation was the highest possible
level of abstraction for simulating hardware.

Some commercial tools, such as Mentor Graphics Seamless [144] and Synopsys
Eaglei [143], also provide heterogeneous co-simulation capabilities. However, they
allow HW/SW co-simulation at bus level, where each bus transaction involves all
signals necessary to accomplish the bus function, thus degrading the co-simulation
performance. The advent of design flows based on SystemC allowed the definition
of efficient semi-homogeneous approaches [149,150,151,152,153], where the bus is
abstracted to obtain a more efficient co-simulation. They are homogeneous from
the language point of view, since both HW and SW are described by using C++.
This definitely simplifies the implementation of the initial model as well as the
subsequent HW/SW partitioning. However, these approaches are heterogeneous
from the simulation point of view. In fact, HW components are simulated by
using the SystemC simulation kernel, while SW programs run on an ISS or on
a programmable device mounted on a real board. In this way, a more accurate
performance estimation can be performed, since the heterogeneous model reflects
the final embedded system. All these frameworks are based on two basic concepts:

• Interprocess communication (IPC). It is used to realize the communication
between the ISS/board, where the SW part runs, and the SystemC simulator,
that models the HW part.

64 2 Background

• Bus wrapper. It ensures synchronization between the SystemC simulation and
the ISS/board, and it translates the information coming from the ISS/board
into cycle-accurate bus transactions.

Most of these approaches [149,150,151] define a custom interface between the
bus wrapper and the ISS/board. This makes the integration of new processor cores
within the co-simulation framework harder, because the ISS needs to be modified
to support the IPC primitives defined by the co-simulation system. This issue
is addressed in [148], where a standardized interface between bus wrapper and
ISS is proposed. It is based on the remote debugging primitives of GDB [154]. In
this way, any ISS/board that can communicate with GDB (that is, basically any)
can also become part of a system-level co-simulation framework. The approach
of [148] still suffers from some performance bottlenecks, since the ISS/board and
the SystemC simulators evolve in lock-step (synchronization is driven by the host
operating system via IPC).

Another drawback of the previous co-simulation methodologies is represented
by the lack of timing synchronization. This heavily limits their application as
a design performance evaluation tool. Simulation performance was the strongest
limitation to the development of effective timing accurate co-simulation strategies.
This is particularly true for heterogeneous approaches, where a significant over-
head is imposed by the effort of keeping the synchronization between HW and
SW parts [155, 145, 146, 147]. Although homogeneous frameworks may make this
task more manageable, homogeneity is usually achieved by abstracting away the
distinction between hardware and software, making the very notion of time quite
imprecise [141,142].

Only recently, some approaches have addressed this performance bottleneck by
explicitly targeting the timing accuracy of co-simulation.

One class of approaches borrows ideas from the theory of distributed synchro-
nization, using the similarity between timed co-simulation and distributed event-
driven simulation algorithms [156,157,158,159,160]. All these approaches follow an
asynchronous paradigm, in which each simulator manages its local time, and the
local times evolve at different speeds. They differ, however, in how the overhead
required by synchronization is managed. One solution consists of using simulation
rollbacks, when one simulator receives a past event from the other simulator [156].
Another solution relies on a proper alignment between the local clocks and global
clock, when rollback is not possible. In this way, the synchronization occurs only
when events are exchanged [157,158,159,160].

A different class of approaches is based on the construction of a timing model
for software, obtained by attaching timing annotations to the ISS (for instance,
an execution time in clock cycles for each executed instruction). Thus, timing syn-
chronization between software and hardware is achieved by using the accumulated
delays for the software, and the clock cycle information provided by a HDL sim-
ulator for the hardware [161, 162, 163]. These solutions have two main drawbacks
which limit an easy applicability: they are closely related to the specific implemen-
tation of the native OS, and the delay annotations depend on the processor where
the SW runs (if the core model changes, delay annotations must be rewritten).

A final observation applies to all the timing-accurate HW/SW co-simulation
solutions cited above. They are explicitly targeted for the interaction of two (or

2.5 Constraint solving 65

more) co-simulation engines, and are thus not suitable for a virtual prototyping
context, which requires the timing-accurate interfacing of a simulator for HW
and a SW program running on an real board, possibly hosting an OS. In other
terms, when a real board is used instead of an ISS, it is necessary a synchronization
between actual (i.e., not simulated) time (on the board side where SW is executed)
and simulated time (on the host computer side where an HW model is simulated).
This requirement rules out many of the possibilities previously reviewed; options
such as simulation rollback or the use of instruction-based timing models, for
instance, are either infeasible or inadequate. In fact, the real-time execution of the
software on the board is based on the synchronization given by the hardware timer
which monotonically increases its value. Moreover, the board may include some
hardware devices which synchronizes their work by exploiting the timer value, thus
rollback cannot be implemented, since it would require the rollback of the behavior
of such real hardware components.

2.5 Constraint solving

Constraint solving and constraint programming [164] are a paradigm that is
tailored to search problems. The main application areas are those of planning,
scheduling, timetabling, routing, placement, investment, configuration, design and
insurance. Constraint programming incorporates techniques from mathematics, ar-
tificial intelligence and operations research, and it offers significant advantages in
these areas since it supports fast program development, economic program main-
tenance, and efficient runtime performance.

Basically, a constraint solving problem is composed of a finite set of variables,
each of which is associated with a finite domain, and a set of constraints that
restricts the values the variables can simultaneously take. The task is to assign a
value to each variable satisfying all the constraints.

The direct representation of the problem, in terms of constraints, results in
short, simple programs that can be easily adapted to changing requirements. The
integration of these techniques into a coherent highlevel language enables the pro-
grammer to concentrate on choosing the best combination for the problem at hand.
Because programs are quick to develop and to modify, it is possible to experiment
with ways of solving a problem until the best and fastest program has been found.
Moreover more complex problems can be tackled without the programming task
becoming unmanageable.

Constraints differ from the common primitives of other programming languages
in that they do not specify a step or sequence of steps to execute but rather the
properties of a solution to be found. The constraints used in constraint solving are
of various kinds, e.g. those used in constraint satisfaction problems and those solved
by the simplex algorithm. Constraints are usually embedded within a programming
language or provided via separate software libraries.

2.5.1 ECLiPSe: a Constraint Logic Programming System

Constraint logic programming (CLP) combines logic, which is used to specify a set
of possibilities explored via a very simple in-built search method, with constraints,

66 2 Background

which are used to minimize the search by eliminating impossible alternatives in
advance.

The programmer can state the factors which must be taken into account in
any solution (the constraints), state the possibilities (the logic program), and use
the system to combine reasoning and search. The constraints are used to restrict
and guide search. The whole field of software research and development has one
aim, viz. to optimize the task of specifying and writing and maintaining correct
functioning programs.

A constraint logic program is a logic program that contains constraints in the
body of clauses. An example of a clause including a constraint is:

A(X,Y) :− X + Y > 0 , B(X) , C(Y) .

In this clause, X + Y > 0 is a constraint; A(X,Y), B(X), and C(Y) are literals
like in regular logic programming. Intuitively, this clause tells one condition under
which the statement A(X,Y) holds: this is the case if X + Y is greater than zero
and both B(X) and C(Y) are true.

Like in regular logic programming, programs are queried about the provability
of a goal, which may contain constraints in addition to literals. A proof for a goal
is composed of clauses whose bodies are satisfiable constraints and literals that
can in turn be proved using other clauses. Execution is done by an interpreter,
which starts from the goal and recursively scans the clauses trying to prove the
goal. Constraints encountered during this scan are placed in a set called constraint
store. If this set is found out to be unsatisfiable, the interpreter backtracks, trying
to use other clauses for proving the goal. In practice, satisfiability of the constraint
store may be checked using an incomplete algorithm, which does not always detect
inconsistency.

One of the main ambitions of Constraint Programming is the separation of
Modeling, Algorithms and Search. This is best characterized by two pseudo-
equations. The first one is paraphrased from Kowalski [165]:

So lu t i on = Logic + Control

and states that have to solve a problem by giving a logical, declarative descrip-
tion of the problem and adding control information that enables a computer to
deduce a solution.

The second equation

Control = Reasoning + Search

is motivated by a fundamental difficulty faced when dealing with combinatorial
problems: we do not have efficient algorithms for finding solutions, we have to resort
to a combination of reasoning (via efficient algorithms) and (inefficient) search.

Then every constraint program can be considered as an exercise in combining
the 3 ingredients:

Logic The design of a declarative Model of the problem.
Reasoning The choice of clever Constraint Propagation algorithms that reduce

the need for search.

2.5 Constraint solving 67

Search The choice of search strategies and heuristics for finding solutions quickly.

ECLiPSe (ECLiPSe Common Logic Programming System) [166,167] is a Pro-
log based system whose aim is to serve as a platform for integrating various Logic
Programming extensions, in particular Constraint Logic Programming (CLP). The
kernel of ECLiPSe is an efficient implementation of standard (Edinburgh-like) Pro-
log as described in basic Prolog texts. It is built around an incremental compiler
which compiles the ECLiPSe source into WAM-like code, and an emulator of this
abstract code.

ECLiPSe was initially developed at the European Computer-Industry Research
Centre (ECRC) in Munich, and then at IC-Parc, Imperial College in London until
the end of 2005. It is now an open-source project, with the support of Cisco
Systems.

ECLiPSe is a CLP system intended for:

• general programming tasks, especially rapid prototyping,
• problem solving using the available solver libraries and the CLP paradigm,
• development of new constraint solvers based on the existing solvers and em-

ploying ECLiPSe’s lower-level language features.

The ECLiPSe system consists of:

• a runtime core,
• a collection of libraries,
• a modeling and control language,
• a development environment,
• interfaces for embedding into host environments
• interfaces to third-party solvers.

ECLiPSe offers several different libraries for handling symbolic and numeric
constraints. The standard constraint solver offered is the fd (finite domain) solver,
which applies constraint propagation techniques developed in the AI community.
ECLiPSe supports finite domain constraints via the ic library. This library im-
plements finite domains of integers, and the usual functions and constraints on
variables over these domains. Others used libraries are the range library, the ria
(real number interval) library, and finally the eplex (MIP) library.

The main benefit of constraint logic programming over other platforms for
solving combinatorial problems is in the closeness between the conceptual model
and the design model. ECLiPSe takes full advantage of this by offering facilities
to choose different annotations of the same conceptual model to achieve design
models which, whilst syntactically similar, can have radically different behavior.

Let consider the conceptual model for the map coloring example illustrated in
Figure 2.20 into a design model which uses the finite domain constraint handler of
ECLiPSe. As a toy example let us write a program to color a map so that no two
neighboring countries have the same color. In constraint logic programs, variables
start with a capital letter (eg A), and constants with a small letter (eg red).

The design model is encoded as shown in Figure 2.21. The problem involves
four decisions, one for each country. These are modeled by the variables A, B,
C and D. Countries is just a name for the list of four variables. Each decision
variable, in this problem, has the same set of choices, modeled as possible values

68 2 Background

a b

c

d

Fig. 2.20. Map coloring example.

:− l i b (fd) .

co loured (Countr ies) :−
Countr ies= [A, B, C, D] ,
Countr ies : : [red , green , b lue] ,
ne (A,B) , ne (A,C) , ne (A,D) , ne (B,C) , ne (B,D) , ne (C,D) ,
l a b e l i n g (Countr ies) .

ne (X,Y) :− X##Y.

Fig. 2.21. A finite domain CLP program for map coloring example.

for the variables (red, green and blue). There are six constraints, each of which
is modeled by the same relation (ne meaning not equal to). The design model
extends the conceptual model in four ways.

1. The ECLiPSe finite domain library is loaded (using :- lib(fd)).
2. An explicit finite domain is associated with each decision variable (using

Countries :: [red, green, blue]).
3. The finite domain built-in disequality constraint is used to implement the ne

constraint (using ne(X,Y) :- X##Y). ## is a special syntax for disequality used
by the finite domain constraint solver.

4. This program includes a search algorithm, that is invoked by the goal labeling(Countries).
As we shall see later, this predicate tries choosing, for each of the variables A,
B, C and D in turn, a value from its domain. It succeeds when a combination
of values has been found that satisfies the constraints.

Naturally this is a toy example, and it is not always so easy to turn a conceptual
model into a design model. Nevertheless constraint logic programming, and in
particular ECLiPSe, have made a lot of progress in achieving a close relationship
between the conceptual model and the design model.

2.5.2 NuSMV: a Model Checking System

NuSMV is a symbolic model checker originated from the reengineering, reimple-
mentation and extension of SMV, the original BDD-based model checker developed

2.5 Constraint solving 69

at CMU [168]. The NuSMV project aims at the development of a state-of-the-art
symbolic model checker, designed to be applicable in technology transfer projects:
it is a well structured, open, flexible and documented platform for model checking,
and is robust and close to industrial systems standards [169].

The first version of NuSMV, basically implements BDD-based symbolic model
checking. The new version of NuSMV (NuSMV2) inherits all the functionalities
of the previous version, and extend them in several directions. The main novelty
in NuSMV2 is the integration of model checking techniques based on proposi-
tional satisfiability (SAT) [170]. SAT-based model checking is currently enjoying
a substantial success in several industrial fields (see, e.g., [171], but also [172]),
and opens up new research directions. BDD-based and SAT-based model checking
are often able to solve different classes of problems, and can therefore be seen as
complementary techniques.

MODULE main

VAR

bit0 : counter_cell(1);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

SPEC

AG AF bit2.carry_out

MODULE counter_cell(carry_in)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value) := value + carry_in mod 2;

DEFINE

carry_out := value & carry_in;

Fig. 2.22. A simple NuSMV program.

NuSMV is able to process files written in an extension of the SMV language.
The only data types provided by the original SMV language are booleans, bounded
integer subranges, and symbolic enumerated types. Moreover, NuSMV2 allows for
the definitions of bounded arrays of basic data types.

The description of a complex system can be decomposed into modules, and
each of them can be instantiated many times. This provides the user with a mod-
ular and hierarchical description, and supports the definition of reusable com-
ponents. Each module defines a finite state machine. Modules can be composed
either synchronously or asynchronously using interleaving. In synchronous com-
position a single step in the composition corresponds to a single step in each of
the components. In asynchronous composition with interleaving a single step of

70 2 Background

the composition corresponds to a single step performed by exactly one compo-
nent. The NuSMV input language allows to describe both deterministic and non
deterministic systems.

A NuSMV program can describe both the model and the specification. Fig-
ure 2.22 gives a small example of a NuSMV program. The example in Figure 2.22
is a model of a 3 bit binary counter circuit. It illustrates the definition of reusable
modules and expressions. The module counter cell is instantiated three times,
with names bit0, bit1 and bit2. The module counter cell has a formal pa-
rameter carry in. In the instantiation of the module, actual signals (1 for the
instance bit0, bit0.carry out for the instance bit1 and bit1.carry out for the
instance bit2) are plugged in for the formal parameters, thus linking the module
instance to the program (a module can be seen as a subroutine). The property
that we want to check is “invariantly eventually the counter count till 8” which is
expressed in CTL using the design state variables as “AG AF bit2.carry out”.

It is also possible to specify the transition relation and the set of initial states of
a module by means of propositional formulas, using the keywords TRANS, and INIT
respectively. This provides the user with a lot of freedom in designing systems.
In Figure 2.23 there is an equivalent definition of module counter cell using
propositional formulas.

MODULE counter_cell(carry_in)

VAR

value : boolean;

INIT

value = 0

TRANS

next(value) <-> ((!value & carry_in) |

(value & !carry_in))

DEFINE

carry_out := value & carry_in;

Fig. 2.23. An equivalent definition of module counter cell of the example described in
Figure 2.22.

With respect to SMV, the input language of NuSMV has been extended to
allow for the specification of properties expressed in LTL and the specifications of
invariants.

NuSMV has both a batch and an interactive mode. The batch mode offers a
built-in method for dealing with the system in which computations are activated
according to a fixed predefined algorithm. The batch mode provides an interaction
with the system that is essentially the same provided by SMV. In the interactive
mode computation steps are activated by commands executed by a command line
interpreter, thus allowing for the modification of the predefined model checking
algorithm. The definition of the interactive shell required the decomposition of
the model checking algorithm into small basic computation steps (e.g., parsing,

2.5 Constraint solving 71

BDD PACKAGE

DIMACS

PRINTER

SIM

SATSOLVER

ENCODE

SCALARVAR

SCALAR PROPOSITIONS

BUILD BOOLEAN
FUNCTIONS FOR

FLATTENING

CONE OF INFLUENCE

MP1...Pn

Pf1...Pfn Mf

Mfb

TRACE MANIPULATIONSIMULATION

BDD−BASED

MODEL

CONSTRUCTION

Mfb(Pfb)

Pfb
Mfb |=(K) Pfb.cnf

Mfb |=(K) Pfb.dimacs

RBC ENGINE

CNF CONVERSION

BDD−BASED

− quantitative analysis
− model checking

BOUNDED

MODEL

CHECKER

RECONSTRUCTION

TRACE

− reachability

VERIFICATION

Fig. 2.24. The internal structure of NuSMV2.

model construction, reachability analysis, model checking). In the current version
of the system, each of them corresponds to a command that implements a different
functionality.

A high level description of the internal structure of NuSMV2 is given in Fig-
ure 2.24. An SMV file is processed in several phases. The first phases require to
analyze the input file, in order to construct an internal representation of the sys-
tem. NuSMV2 neatly separates the input language in different layers, of increasing
complexity, that are incrementally eliminated. The construction starts from the
modular description of a model M and of a set of properties P1, . . . , Pn. The first
step, called flattening, performs the instantiation of module types, thus creating
modules and processes, and produces a synchronous, flat model Mf , where each
variable is given an absolute name. The second step, called boolean encoding, maps
a flat model into a boolean model Mfb, thus eliminating scalar variables. This sec-
ond step takes into account the whole SMV language, including the encoding of
bounded integers, and all the set-theoretic and arithmetic functions and predi-
cates. It is possible to print out the different levels of the input file, thus using
NuSMV2 as a flattener. The same reduction steps are applied to the properties Pi,
thus obtaining the corresponding flattened boolean versions P fbi . In addition, by
means of the cone of influence reduction [173], it is possible to restrict the analysis
of each property to the relevant parts of the model Mfb(P fbi). This reduction can
be extremely effective in tackling the state explosion problem.

72 2 Background

The preprocessing is carried out independently from the model checking engine
to be used for verification. After this, the user can choose whether to apply BDD-
based or SAT-based model checking.

In the case of BDD-based model checking, a BDD-based representation of the
Finite State Machine (FSM) is constructed. In this step, different partitioning
methods and strategies [174] can be used. Then, different forms of BDD-based
verification can be applied:reachability analysis, fair CTL model checking, LTL
model checking via reduction to CTL model checking, computation of quantitative
characteristics of the model.

In the case of SAT-based model checking, NuSMV2 constructs an internal rep-
resentation of the model based on a simplified version of Reduced Boolean Circuit
(RBC), a representation mechanism for propositional formulae. Then, it is possi-
ble to perform SAT-based bounded model checking of LTL formulae [170]. Given
a bound on the length of the counterexample, a LTL model checking problem is
encoded into a SAT problem. If a propositional model is found, it corresponds to a
counterexample of the original model checking problem. NuSMV2 represents each
SAT problem as an RBC, that is then converted in CNF format and given in input
to the internal SAT solver. Alternatively, the SAT problems can be printed out in
the standard DIMACS format, thus allowing for the stand-alone use of other SAT
solvers. With respect to the tableau construction in [170], enhancements have been
carried out that can significantly improve the performances of the SAT solver [175].
In bounded model checking, NuSMV2 enters a loop, interleaving problem genera-
tion and solution attempt via a call to the SAT solver, and iterates until a solution
is found or the specified maximum bound is reached.

NuSMV uses SIM [176] as the internal SAT solver. SIM is a SAT solver based
on the Davis-Logemann-Loveland procedure. The features provided by SIM can
produce dramatic speed-ups in the overall performances of the SAT checker, and
thus of the whole system (see e.g., [177,171] for a discussion). It is currently under
development a generic interface to SAT solvers to allow for the use of new state
of the art SAT solvers like e.g. CHAFF [178].

The different properties that are checked on a FSM are handled and shown to
the user by a property manager, that is independent of the model checking engine
used for the verification. This means that it is possible for the user to decide what
solution method to adopt for each property. Furthermore, the counterexample
traces being generated by both model checking modules are presented and stored
into a unique format. Similarly, the user can simulate the behavior of the specified
system, by generating traces either interactively or randomly. Simulation can be
carried out both via BDD-based or SAT-based techniques.

NuSMV2 is distributed with an OpenSource license [179], that allows anyone
interested to freely use the tool and to participate in its development.

3

Motivation and Goals

The complexity of designs continues to rise, driven by technology advances, while
time-to-market imposes always shorter time. Moreover, the increasing of design
complexity implies that design validation becomes one of the most costs dominat-
ing phase in design production.

A verification phase is mandatory after each step of the digital system design
flow to avoid the propagation of errors between the abstraction levels. The first
important phase is the functional validation of the design at higher abstraction
levels. In this phase, the presence of design errors must be detected, avoiding to
propagate them to lower abstraction levels, saving time and money. In this context,
a valuable solution for the functional validation is represented by dynamic verifi-
cation which exploits simulation-based techniques to stimulate the whole design
under validation (DUV). To achieve dynamic verification, test sequences are gener-
ated and then simulated on the DUV. To generate test sequences Automatic Test
Pattern Generators (ATPGs) are used, chosen in relationship with the abstrac-
tion level where we want to apply verification. Thus, at the highest abstraction
levels functional ATPGs are used, while at the lowest abstraction levels gate-level
ATPGs are exploited.

Nowadays, very efficient logic-level ATPGs are available while high-level auto-
matic test pattern generators are still in a prototyping phase. However, moving
from lower-level to functional-level would provide a great benefit since functional
descriptions are more tractable than lower-level ones, and early detection of design
errors is mandatory for the success of a design.

Therefore, this thesis presents a functional ATPG framework, shown in Fig-
ure 3.1, able to generate efficient test sequences. To define such a king of ATPG,
four main problems have to be treated, that can summarize the goals of this thesis
as follows:

1. defining a model to represent the DUV;
2. defining a functional deterministic ATPG engine;
3. defining a high-level fault model to guide the pattern generation and to quan-

tify the effectiveness of generated test sequences;
4. defining an efficient simulation engine.

74 3 Motivation and Goals

Model

generation
EFSMs EFSM

composition

EFSM

scheduler

Learning

Fault injection

bit-coverage mutantion

HIF conversion

DUV

HDL
RTL

DUV

HIF
RTL

Computational

model

CLP

HLDDs

DUV

Injected
RTL

Faultlist
EFSM-based engine

RW module BJ module

TPG kernel

ATPG & Fault Simulation

Simulator

Serial engine

RTL

Parallel engine

bit-level

Synthesis

Learning

Model Checker

Constraint

Solving

Results

HIF SuiteNote:

Fig. 3.1. Methodology flow.

3.1 Defining a model to represent the DUV

The main subject of this thesis is the definition and the practical implementation of
a deterministic ATPG able to uniformly traverse the DUV state space and to cover
hard-to-detect faults. Then, the first concern is to improve the traversal procedure
of all the possible execution paths of the design description. In fact, differently from
random-based ATPGs, a deterministic ATPG exploits the information embedded
in the description of the DUV to explore its state space. Thus, its efficiency depends
both on the adopted heuristics and on the model selected to represent the DUV.

The Extended Finite State Machine (EFSM) is an FSM that implicitly mem-
orizes the values of the DUV registers, into transitions. Therefore EFSMs allow a
compact representation of the DUV state space, reducing the risk of state explo-
sion typical of more traditional FSMs. Moreover, the proposed variant of EFSM
manages properly both synchronous and asynchronous modules in a uniform way.

In the current work, the EFSM model is adopted to describe the DUV. Then,
a digital system is represented as a set of concurrent EFSMs, one for each process
of the DUV. Many EFSMs can be generated starting from the same design de-
scription. However, despite from their functional equivalence, they can be more or

3.3 Quantifying the effectiveness of generated test sequences 75

less easy to be traversed. In the following sections a procedure to obtain a partic-
ular form of EFSM which is easier to be traversed. In the achieved EFSM model
probabilities are uniformly distributed between the transitions out-going from a
state, so that the ATPG can move more uniformly across the paths of the EFSM.

Finally, theoretical basis of EFSM composition has been proposed. The aim
of composition is to improve functional ATPG whose effectiveness and efficiency
may be limited when separate EFSMs are used to model the DUV.

3.2 Defining a functional deterministic ATPG engine

The proposed functional ATPG framework generates the test sequences by deter-
ministically satisfy guards of the EFSMs transitions to traverse the DUV states
space. The proposed ATPG exploits the EFSM model to guide a constraint solver
during the DUV traversal end exploit the following techniques.

• A constraint solving strategy is adopted to deterministically generate test vec-
tors that satisfy the guard of the EFSM transitions selected to be traversed.

• A two-step ATPG engine is defined which exploits the solver to traverse the
DUV state space. At first, a random walk-based approach is used to cover
the majority of easy-to-traverse transitions. Then a backjumping-based mode
is used to activate hard-to-traverse transitions. In both modes, learning is ex-
ploited to get critical information that improves the performance of the ATPG.

• A scheduling algorithm has been defined to sort the EFSMs and deal with
multi-process DUVs.

• As an alternative to the scheduling approach, the aim of proposed EFSM com-
position is to improve functional ATPG whose effectiveness and efficiency may
be limited when separate EFSMs are used to model the DUV.

• A combined approach, involving EFSM and HLDD, is proposed to determinis-
tically explore the design state space by using justification, learning and back-
jumping techniques.

3.3 Quantifying the effectiveness of generated test sequences

To evaluate the efficiency of this framework it is mandatory to adopt some metrics
that guide the pattern generation and measure the performance of the developed
deterministic ATPG. The bit coverage fault model is chosen, since it is related to
design errors and it unifies into a single metrics the well known metrics concerning
statements, branches and path coverage. Moreover, bit coverage allows to perform
an automatic injection technique and shows a high correlation between gate-level
stuck-at faults at different levels of abstraction.

Due to the fact that a device described in a hardware description language
(HDL) at the functional level can be assimilated to a software program, func-
tional faults are viewed as software faults. Therefore, this thesis proposes also the
adaption of Mutation Analysis originally proposed for software testing. For this
purpose, a set of mutation operators dedicated to HDL is selected and considered
as a functional fault model.

76 3 Motivation and Goals

Both these metrics are used to identify portions of the circuit not exercised by
simulation. Test generation is guided by the goal of causing each mutant to fail
or fault to be detected. Moreover, after all patterns have been generated, a fault
coverage or mutation score is computed. It can be viewed as a reliability assessment
for the design under validation, in the sense that higher the coverage/score, the
higher our confidence that the design does not contain error.

The design manipulation, both computational model generation and fault in-
jection, is build on the top of HIF Suite. The HIF Suite is a set of tools and
application programming interfaces that provide support for modeling and verica-
tion of hardware and software systems.

3.4 Defining an efficient simulation engine

Verification via fault injection and fault simulation is a widely adopted technique
to evaluate the correctness of a design implementation. However, the complexity of
industrial designs and the huge number of faults that must be injected into them
require efficient fault simulators, in order to make verification via fault simulation
an affordable task. To optimize fault simulation performances, some parallelization
techniques have been proposed at bit level. On the contrary, they have not been
fully exploited at functional level, where functional fault models, instead of bit-level
ones, are considered. Thus, this thesis analyzes the impact of such parallelization
techniques on functional faults. In particular, possible issues are presented together
with optimizations that can be implemented to speed up the simulation.

4

HDL Manipulation Infrastructure

The HIF Suite is a set of tools and application programming interfaces (APIs)
that provide support for modeling and verification of HW/SW systems. The core
of HIF Suite is the HDL Intermediate Format (HIF) language upon which a set of
front-end and back-end tools have been developed to allow the conversion of HDL
code into HIF code and vice versa. Thus, HIF Suite allows designers to manipulate
and integrate heterogeneous components implemented by using different hardware
description languages (HDLs). Moreover, HIF Suite includes tools, which rely on
HIF APIs, for manipulating HIF descriptions in order to support code abstrac-
tion/refinement and post-refinement verification.

4.1 Introduction

The rapid development of modern embedded systems requires the use of flexible
tools that allow designers and verification engineers to efficiently and automatically
manipulate HDL descriptions throughout the design and verification steps.

From the modeling point of view, nowadays, it is common practice to define new
systems by reusing previously developed components, that can be possibly modeled
at different abstraction levels (TLM, RTL, etc.) by means of different hardware
description languages like VHDL, SystemC, Verilog, etc.. Such an heterogeneity
requires to either use co-simulation and co-verification techniques [180], or convert
different HDL pieces of code into an homogeneous description [181]. However, co-
simulation techniques slow down the overall simulation, while manual conversion
from an HDL representation to another, as well as manual abstraction/refinement
from an abstraction level to another, are not valuable solutions, since they are
error-prone and time consuming activities. Thus, both co-simulation and manual
refinement reduce the advantages provided by the adoption of a reuse-based design
methodology. To avoid such disadvantages, this thesis’s methodologies and tools
exploit HIF Suite, a closely integrated set of tools and APIs for reusing already
developed components and verifying their integration into new designs. Relying on
the HIF language, HIF Suite allows system designers to convert HW/SW design
descriptions from an HDL to another and to manipulate them in a uniform and
efficient way. In addition, from the verification point of view, HIF Suite is intended

78 4 HDL Manipulation Infrastructure

to provide a single framework that efficiently supports many fundamental activ-
ities like transactor-based verification, mutation analysis, automatic test pattern
generation, model checking, etc. Such activities generally require that designers
and verification engineers define new components (e.g., transactors), or modify
the design to introduce saboteurs, or represent the design by using mathematical
models like EFSM, decision diagrams, Petri nets, etc. Nowadays there are no tools
in the literature that integrate all the previous features in a single framework. HIF
Suite is intended to fill in the gap.

An overview of the main features of HIF Suite is presented in Section 4.2, while
the HIF core-language is described in Section 4.3. HIF-based conversion tools are
presented in Section 4.4, while tools for extraction of mathematical models are
described in Chapter 5, and a fault injection tool for verification is summarized in
Chapter 7. Finally, concluding remarks are discussed in Section 4.5

4.2 HIFSuite Overview

Figure 4.1 shows an overview of HIF Suite features and components. The prototy-
pal version of the majority of HIF Suite components have been developed in the
context of three European Projects (SYMBAD, VERTIGO and COCONUT).

HIF
core-language

HIF APIs

HIF2HDL

EFSM
manipulation

Transactor
generation

Saboteur
injection

TLM/RTL
abstraction

HLDD
generation

PRES+
generation

Verilog

SystemC

VHDL

HDL2HIF

SystemC

Verilog
core-language

NuSMVlanguage

ECLiPSe language
VHDL

Conversion tools Tools for extraction of abstract models Manipulation tools

Fig. 4.1. HIF Suite overview

HIF Suite is composed of:

• HIF core-language: a set of HIF objects corresponding to traditional HDL
constructs like, for example, processes, variable/signal declarations, sequential
and concurrent statements, etc. (see Section 4.3).

• A set of front/back-end conversion tools (see Section 4.4), i.e.:

4.2 HIFSuite Overview 79

– HDL2HIF : a front-end tool that parses VHDL and SystemC descriptions
and generates the corresponding HIF representations. Extensions of such a
tool for supporting also Verilog are under development.

– HIF2HDL: a back-end tool that converts HIF models into VHDL, Sys-
temC and Verilog code. The description languages of the NuSMV model
checker [169] and the ECLiPSe constraint solver [166] are also supported.

• A set of APIs that allow designers to develop HIF-based tools to explore,
manipulate and extract information from HIF descriptions (see Section 4.3.3).
HIF code manipulated by such APIs can be converted to the HDLs supported
by HIF2HDL.

• A set of tools developed upon the HIF APIs which extract abstract models
from HIF code to support modeling and verification of HW/SW systems, i.e.:
– Phase1 : a tool that automatically EFSM models from HIF descriptions.
– HIF2HLDD : a tool that automatically extracts HLDD models from HIF

descriptions1. Both EFSM and HLDD models are a key components of the
ATPG proposed in this thesis, in particular Chapter 5 describes methodol-
ogy for EFSM and HLDD generation starting from a design description.

– HIF2PRES : a tool that automatically extracts PRES+ (Petri-net based
Representation of Embedded Systems) models from HIF descriptions2. A
PRES+ model is a design representation based on Petri-nets, augmented
with constructs that make them suitable for capturing important features of
real-time embedded system designs [182]. Thus, PRES+ model is efficiently
used for model checking of properties expressed in a timed temporal logic,
and the approach is particularly suitable for, but not restricted to, models
at an high-level of abstraction, such as transaction level.

• A set of tools developed upon the HIF APIs which manipulate HIF code to
support modeling and verification of HW/SW systems, i.e.:
– ACIF : a tool that automatically injects saboteurs into HIF descriptions.

Saboteur injection is important to evaluate dependability of computer sys-
tems [183]. In particular, it is a key ingredient for verification tools that
relies on fault models, like the automatic test pattern generators proposed
in this thesis, tools that measure the fault coverage or evaluate the quality
of testbenches through mutation analysis.

– TGEN : a tool that automatically generates transactors. Verification method-
ologies based on transactors allow an advantageous reuse of testbenches,
properties and IP-cores in TLM-RTL mixed designs, thus guaranteeing a
considerable saving of time [184]. Moreover, transactors are widely adopted
for the refinement (and the sub-sequence verification) of TLM descriptions
towards RTL components [185].

– A2T : a tool that automatically abstracts RTL HIF code to TLM HIF code.
Even if transactors allow designers to efficiently reuse RTL IPs at transac-
tion level, mixed TLM-RTL designs cannot completely benefit of the effec-
tiveness provided by TLM. In particular, the main drawback of IP reuse via

1 HIF2HLDD has been developed in cooperation with the Department of Computer
Engineering of the Tallinn Technical University (Estonia).

2 HIF2PRES has been developed by the Embedded Systems Laboratory (ESLAB) of
the Linkoeping University (Sweden).

80 4 HDL Manipulation Infrastructure

transactor is that the RTL IP acts as a bottleneck of the mixed TLM-RTL
design, thus slowing down the simulation of the whole system. Therefore,
by using A2T, RTL IPs can be automatically abstracted at the same trans-
action level of the other modules composing the design, to preserve the
simulation speed typical of TLM, without incurring in tedious and error-
prone manual abstraction [186,187].

The main features of HIF core-language and HIF-based tools are summarized
in next Sections.

4.3 HIF Core-Language and APIs

HIF stands for HDL Intermediate Format. It is an HW/SW description language
structured as a tree of objects, similarly to XML. Each object describes a specific
functionality or component that is typically provided by HDLs. However, even if
HIF is quite intuitive to be read and manually written, it is not intended to be used
for manually describing HW/SW systems. Indeed, it is intended to provide design-
ers with a convenient way for automatically manipulating HW/SW descriptions
as reported in Figure 4.1.

The requirements for HIF are manyfold, it must be capable to represent:

• system-level and transaction-level descriptions with abstract communication
between system components;

• behavioral (algorithmic) hardware descriptions;
• register transfer level hardware descriptions;
• hardware structure descriptions;
• software algorithms.

To meet these requirements, HIF includes concepts which are inspired by differ-
ent languages. Concerning RTL and behavioral hardware descriptions, HIF is very
much inspired to VHDL and SystemC. Moreover, some constructs for the represen-
tations of algorithms (e.g., pointers and templates) have been taken from C/C++
programming language. The combination of these different features makes HIF a
powerful language for HW/SW system representation.

4.3.1 HIF Basic Elements

HIF is a description language structured as a tree of elements, similarly to XML
(see Figure 4.2). It is very much like a classical programming language, i.e., a typed
language which allows the definition of new types, and includes operations like
assignments, loops, conditional executions, etc. Moreover, since HIF is intended
to represent hardware, it also includes typical low-level HDL constructs, as for
example bit slices, which are globally the same as in VHDL. Finally, concerning
the possibility of structuring a design description, the HIF language allows the
definition of components and subprograms. To look at similarities between HIF
and traditional HDLs, let us consider Figure 4.2. On the left side, a two-input
parameterized adder/subtractor VHDL design is shown, while the corresponding
HIF representation generated by HDL2HIF is depicted on the right.

4.3 HIF Core-Language and APIs 81LIBRARY ieee;USE ieee.std_logic_1164.ALL;PACKAGE type_def_pkg ISCONSTANT ADDER_WIDTH : integer := 5;CONSTANT RESULT_WIDTH : integer := 6;SUBTYPE ADDER_VALUE IS integer RANGE 0 TO 2 ** ADDER_WIDTH - 1;SUBTYPE RESULT_VALUE IS integer RANGE 0 TO 2 ** RESULT_WIDTH - 1;END type_def_pkg;LIBRARY ieee;USE ieee.std_logic_1164.ALL;USE work.type_def_pkg.ALL;ENTITY addsub ISPORT(a: IN ADDER_VALUE;b: IN ADDER_VALUE;addnsub: IN STD_LOGIC;result: OUT RESULT_VALUE);END addsub;ARCHITECTURE rtl OF addsub ISBEGINPROCESS (a, b, addnsub)BEGINIF (addnsub = '1') THENresult <= a + b;ELSEresult <= a - b;END IF;END PROCESS;END rtl;

(SYSTEM system(LIBRARYDEF type_def_pkg(CONSTANT ADDER_WIDTH (INTEGER)(INITIALVALUE 5))(CONSTANT RESULT_WIDTH (INTEGER)(INITIALVALUE 6))(TYPEDEF ADDER_VALUE (INTEGER (RANGE (UPTO 0 (- (POW 2 ADDER_WIDTH) 1)))))(TYPEDEF RESULT_VALUE (INTEGER (RANGE (UPTO 0 (- (POW 2 RESULT_WIDTH) 1))))))(DESIGNUNIT addsub(VIEW rtl(VIEWTYPE "")(DESIGN HARDWARE)(LIBRARY type_def_pkg Hif "")(INTERFACE(PORT a (IN)(TYPEREF ADDER_VALUE))(PORT b (IN)(TYPEREF ADDER_VALUE))(PORT addnsub (IN)(BIT (RESOLVED)))(PORT result (OUT)(TYPEREF RESULT_VALUE)))(CONTENTS(STATETABLE process (SENSITIVITY a b addnsub)(STATE process (CASE (ALT (= addnsub '1')(ASSIGN result (+ a b)))(DEFAULT (ASSIGN result (- a b))))))))))addsuba[4..0] result[5..0]addnsubb[4..0]
Fig. 4.2. (a) A VHDL design description. (b) The textual format of the corresponding
HIF representation.

As special feature, HIF offers the possibility to add supplementary information
to language constructs in form of so-called properties. A list of properties can be
associated to almost every syntactic constructs of the HIF language. Properties
allow designers to express information for which no syntactic constructs are in-
cluded in the HIF grammar, and therefore they give a great flexibility to the HIF
language. For example, the fact that a signal s has to be considered as a clock sig-
nal can be expressed by adding a property signal type to the signal declaration
as follows:

(SIGNAL s (BIT) (PROPERTY signal_type clock)).

4.3.2 System Description by using HIF

The top-level element of a system represented by an HIF description is the SYSTEM
construct (see Figure 4.2(b)). It may contain the definition of one or more libraries
which define new data types, constants and subprograms, and the description of
design units. An HIF description may also contain a list of protocols, which describe
communication mechanisms between design units.

Design units are modeled by DESIGNUNIT objects which define the actual com-
ponents of the system. A design unit may use types, constants and subprograms
defined in libraries included in the SYSTEM construct.

An INTERFACE object gives the link between a design unit and the rest of the
system. An interface can contain ports, parameters, and accesses which represent
a more abstract form of communication connections. In particular, ACCESS objects
allow to link high-level communication channels to a design unit.

82 4 HDL Manipulation Infrastructure

The same design unit can be modeled in different ways inside the same system
by using views. For example, we can model different views of the same design
unit at different abstraction levels. Thus, a VIEW object is a concrete description
of a system component. It includes the definition of an interface by which the
component communicates with the other parts of the system. Moreover, a view
may include libraries and local declarations. The internal structure of a view is
described in details by means of the CONTENTS construct.

A CONTENTS object can contain a list of local declarations, and either a list
of state tables which describe sequential processes (in this case the view is called
behavioral), or a list of component instances and nets which connect such instances
(in this case the view is called structural). Furthermore, a CONTENTS object can
contain a set of concurrent actions (also called global actions), i.e., assignments
and procedure calls which assign values to a set of signals in a continuous manner.

Behavioral View

In HIF, behaviors described by sequences of statements (i.e., processes) are ex-
pressed by state tables.

A STATETABLE object defines a process, whose main control structure is an
extended finite state machine, and the related sensitivity list. Note that state
tables can describe sequential as well as combinational processes: in the case of a
combinational process, the sensitivity list must contain all the signals which are
read in the state table. The entry state of the state machine can be explicitly
specified. Otherwise, the first state in the state list is considered as entry state.

STATE objects included in the state table are identified by a unique name,
and they are associated to a list of instructions called actions (i.e., assignments,
conditional statements, etc.) to be sequentially executed when the HIF model is
converted into an HDL description for simulation.

Structural view

Structural descriptions, where more components are instantiated and connected
each other are modeled by using the INSTANCE and the NET constructs.

An INSTANCE object describes an instance of a design unit. More precisely, an
INSTANCE object refers to a specific view of the instantiated design unit.

A NET object contains either a list of access references or a list of port references.
Nets are used to express connectivity between interface elements of different design
unit instances (i.e., system components).

Concurrent actions

Concurrent actions, which correspond to concurrent assignments and concurrent
procedure calls of VHDL, are modeled by GLOBALACTION objects.

Concurrent assignments are used to assign a new value to the target (which
must be a signal or a port) each time the value of the assignment source changes.
Similarly, concurrent procedure calls are used to assign a new value to signals
mapped to the output parameters each time one of the input parameters changes
its value.

4.3 HIF Core-Language and APIs 83

Support for TML constructs

basic_response< DATA_TYPE > response;basic_request< ADDRESS_TYPE, DATA_TYPE > request;sc_port<tlm_blocking_put_if<basic_response<DATA_TYPE>>> OUTPUT_PORT;sc_port<tlm_blocking_get_if<basic_request<ADDRESS_TYPE, DATA_TYPE > > > INPUT_PORT;
(VARIABLE response (TYPEREF basic_response(TYPETPASSIGN DATA_TYPE_RSP (TYPEREF DATA_TYPE))))(VARIABLE request (TYPEREF basic_request(TYPETPASSIGN ADDRESS_TYPE_REQ (TYPEREF ADDRESS_TYPE)) (TYPETPASSIGN DATA_TYPE_REQ (TYPEREF DATA_TYPE))))(VARIABLE OUTPUT_PORT (TYPEREF sc_port(TYPETPASSIGN SC_PORT_TYPE (TYPEREF tlm_blocking_put_if(TYPETPASSIGN BLK_IF_PUT_TYPE (TYPEREF basic_response(TYPETPASSIGN DATA (TYPEREF DATA_TYPE))))))))(VARIABLE INPUT_PORT (TYPEREF sc_port(TYPETPASSIGN SC_PORT_TYPE (TYPEREF tlm_blocking_get_if(TYPETPASSIGN BLK_IF_GET_TYPE (TYPEREF basic_request(TYPETPASSIGN ADDRESS (TYPEREF ADDRESS_TYPE)) (TYPETPASSIGN DATA (TYPEREF DATA_TYPE))))))))

Fig. 4.3. (a) Typical TLM interface with unidirectional channels and blocking calls in
SystemC. (b) The corresponding HIF representation.

Transaction level modeling is becoming an usual practice for simplifying
system-level design and architecture exploration. It allows the designers to focus
on the functionality of the design, while abstracting away implementation details
that will be added at lower abstraction levels. The prime example of transaction
level modeling implementation is the SystemC TLM library, which exploits the
extension capability of C++ language.

The HIF language supports SystemC TLM in the form of C++ constructs, by
using, in particular, pointers and templates. Figure 4.3 presents a typical TLM
interface with unidirectional channels and blocking calls in SystemC and the cor-
responding HIF representation. The SystemC interface definition exploits nested
C++ templates which are preserved in the HIF description. The HIF language
provides two keywords to support templates: TYPETP and TYPETPASSIGN. TYPETP
is used for declaration of objects of template type. Instead TYPETPASSIGN is used
for instantiation of templatized object as shown in Figure 4.3. Finally, in HIF the
declaration of pointers is represented by using the POINTER object as follows:
(POINTER type {property}).

4.3.3 HIF Application Programming Interfaces

HIF Suite provides the HIF language with a set of powerful C++ APIs which
allow to explore, manipulate and extract information from HIF descriptions. There
are two different subsets in HIF APIs: the HIF core-language APIs and the HIF
manipulation APIs.

HIF core-language APIs

Each HIF construct is mapped to a C++ class which describes specific properties
and attributes of the corresponding HDL construct. Each class is provided with a
set of methods for getting or setting such properties and attributes.

For example, each assignment in Figure 4.2(b) is mapped to an AssignObject
which is derived from ActionObject (see Figure 4.4). This class describes the
assignment of an expression to a variable, a register, a signal, a parameter or a

84 4 HDL Manipulation Infrastructure

Object

BitObject

BoolObject

CharObject

EnumObject

IntObject

PointerObject

RealObject

TypeRefObject

ArrayObject

RecordObject

TypeObject

SimpleTypeObjectCompositeTypeObjectAssignObject

CaseObject

ExitObject

ForObject

IfObject

NextObject

PCallObject

ReturnObject

ActionObject

SwitchObject

WaitObject

WhileObject

Fig. 4.4. A share of HIF core language class diagram

port, and it has two member fields corresponding to the left-hand side (target) and
the right-hand side (source) of the assignment. Methods for setting and getting
target and source are available.

The UML class diagram in Figure 4.4 presents a share of the HIF core-language
APIs class diagram. Object is the root of the HIF class hierarchy. Every class in
the HIF core-language APIs has Object as its ultimate parent.

HIF Manipulation APIs

The HIF manipulation APIs are used to manipulate the objects in HIF trees and
they are exploited by the tools described in Chapter 5 and Chapter 7.

The first step for HIF manipulation consists of reading the HIF description by
the following function:

Object* Hif::File::ASCII::read(const char* filename).

This function loads the file and build the corresponding tree data structure in
memory. An analogous writing function allows to dump on a file the modified HIF
tree:

4.3 HIF Core-Language and APIs 85

Hif::hif_query query;
query.set_object_type(NameNode); // search for NameNode
query.set_name("state"); // search for string "state"
std::list<Node*>* found_object = Hif::search(base_object, query);

Fig. 4.5. Search function usage example.

char Aif::File::ASCII::write(const char* filename, Object* obj).

Once the HIF file is loaded in memory, many APIs are available to navigate
the HIF description, the most important ones are listed hereafter.

• Search function. The search function finds the objects which match criteria
specified by the user. It searches the target objects starting from a given object
until it reaches the bottom of the HIF tree (or the max depth, if the corre-
sponding parameter is set). For example, the search function can be used to
find out all variables which match the name state starting from base object,
as in Figure 4.5.

• Visitor design pattern. In object-oriented programming and software engineer-
ing, the visitor design pattern is generally adopted as a way for separating an
algorithm from an object structure. A practical result of this separation is the
ability to add new operations to existing object structures without modifying
these structures. In fact, the visitor design pattern is very useful when there
is a tree-based hierarchy of objects and it is necessary to allow an easy imple-
mentation of new features to manipulate such a tree. The HIF APIs provide
visitor techniques in two forms: as an interface which must be extended to
provide visitor operators, and as an apply() function. In the first case, a vir-
tual method is inserted inside the HIF object hierarchy, which simply calls a
specific-implemented visiting method on the object passed as parameter. The
passed object is called visitor and it is a pure abstract class. Hence, the pro-
grammer has to extend such a visitor to visit and manage the HIF tree, by
implementing the desired visiting methods, in accordance with its goals. On
the contrary, the apply() function is useful to perform an user-defined function
on all the objects contained in a subtree of a HIF description. The signature
for the apply function is the following:

void Hif::apply (Object *o,char(*f)(Object *,void *),void *data).

• Compare function. It provides designers with a way to compare two HIF objects
and the respective subtrees. Its signature is the following:

static char compare (Object *obj1, Object *obj2)

• Object replacement function. It provides designers with a way for replacing an
object and its subtree with another one. Its signature is the following:

int Hif::replace(Object* from, Object* to)

86 4 HDL Manipulation Infrastructure

4.4 Conversion Tools

The conversion tools are organized into two main groups, according to their func-
tionality, as follows:

• HDL2HIF : it contains front-end tools to convert code from traditional HDL
languages to HIF. Currently, HDL2HIF supports conversions from VHDL and
SystemC, which are implemented respectively in the submodules VHDL2HIF
and SC2HIF. Extensions for supporting Verilog are under development.

• HIF2HDL: it contains back-end tools to convert HIF code back into VHDL
(HIF2VHDL) or SystemC (HIF2SC). Extensions for supporting Verilog, and
the languages of NuSMV and ECLiPSe are under development.

4.4.1 HDL2HIF

The HDL2HIF tools have a common structure, that can be summarized as follow:

• A pre-parsing module, which performs basic configuration operations and pa-
rameter parsing, and which selects the output format (readable plain text or
binary).

• A parser, based on the GNU Bison tool, which creates an abstract syntax
tree (AST) of the input code. Such an AST is composed of XML objects with
dedicated tags.

• A core module which converts the AST into an HIF-objects tree. The conver-
sion process is based on a recursive algorithm that exploits a pre-ordered visit
strategy on the tree nodes.

• A post-conversion visitor, which refines the generated HIF tree according to
the input language.

• A final routine, which dumps on file the HIF tree.

4.4.2 HIF2HDL

The HIF2HDL tools have been implemented by exploiting the HIF visitors. The
structure of HIF2HDL tools can be summarized as follows:

• A pre-parsing module, which sets up the conversion environment, performs
basic configuration operations, parses the parameters, and sets the output lan-
guage.

• A set of refinement visitors, which perform operations to allow an easier trans-
lation of HIF trees, according to the output language. For instance, in VHDL
it is possible to specify the bit value 1 by writing ‘1’, but in SystemC ‘1’ is
interpreted as a character, and thus a cast to the sc logic type is required. To
solve this problem, a visitor has been implemented to wrap the constant object
‘1’ with an sc logic cast object into the HIF tree.

• A module, which dumps on temporary files a partial conversion of the HIF
code into the target language. Such a module has been implemented to solve
problems of consistency between the order adopted to visit the HIF AST and
the order needed to print out the code in the target language. Hence, to avoid

4.4 Conversion Tools 87

RTL constructs SC2HIF/HIF2SC VHDL2HIF/HIF2VHDL

Modules x/x x/x

Processes x/x x/x

Threads x/x

Functions x/x x/x (with restrictions)

Procedures x/x x/x (with restrictions)

Module Instances x/x x/x

Named port binding x/x x/x

Ports x/x x/x

Basic types x (partially)/x x/x

Derived types x (partially)/x x/x

Signals x/x x/x

Variables x/x x/x

Constants x/x x/x

Ports reading/writing x/x x/x

Wait statements x/x x/x

Posedge/negedge attributes x/x x/x

Pointers and references x/x

Operators on basic types x/x x/x

Assignment statements x (with restrictions)/x x/x

Conditional statements x (with restrictions)/x x/x

Loops x (with restrictions)/x x/x

Templates/generics x (with restrictions)/x x/x (with restrictions)

Table 4.1. RTL supported constructs.

a lot of complex checks, it is more convenient to firstly dump the output code
directly in temporary files, and then to merge together the content of temporary
files in the correct order.

• A post-visit module, which merges together the temporary files and creates the
final output.

TLM constructs SC2HIF HIF2SC

sc port / sc export x x

get() / put() / peek() x x

nb get() / nb put() / nb peek() x x

basic status write() / basic status read() x x

basic slave base x x

All the TLM templetized interfaces x

Pointers and references x (partially) x

Instance method call x x

Instance method call via pointer dereferencing x

Table 4.2. SystemC TLM constructs supported by SC2HIF and HIF2SC.

88 4 HDL Manipulation Infrastructure

4.4.3 Supported HDL Constructs

Table 4.1 lists the RTL constructs supported by the front-end tools SC2HIF and
VHDL2HIF, and the back-end tools HIF2VHDL and HIF2SC. Moreover, Table 4.2
reports the SystemC TLM constructs supported by SC2HIF and HIF2SC. Exten-
sions for supporting further TLM constructs are under development. According
to such tables, HIFSuite can be used to convert VHDL code into SystemC de-
scriptions and viceversa, but it is worth noting that such languages are not fully
equivalent or “compatibles”. Hence, the conversion tools raise errors/warnings
when HIF constructs derived from VHDL (SystemC) code have not a correspond-
ing SystemC (VHDL) mapping. For example, conversion from SystemC TLM code
to RTL VHDL code is not possible, since it would require a synthesis process that
is currently not implemented in HIFSuite.

4.5 Concluding remarks

This chapter presented an overview of the HIF Suite, a set of tools and APIs that
relies on the HIF language. The ATPG framework described in this thesis exploits
the following provided features:

• Conversion from VHDL/SystemC/Verilog to HIF and viceversa. Current front-
end and back-end tools support RTL VHDL/SystemC/Verilog constructs, and
the core part of TLM SystemC. Extensions for supporting other languages (e.g.,
NuSMV and ECLiPSe) are under development, and will be available soon. HIF
descriptions generated by front-end tools are structured like syntax trees, thus
it is easy to write algorithms that manipulate the nodes of the tree.

• Merging of mixed VHDL/SystemC descriptions. Systems described partially in
VHDL and partially in SystemC, can be converted to the HIF representation,
and then merged to obtain a unique final description in SystemC or in VHDL.

• Extendibility The HIF library engine is structured to be easily extended. A
special HIF object, called ProperyObject, is provided to describe non-standard
or new features of other HIF objects.

• HIF code manipulation. A set of HIF-based manipulation tools are provided.
Such tools can be used into modeling or verification workflows that adopt dif-
ferent HDL languages, regardless which these HDL languages are. In particular,
computational model generation (Chapter 5) and fault injection (Chapter 7)
activities involve HIF Suite tools.

HIF Suite releases can be downloaded from http://www.edalab.it/HIFSuite.

5

Methodology: Computational model

Extended Finite State Machines (EFSMs) can be efficiently adopted to model
complex designs without incurring in the state explosion problem typical of the
more traditional FSMs. However, traversing an EFSM can be more difficult than
an FSM because the guards of EFSM transitions involve both primary inputs and
registers.

This study analyzes the hardness of traversing a EFSM according to the format
of its transitions. Then, it presents a methodology to generate an EFSM which
is easy to be traversed. Such EFSM can be efficiently exploited by the proposed
functional deterministic ATPG (Chapter 6). The ATPG joins backjumping, learn-
ing, and constraint logic programming (CLP) to efficiently explore the whole state
space of the design under validation (DUV). Moreover, an EFSM-composition the-
ory has been proposed to visit more efficiently the space of the state of analyzed
system. Finally, a technique to automatically generate High-Level Decision Dia-
grams is proposed. The combined use of HLDDs and EFMSs for functional ATPG
is presented at the end of (Chapter 6).

This Chapter, after an introduction of the problem (Section 5.1) and a back-
ground of the EFSM model (Section 5.2), presents an alternative approach to
generate an EFSM model which is easy-to-traverse. To accomplish the goal, it
is selected a pseudo-deterministic ATPG with a minimal set of features, which
constitutes the basis for more evolutes ATPGs. Then, we define a probabilistic-
based analysis to classify two different kinds of hard-to-traverse (HTT) transi-
tions: input-dependent HTT transitions and register-dependent HTT transitions
(Section 5.3). Then, this thesis proposes a methodology to avoid such a kind of
transitions. It consists of a set of subsequent manipulations of the input-dependent
hard-to-traverse EFSM to generate a new EFSM, where the probability of travers-
ing the transitions is more uniformly distributed (Section 5.4). On the contrary,
the register-dependent HTT transitions can be avoided by applying the stabiliza-
tion process. However, differently from [9], not all the inconsistent transitions must
be stabilized, but only those with a not uniformly distributed probability to be
traversed (Section 5.5). Note that, these transformations are only related to func-
tional validation and they do not impact on synthesis. In the follow, a particular
variant of EFSM is defined (Section 5.6) to manage properly both synchronous and
asynchronous modules in a uniform way. Theoretical basis are proposed to per-

90 5 Methodology: Computational model

form EFSM composition by bounding state and transition growth (Section 5.7).
The aim of composition is to improve functional ATPG whose effectiveness and
efficiency may be limited when separate EFSMs are used to model the system (see
Section 6.3). Finally, the alternative HLDD paradigm is proposed in Section 5.8.
HLDDs are generated starting from EFSMs, such as methodology is explained in
Section 5.9.

The work is theoretically supported and an experimental confirmation is re-
ported to show the effectiveness of the approach on different benchmarks (Sec-
tion 5.10).

5.1 Introduction

The Finite State Machine (FSM) paradigm represented one of the most used and
useful mathematical formalism to describe sequential circuits. However, the more
and more increasing complexity of modern circuits leads FSM representations to
the explosion of states. A valuable alternative to FSMs is represented by the Finite
State Machine with Datapath (FSMD) paradigm [8]. In this case, the FSM model is
used to describe only the control part of the system, while the datapath is modeled
as a composition of combinatorial blocks and registers. This allows to sensibly
reduce the number of states of the control part. The FSMD has showed to be a
very attractive paradigm for both modeling and synthesis of sequential circuits [8].
However, the clean distinction between control and datapath represents a problem
when automatic test pattern generation is adopted to test the design [188].

Another valuable alternative to FSMs is represented by the Extended Finite
State Machine (EFSM) paradigm [9], which preserves many characteristics of an
FSM and reduces the state explosion problem. In this case, control and datapath
are mixed, but the number of states is sensibly lower with respect to a correspond-
ing FSM, since the EFSM does not require an explicit representation of internal
registers. The EFSM paradigm can be very effective, from a design point of view,
to describe concurrent systems; moreover it has not been widely applied for ver-
ification, and particularly for automatic test pattern generation. The reason of
this flop depends on the difficulty of traversing an EFSM, which is a fundamental
requirement to control and to observe faults. In fact, moving from a state of the
EFSM to another depends on the value of primary inputs, but maybe also on the
value of internal registers. Such a kind of EFSM is note as inconsistent EFSM [9].

Some approaches have been proposed to identify and remove inconsistencies [9,
189, 190]. However, all of them can lead to the explosion of states, if the EFSM
contains a large number of conditions on registers. Note that, this is a typical
situation producing hard-to-detect faults. On the contrary, this thesis has define
a methodology to generate different kinds of EFSMs starting form the same HDL
description and shows that each of them is composed of transitions with a more
or less uniformly distributed probability of being activated.

In particular, this study proposes a procedure that generates a new EFSM,
starting from a Reference EFSM (REFSM) that is exactly equivalent to the HDL
description of DUV. This goal is accomplished by successive steps. First, a reference
EFSM (REFSM) is generated which is exactly equivalent to the DUV behavioral

5.2 The EFSM model 91

description. Then, the REFSM is manipulated to obtain a different EFSM, called
the Largest EFSM (LEFSM), which is more easy to be traversed. However, the
LEFSM is not equivalent to the original DUV. Thus, the LEFSM is further ma-
nipulated to obtain another EFSM which preserves the traversing characteristics
of the LEFSM, but it is exactly equivalent to the REFSM.

This EFSM is called Stabilized Smallest EFSM (S2EFSM) (see Section 5.5).
Its state space can be more easily explored by a deterministic functional ATPG
(Chapter 6), and controllability and observability of faults is greatly improved
reducing the number of hard-to-detect faults.

All known approaches [9,189,190] in literature work on a single process design
description. There are two possible solutions to deal with multi-process designs:
to generate a set of concurrent EFSMs, one for each process, or to compose the
processes into a single EFSM. The first solution requires to define an appropriate
EFSM scheduling algorithm to maximize the ATPG capability of exploring the
whole state space by uniformly traversing the concurrent EFSMs, as described in
Section 6.1.3. A second solution, based on composing the given processes into a
single EFSM, is proposed in Section 5.7. To perform EFSM composition, Extended
Event FSM (EEFSM) is introduced. The EEFSM paradigm is suitable to model
process statements with a sensitivity list, typical of hardware description languages
(HDLs), such as VHDL, Verilog or SystemC. The sensitivity list, i.e., the set of
events that traverse the execution of a simulation model, is attached to every
EEFSM. If an event in the sensitivity list of some EEFSMs is enabled, those
EEFSMs are executed. The composition theory of EEFSMs has been developed
according to different system topologies.

5.2 The EFSM model

The first step in designing a digital system consists of formalizing its functional-
ity according to a computational model. Many design methodologies have been
proposed in the literature; their computational models fall into three distinct cat-
egories [191]: (a) state-oriented, (b) activity-oriented, (c) structure-oriented. The
first category represents the system as a set of transitions among states triggered
by external events (e.g., FSMs). Thus, state-oriented models are suited for control
systems. The second category is intended to describe the systems as a set of activ-
ities related by data and execution dependencies (e.g., dataflow graphs). Thus, it
is suited for modeling data-dominated systems, where data pass from an activity
to the other in a pipelined fashion. The third category is used to describe the
system as an interconnection of basic components (e.g., block diagrams). Thus,
structure-oriented models are less suited than the other categories to specify the
functionality, but they are more convenient at lower abstraction levels (e.g., RTL),
where component reuse is very common. Finally, many of the characteristics typ-
ical of the previously cited categories are merged into heterogeneous models (e.g.,
program-state machines) to describe different views of complex systems.

In this thesis, the proposed approach represents a digital system as a set of
concurrent EFSMs, one for each process of the DUV. In this way, according to the
below Definition 1, we capture the main characteristics of state-oriented, activity-
oriented and structure-oriented models. In fact, the EFSM is composed of states

92 5 Methodology: Computational model

and transitions, thus it is state-oriented, but each transition is extended with
HDL instructions that act on the DUV registers. In this sense, each transition
represents a set of activities on data, thus, the EFSM is a data-oriented model too.
Finally, concurrency is intended as the possibility that each EFSM of the same
DUV changes its state concurrently to the other EFSMs to reflect the concurrent
execution of the corresponding processes. Data communication between concurrent
EFSMs is guaranteed by the presence of common signals. In this way, structured
models can be represented.

Definition 1 An EFSM is defined as a 5-tuple M = 〈S, I,O,D, T 〉 where: S
is a set of states, I is a set of input symbols, O is a set of output symbols, D
is a n-dimensional linear space D1 × . . . × Dn, T is a transition relation such
that T : S × D × I → S × D × O. A generic point in D is described by a n-
upla x = (x1, ..., xn); it models the values of the registers of the DUV. A pair
〈s, x〉 ∈ S ×D is called configuration of M .

An operation on M is defined in this way: if M is in a configuration 〈s, x〉 and it
receives an input i ∈ I, it moves to the configuration 〈t, y〉 iff ((s, x, i), (t, y, o)) ∈ T
for o ∈ O.

The EFSM differs from the classical FSM, since each transition does not present
only a label in the classical form (i)/(o), but it takes care of the register values
too. Transitions are labeled with an enabling function e and an update function u
defined as follows.

Definition 2 Given an EFSM M = 〈S, I,O,D, T 〉, s ∈ S, t ∈ T, i ∈ I, o ∈ O and
the sets X = {x|((s, x, i), (t, y, o)) ∈ T for y ∈ D} and Y = {y|((s, x, i), (t, y, o)) ∈
T for x ∈ X}, the enabling and update functions are defined respectively as:

e(x, i) =
{

1 if x ∈ X;
0 otherwise.

u(x, i) =
{

(y, o) if e(x, i) = 1 and ((s, x, i), (t, y, o)) ∈ T ;
undef. otherwise.

An update function u(x, i) can be applied to a configuration 〈s1, x〉 if there is a
transaction t : s1 → s2, labeled e/u, such that e(x, i) = 1. In this case we say that
t can be traversed by applying the input i.

Definition 3 Two EFSMs, M1, M2, are functionally equivalent if for each se-
quence of input values provided to M1 and M2, they provide the same sequence of
output values.

It is worth noting that different, but functionally equivalent, EFSMs can be
extracted from the same DUV description. Figure 5.1 shows a simple DUV de-
scription, coded by using a hardware description language (HDL). A corresponding
EFSM is showed in Figure 5.2.

5.3 Classification of EFSM Transitions 93

5.3 Classification of EFSM Transitions

Differently from random-based ATPGs, a deterministic ATPG exploits the infor-
mation embedded in the description of the DUV to explore its state space. Thus,
its efficiency depends on the adopted heuristics, but also on the model selected to
represent the DUV. For this reason, a goal of this thesis consists of formalizing
a procedure to obtain a particular form of EFSM which is easy to be traversed
by using a wide class of deterministic ATPGs. To characterize such an EFSM, an
ATPG with a very basic heuristic is assumed as reference.

5.3.1 Reference ATPG

The reference ATPG tries to uniformly move across the transitions of the EFSM by
exploiting the information provided by the enabling functions. On the contrary, a
random ATPG tends to traverse only transitions whose enabling functions present
a high probability of being satisfied.

The reference ATPG starts from the reset state of the EFSM, it randomly
selects an out-going transition, and it tries to satisfy its enabling function by
assigning values to inputs. When it successes, it moves to the corresponding des-
tination state, it selects another out-going transition from this state, and so on.
More formally, given the set Tsi

of transitions out-going from a state si, at step i,
the ATPG algorithm works as follows:

1. Randomly choose a transition tsi
∈ Tsi

.
2. Check if the enabling function e of tsi

can be traversed by assigning opportune
values to inputs involved in e. (For example, let x be an input of the EFSM,
the enabling function x=0 can be traversed by assigning 0 to x. Otherwise, if
x is an internal register, the satisfiability of the enabling function depends on
the previous assignment to x, i.e., on the current configuration of the EFSM1).

3. If e is satisfiable, assign to inputs involved in e such opportune values. Other-
wise, remove tsi

from Tsi
and come back to step 1.

4. Generate random values for inputs not involved in e.
5. Simulate the obtained test vector, move across the transition tsi , and come

back to step 1 to generate the next test vector.

The ATPG stops when the target fault coverage has been reached or the max-
imum allowed computation time has been expired.

5.3.2 ATPG Efficiency

The efficiency of this reference ATPG depends on the probability of satisfying the
enabling function of the transitions. If such probabilities are uniformly distributed
between the transitions out-going from a state, the ATPG can move more uni-
formly across the paths of the EFSM. Thus, different kinds of EFSM, derived from
the same DUV, can provide different probabilities of reaching the same portion of
code. Some definitions are needed at first to characterize such EFSM models.
1 A configuration stores the status of the EFSM, i.e., the value of its internal registers

(see the definition of EFSM in Section 5.2)

94 5 Methodology: Computational model

Definition 4 Let M = 〈S, I,O,D, T 〉 an EFSM, n the maximum length of test
sequences generated by the ATPG, t ∈ T a transition from sk−1 ∈ S to sk ∈ S,
Γ = {γ = (s0, . . . , sk) | γ is a path on M that traverses t, si ∈ S for 0 ≤ i ≤
k, lenght(γ) ≤ n}, Tsi

= {tsi
|tsi

is a transition out-going from si ∈ S}, and |Tsi
|

the cardinality of Tsi , the probability of traversing t is defined as follows:

P (traversing t) =
∑
γ∈Γ

P (traversing γ) (5.1)

P (traversing γ) =
lenght(γ)−2∏

i=0

1
|Tsi
| · P (si →tsi

si+1) (5.2)

where P (si →tsi
si+1) is the probability that the configuration 〈si, x〉, originated

by reaching si, allows to traverse the transition tsi
∈ Tsi

from si to si+1.

Definition 5 Let M = 〈S, I,O,D, T 〉 an EFSM and t a transition of M, t is
hard-to-traverse (HTT) if P (traversing f) ' 0. Otherwise, t is easy-to-traverse
(ETT).

Definition 6 Let M = 〈S, I,O,D, T 〉 an EFSM and γ a path on M, γ is hard-to-
traverse (HTT) if it includes an HTT transition. Otherwise, γ is easy-to-traverse
(ETT).

Definition 7 Let M = 〈S, I,O,D, T 〉 an EFSM and f a fault in M, f is hard-to-
detect (HTD) if all test sequences of f are HTT paths. Otherwise, f is easy-to-detect
(ETD).

The most important aspect of Definition 4 is represented by P (si →tsi
si+1).

If the enabling function e of the transition tsi
involves only inputs, then P (si →tsi

si+1) = 1 by using the reference ATPG. In fact, the ATPG can assign the op-
portune values to inputs to satisfy e. Such a kind of transitions is always ETT
for the proposed ATPG. Otherwise, if e involves also registers, P (si →tsi

si+1)
depends on the choices made by the ATPG moving across previous transitions,
and it can tend to 0, thus tsi

becomes HTT. In particular, there are two kinds of
HTT transitions: input-dependent HTT transitions and register-dependent HTT
transitions. The hardness of the first kind of transitions depends on the presence
of conditional statements, which involve inputs, into the update functions. On the
contrary, the hardness of the second kind of transitions depends on the presence
of enabling functions whose conditions involve registers.

5.3.3 Input-dependent HTT transitions

An EFSM with input-dependent HTT transitions can be modified to obtain a
different EFSM without such transitions. Consider, for example, a fault f related
to the block B10 of the HDL description of Figure 5.1, and the two equivalent
EFSMs M and M ′ of Figure 5.2 and Figure 5.3. The path with the minimum
length to activate f on M ′ is γ′ = (S0, S0, S0, S0) by traversing the sequence of
transitions (t′0, t

′
3, t
′
1). Once the ATPG has traversed the enabling function of t′3,

which is definitely ETT, it can randomly choose between 232 values for in1, since

5.3 Classification of EFSM Transitions 95

if reg!=1
out2<=reg*2;
state:=A;

else
out2<=0;
state:=B;

when C =>
if in2!=0 then

reg:=reg+in2;
out1<=1;
out2<=1;
state:=C;

else
if in1=0 then

out1<=reg;
out2<=reg/2;

else
out1<=reg/2;
out2<=reg;

end if
state:=A;

end case
end if

if reset = ‘1’ then
state:=A;

else if clock’event and clock=‘1’
case state is

when A =>
if in1!=0 then

reg:=in1;
out1<=1;
out2<=1;
state:=B;

else
reg:=in2;
out1<=0;
out2<=0;
state:=C;

end if
when B =>

if reg=1
out1 <= 0;

else
out1 <=reg;

reg:=reg*in1;

B3

B4

B7

B9

B11

B10

B8

B1

B0

B5

B6

B12

B2

Fig. 5.1. A simple example of a FSMD.

in1!=0 and
reset=0

reg:=in1;
out1<=1;
out2<=1;

in2!=0 and
reset=0

reg := reg+in2;
out1<=1;
out2<=1;

in1=0 and
reset=0

reg := in2;
out1<=0;
out2<=0;

in2=0 and
reset=0

If in1=0
out1<=reg;
out2<=reg/2;
else
out1<=reg/2;
out2<=reg;

A

B
C

Start reset=1

reset=1

reset=1

reset=1

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
9

reset=0 and reg=1
and reg*in1=1

out1<=0;
reg:=reg*in1;
out2<=0;

t
8

reset=0 and reg!=1
and reg*in1!=1

out1<=reg;
reg:=reg*in1;
out2<=reg*2;

reset=0 and reg=1
and reg*in1!=1

out1<=0;
reg:=reg*in1;
out2<=reg*2;

reset=0 and reg!=1
and reg*in1=1

out1<=reg;
reg:=reg*in1;
out2<=0;

t
10

t
11

Fig. 5.2. An EFSM which models the HDL code of Figure 5.1.

in1 is not involved in the enabling function. However, only if the ATPG sets in1
at 0, the register state assumes the value C, allowing to traverse the enabling
function of t′1. Thus, P (S0 →t′1

S0) = 1/(232) ' 0 and t′1 is HTT. In particular,

96 5 Methodology: Computational model

s
0

reset=1
state:=A;

state=A and
reset=0

if(in1!=0)
reg:=in1;
out1<=1;
out2<=1;
state:=B;
else
reg:=in2;
out1<=0;
out2<=0;
state:=C;

state=B and
reset=0

If reg=1
out1<=0;
else
out1<=reg;
reg:=reg*in1;
if reg!=1
out2<=reg*2;
state:=A;
else
out2<=0;
state:=B;

state=C and
reset=0

if(in2!=0)
reg:=reg+in2;
out1<=1;
out2<=1;
state:=C;
else
if in1=0
out1<=reg;
out2<=reg/2;
else
out1<=reg/2;
out2<=reg;
state:=A;

t'
0

t'
1

t'
2

t'
3

Fig. 5.3. Another EFSM for the code of Figure 5.1.

according to Definition 4 and considering paths of length 4:

P (traversing t1 on M ′) = P (traversing γ′) =
= (1/4 · P (t′0)) · (1/4 · P (t′3)) · (1/4 · P (t′1))
= (1/4 · 1) · (1/4 · 1) ·

(
1/4 · 1/232

)
' 0

Thus, f is HTD on M ′, because every path that activates f is HTT, since it must
include t′1. Now, consider M . In this case, the path with the minimum length to
activate f on M is γ = (Start, A,C,A) by traversing the sequence of transitions
(t0, t3, t5). In particular, P (traversing t5 on M) is quite high, since the ATPG,
running on M , realizes that, to activate t3, in1 must be set to 0, and to activate
t5, in2 must be set to 0. Such information is extracted by analyzing the enabling
functions of t3 and t5 without the need of complex backtracking-based or learning-
based heuristics. According to Definition 4 and considering paths of length 4:

P (traversing t5 on M) = P (traversing γ) =
= (1 · P (t0)) · (1/3 · P (t3)) · (1/3 · P (t5)) =
= (1 · 1) · (1/3 · 1) · (1/3 · 1) = 1/9

Thus, γ is an ETT path, and f is ETD on M .
The previous example shows that input-dependent HTT transitions can be

avoided by manipulating the EFSM description. Section 5.4 describe the method-
ology defined to manipulate the EFSM model.

5.3.4 Register-dependent HTT transitions

This kind of transitions is HTT for ATPGs which do not exploit a backtracking-
based or learning-based heuristic. For example, consider a fault f in the block B5
of Figure 5.1. To activate f by using the EFSM model of Figure 5.2, the ATPG

5.4 Avoiding Input-dependent HTT transitions 97

must move from A to B on t10 and then from B to B on t8 or from B to A on
t7. Since in1 is a 32-bit integer, the ATPG traverses t10 by fixing reset at 0 and
by choosing between 232 − 1 values, different from 0, for in1. Then, the ATPG
can generate 232 − 1 different admissible configurations, when it moves on t10.
However, only the configuration where reg=1 (obtainable by fixing in1 at 1) is
valid to traverse t8 or t7. Thus, P (B →t8 B) = P (B →t7 A) = 1/(232−1) ' 0 and
t8, t7 are HTT. Consequently, faults related to the update function of t8 and t7
are HTD for ATPGs which implement a heuristic that exploits information local
to the current configuration only. Note that, such faults are HTD also on M ′.

This kind of HTT transitions can be avoided by applying the stabilization
process presented in [192], even if in some particular cases it can lead to the
explosion of states. However, this problem is limited, since stabilization is necessary
only for register-dependent HTT-transitions. A register-dependent transition with
a high probability of being traversed does not require to be stabilized. In Section 5.5
we show how stabilization is used to avoid register-dependent HTT transitions.

5.4 Avoiding Input-dependent HTT transitions

Input-dependent HTT transitions are due to the presence of conditional blocks
embedded in the update functions of the EFSM. In fact, a conditional statement
in an update function hides useful information from the reference ATPG, which
is able to analyze only enabling functions. For example, t′1 in Figure 5.3 is an
input-dependent HTT transition because the ATPG cannot exploit the informa-
tion hidden in the if statement included in the update function of t′3. Thus,
input-dependent HTT transitions can be avoided by making explicit, in the en-
abling functions, the conditional blocks embedded in the update functions. This
requires a deep modification of the original EFSM, which consists of the following
steps:

1. An EFSM is extracted starting from the HDL description of the DUV. Because
many EFSMs can be equivalent to such a description, Section 5.4.1 proposes an
algorithm to generate a particular kind of EFSM which allows us to standardize
the following steps of the methodology. We call such an EFSM the Reference
EFSM (REFSM).

2. The REFSM is modified to remove input-dependent HTT transitions as de-
scribed in Section 5.4.2. The obtained EFSM is called Largest EFSM (LEFSM)
because it is the EFSM without input-dependent HTT transitions with the
largest number of states.

3. The LEFSM is optimized by grouping compatible transitions as described in
Section 5.4.3. This process further increases the capability of the ATPG of
uniformly traversing the STG of the EFSM. The obtained EFSM is called
Smallest EFSM (SEFSM) because it is the EFSM without input-dependent
HTT transitions with the smallest number of states.

98 5 Methodology: Computational model

5.4.1 Generation of the Reference EFSM

Given an HDL description of the DUV that reflects the FSMD template, the
REFSM is obtained by applying an algorithm which is linear on the number of
alternatives of the case statement.

The REFSM presents a very simple STG, it is composed of a unique state
and n transitions, one for the slice of code executed when reset=1, and one for
each alternative of the case statement. For example, Figure 5.3 shows the STG
of the REFSM generated for the HDL description of Figure 5.1. The REFSM is
equivalent to the HDL description, however, as shown in Section 5.3.2, it may
include many HTT transitions.

5.4.2 Generation of the Largest EFSM

To avoid input-dependent HTT transitions, the REFSM must be modified as fol-
lows. Transitions, whose update functions include conditional statements, are sub-
stituted by subgraphs. Then, the update functions of each subgraph transition
contain only assignments. Figure 5.4 shows the algorithm that implements this
idea to generate the LEFSM. The conditional statements included in an update
function of the REFSM are extracted, and for every condition two new transitions
are generated: one for each truth value of the condition. The complexity of the
LEFSM generation is linear with respect to the number of conditional statements
included in the update functions of the REFSM.

Figure 5.5 presents the STG of the LEFSM obtained from the REFSM rep-
resented in Figure 5.3. While the REFSM is functionally equivalent to the initial
HDL description, the LEFSM may require a larger number of clock cycles to be-
have exactly as the REFSM. Every transition t of the REFSM corresponds to a
path on a subgraph of the LEFSM. For example, traversing the transition t′3 on
Figure 5.3 corresponds to traversing the transitions tL1 , tL2 or tL1 ,tL3 on Figure 5.5,
according to the value assigned to in1. This may cause that a test sequence gener-
ated by considering the LEFSM looses its efficacy when simulated on the original
HDL description. A not optimized solution to convert test sequences generated for
the LEFSM in test sequences for the original description is proposed in [193]. How-
ever, such an approach does not guarantee that each fault tested on the LEFSM
can be tested also on the original design. Thus, test generation on the LEFSM
may produce a false sense of security. To avoid this problem, the LEFSM can be
manipulated as described in the next section.

5.4.3 Generation of the Smallest EFSM

The SEFSM is obtained from the LEFSM by composing compatible transitions to
possibly remove the intermediate state according to the following definition.

Definition 8 Given a transition tij from Si to Sj with enabling function eij and
update function uij, and a transition tjk from Sj to Sk with enabling function ejk
and update function ujk, tij is compatible with tjk if eij and ejk are not conflicting,
and uij does not contain assignments to variables involved in ejk.

5.4 Avoiding Input-dependent HTT transitions 99

build LEFSM (REFSM MR) {
c r e a t e the i n i t i a l s t a t e SL

0

f o r each t r a n s i t i o n tR
j o f MR

i f the update func t i on o f tR
j does not conta in

c o n d i t i o n a l statements
add a t r a n s i t i o n tR

j from SL
0 to SL

0 exac t l y equ iva l en t to tR
j

e l s e
add a new s t a t e SL

k

add a t r a n s i t i o n tL
j from SL

0 to SL
k such that

the enab l ing func t i on o f tL
j i s the same o f tR

j

ana lyz e updat e func t i on (u p d a t e f u n c t i o n o f tR
j , tL

j , SL
k)

}

ana lyz e updat e func t i on (update funct i on uR
j , t r a n s i t i o n tL

j , s t a t e SL
k){

f o r each statements i o f uR
j

i f i i s a c o n d i t i o n a l statement with cond i t i on c
add a new s t a t e SL

c

add a t r a n s i t i o n tL
c from SL

k to SL
c with enab l ing func t i on c

ana lyz e updat e func t i on (then body o f i , tL
c , SL

c)
add a t r a n s i t i o n tL

¬c from SL
k to SL

c with enab l ing func t i on ¬c
ana lyz e updat e func t i on (e l s e b o d y o f i , tL

¬c , SL
c)

e l s e i f i i s an assignment
add i to the update func t i on o f tL

j

}

Fig. 5.4. Algorithm to generate the LEFSM.

reg=1
out1<=0;
reg:=reg*in1;

s
0

s
1

in1!=0
reg:=1;
out1<=1;
out2<=1;
state:=B;

in1=0
reg:=in2;
out1<=0;
out2<=0;
state:=C;

s
4

reset=1
state:=A;

in2!=0
reg:=reg+in2;
out1<=1;
out2<=1;
state:=C;

state=C and
reset=0

state=A and
reset=0

s
5 in2=0

in1!=0
out1<=reg/2;
out2<=reg;
state:=A;

in1=0
out1<=reg;
out2<=reg/2;
state:=A;

state=B and
reset=0

s
2

reg=1
out2<=0;
state:=B;

tL
0

tL
1

tL
2 tL

3

tL
4

tL
5

tL
6

tL
7

tL
8

tL
9

tL
10

tL
11

s
3

reg!=1
out1<=reg;
reg:=reg*in1;

reg!=1
out2<=reg*2;
state:=A;

tL
12

tL
13

Fig. 5.5. LEFSM generated from the REFSM of Figure 5.3.

Now consider Figure 5.6. In (a), si has m+n out-going transitions, m of which
go to sj , and sj has p+ q out-going transitions, p of which go to sk. If a transition
tij from si to sj is compatible with all transitions out-going from sj , then tij can be
removed and substituted by p+q new transitions as shown in (b). In particular, for

100 5 Methodology: Computational model

step 1

si

sj

sk

m-1

p

p

q

q

n

si

sk

m·p
m·q

n

si

sj

sk

m

p

n

q

step 2 step m

(a) (b) (c)

sx

sy

sx

sy

sx

sy

Fig. 5.6. Composition of compatible transitions.

each transition tj out-going from sj a new transition ti is added from si to s such
that: the enabling function of ti is ei = eij ∧ ej , and the update function of ti is
ui = uij ∪uj . Besides, if all the transitions out-going from si are compatible with
all the transitions out-going from sj , then, after m steps, we obtain the situation
shown in (c), where sj has been removed.

The SEFSM is obtained by iteratively applying the previous transition col-
lapsing procedure on the states of the LEFSM until no compatible transitions are
found. The complexity of each iteration is given by the product of the number
of transitionsin-going in Sj and the number of transitions out-going from Sj . Be-
sides, there can be at maximum |SL|−1 iterations, where SL is the set of states of
the LEFSM. Figure 5.7 shows the STG of the SEFSM obtained from the LEFSM
represented in of Figure 5.5.

The SEFSM presents some advantages with respect to REFSM and LEFSM.
First, it does not contain input-dependent HTT transitions. In fact, it derives
from the LEFSM and the collapsing procedure does not introduce conditional
statements in the update functions. Secondly, the SEFSM reduces the problem
related to test sequence conversion which appears moving from the REFSM to the
LEFSM. In fact, by applying the collapsing procedure, the number of states of
the SEFSM is reduced with respect to the LEFSM. This reduces the size of the
subgraph of the SEFSM that corresponds to a single transition of the REFSM. Fi-
nally, the probability of traversing the transitions of the SEFSM is more uniformly
distributed than in the LEFSM. Thus, the reference ATPG can explore the state
space more uniformly. This is shown by the next theorems and corollary.

Theorem 1 Let ML an LEFSM and 〈MS
0 , ...,M

S
l , ...,M

S
n 〉 the sequence of EF-

SMs obtained from ML by iterating the transition collapsing procedure (MS
n is the

SEFSM), and let si, sj and sk the states involved changing from MS
l to MS

l+1 as
shown in Figure 5.6(a). The probability of traversing a transition t out-going from
sk, reaching sk starting from si, on MS

l+1 is greater than the same probability on
MS
l .

Consider Figure 5.6. According to Definition 4 and the reference ATPG, the
probability of traversing t depends on the probability of reaching sk from si. In

5.4 Avoiding Input-dependent HTT transitions 101

s
0

reset=1
state:=A ;

reg!=1
out2<=reg*2;
state:=A;

state=A and reset=0
and in1!=0

reg:=in1;
out1<=1;
out2<=1;
state:=B;

state=A and reset=0
and in1=0

reg:=in2;
out1<=0;
out2<=0;
state:=C;

state=C and reset=0
and in2=0 and in1=0
out1<=reg;
out2<=reg/2;
state:=A;

state=C and reset=0
and in2!=0

reg:=reg+in2;
out1<=1;
out2<=1;
state:=C;

state=C and reset=0
and in2=0 and in1!=0
out1<=reg/2;
out2<=reg;
state:=A;

tS
0

tS
1

tS
2

tS
3

tS
4

tS
5

tS
6

tS
7

state=B and
reset=0 and reg=1
out1<=0;
reg=reg*in1;

reg=1
out2<=0;
state:=B;

tS
8

tS
9

s
3

state=B and
reset=0 and reg!=1
out1<=reg;
reg=reg*in1;

Fig. 5.7. SEFSM generated from the LEFSM of Figure 5.5.

Figure 5.6(a), this probability is P 0
ik = m

n+m ·
p
p+q ·X, where X is the factor deriving

from the presence of possible HTT transitions. X can only depend on the presence
of register-dependent HTT transitions, since an LEFSM does not contain input-
dependent HTT transitions. Thus, X is not removed by applying the collapsing
procedure and it can be omitted in the following. After one step of the collapsing
procedure (See Figure 5.6(b)), the probability of reaching sk from si is

P 1
ik =

m− 1
n+m− 1 + p+ q

· p

p+ q
+

p

n+m− 1 + p+ q
·X

=
p

p+ q
· m− 1 + p+ q

n+m− 1 + p+ q
·X

But, P 1
ik > P 0

ik, in fact:

P 1
ik > P 0

ik ⇔
p

p+ q
· m− 1 + p+ q

n+m− 1 + p+ q
>

m

n+m
· p

p+ q

⇔ m− 1 + p+ q

n+m− 1 + p+ q
>

m

n+m

⇔ 1− n

n+m− 1 + p+ q
> 1− n

n+m

⇔ n+m− 1 + p+ q > n+m⇔ p+ q > 1

Then, P 1
ik > P 0

ik, because p + q must be greater than 1, otherwise sk cannot
be reached from sj . Besides, at the last step of the collapsing procedure (see

102 5 Methodology: Computational model

Figure 5.6(c)) the probability of reaching sk from si is Pmik = m·p
n+m·q+m·p ·X. But,

Pmik > P 0
ik, in fact:

Pmik > P 0
ik ⇔

m · p
n+m · q +m · p >

m

n+m
· p

p+ q

⇔ n+m · q +m · p < (n+m) · (p+ q)
⇔ n < n · q + n · p⇔ p+ q > 1

Then Pmik > P 0
ik. �

Theorem 2 Under the same conditions of Theorem 1, the probability of traversing
a transition t from si to sx, on MS

l+1 is less than the same probability on MS
l .

The proof is similar to the proof of Theorem 1 and is omitted. From Theorem 1
and Theorem 2 derives the following property.

Corollary 1 Changing from an LEFSM, ML, to an SEFSM, MS, by using the
transition collapsing procedure, the probability of traversing transitions in MS is
more uniformly distributed than in ML.

5.4.4 Removal of Timing Discrepancies

when B =>
if reg=1
out1 <= 0;

else
out1 <=reg;

if (reg*in1)!=1
out2<=(reg*in1)*2;
state:=A;

else
out2<=0;
state:=B;

reg:=reg*in1;

B7

B8

B1

B5

B6

Fig. 5.8. Block B1 of Figure 5.1 has been modified to remove incompatibility between
transitions of the LEFSM.

The transition collapsing procedure previously described may be not enough
to make the SEFSM equivalent to the REFSM. This is due to the fact that some
transitions are not compatible, thus they cannot be collapsed. According to Def-
inition 8, a state sj between two adjacent transitions, tij from si to sj , and tjk
from sj to sk, cannot be removed when one of the following cases happens:

5.4 Avoiding Input-dependent HTT transitions 103

s
0

reset=1
state:=A ;

state=B and reset=0 and
reg!=1 and reg*in1!=1
out1<=reg;
out2<=reg*2;
state:=A;

state=A and reset=0
and in1!=0

reg:=in1;
out1<=1;
out2<=1;
state:=B;

state=A and reset=0
and in1=0

reg:=in2;
out1<=0;
out2<=0;
state:=C;

state=C and reset=0
and in2=0 and in1=0
out1<=reg;
out2<=reg/2;
state:=A;

state=C and reset=0
and in2!=0

reg:=reg+1;
out1<=1;
out2<=1;
state:=C;

state=C and reset=0
and in2=0 and in1!=0
out1<=reg/2;
out2<=reg;
state:=A;

tS
0

tS
1

tS
2

tS
3

tS
4

tS
5

tS
6

tS
7

state=B and reset=0 and
reg=1 and reg*in1=1
out1<=0;
out2<=0;
state:=B;

state=B and reset=0 and
reg=1 and reg*in1!=1
out1<=0;
out2<=reg*2;
state:=A;

state=B and reset=0 and
reg!=1 and reg*in1=1
out1<=reg;
out2<=0;
state:=B;

tS
8

tS
9

Fig. 5.9. SEFSM for the code of Figure 5.1 after modification of B1.

1. the enabling functions of the transitions are conflicting;
2. the update function of tij updates the value of one or more registers involved

in the enabling function of tjk.

The first case happens when an update function of the REFSM contains con-
flicting conditional statements. If the conflicting conditions are nested, then the
original DUV description contains a design error that must be removed before
generating the LEFSM. Once the design error is removed, tij and tjk becomes
compatible and they can be composed removing the interleaved state. On the con-
trary, if the conditional statements are not nested, then the following observations
can be applied.

By construction, if a state s of an LEFSM is the source of a transition with
enabling function e, it is also the source of a transition with enabling function ¬e.
Now, let tij , from si to sj , and tjk, from sj to sk, two conflicting transitions of an
LEFSM generated by two not nested conditional statements of the same update
function of an REFSM. Necessarily, there exist other two transitions t′ij , from si
to sj , and t′jk, from sj to sk, whose enabling functions are the negation of tij and
tjk. Thus, tij is compatible with t′jk, and t′ij is compatible with tjk. In this case,
the state sj can be removed, tij is composed with t′jk, and t′ij is composed with
tjk. For example, let us consider transition t′2 of the REFSM showed in Figure 5.3.
Its update function contains the condition reg=1 and the condition reg!=1 which
are conflicting, but not nested. When, the LEFSM is generated, such conditions
become the enabling functions of transitions tL6 , tL8 , and their negation become
the enabling functions of transitions tL5 , tL7 (Figure 5.5). Thus, tL6 and tL5 could be
composed to generate the SEFSM, first with tL4 , and then, respectively, with tL7
and tL8 removing states s2 and s3.

104 5 Methodology: Computational model

Unfortunately, this composition cannot be completely performed because of the
second case of incompatibility previously cited. In fact, the register reg is updated
in tL5 and tL6 , and then it is used in the enabling functions of tL7 and tL8 . For this
reason, the resulting SEFSM (Figure 5.7) has one more state than the REFSM.
Thus, timing discrepancies cannot be completely removed.

The problem can be efficiently solved by modifying the block B1 of the original
HDL description as showed in Figure 5.8. The update instruction for register reg
has been moved from the beginning to the end of block B1, and each occurrence
of reg included in B1 has been replaced by the expression reg*in1. In this way,
the incompatibility between transition tL5 , tL6 and transitions tL7 , tL8 is removed,
since reg is updated after the enabling functions of tL7 and tL8 are evaluated. The
resulting SEFSM (Figure 5.9) is exactly equivalent to the REFSM, but it preserves
the same facility to be traversed of the SEFSM of Figure 5.7.

From the previous considerations, the following rule of thumb can be extracted:
to generate an SEFSM exactly equivalent to the REFSM, the HDL descriptions of
the DUV must be modified in such a way that, within a state, the update instruction
of a register R must be put after each conditional statement that evaluates R.

It is worth to note that we propose to modify the original DUV description,
by exploiting the previous rule, only for testing purpose, not for synthesis or opti-
mization aspects. The designer can implements the systems by following traditional
design techniques. The original HDL description can be automatically converted
into an exactly equivalent SEFSM that respects the previous rule. In this way,
functional ATPG is performed on the SEFSM to identify design errors on the
original description.

In this way, if a fault is detected on such an SEFSM, it is detectable also on
the REFSM and the test sequence is the same.

5.5 Avoiding Register-dependent HTT transitions

The stabilization process proposed in [192] for stabilizing transition systems can
be applied to avoid register-dependent HTT transitions. In fact, according to the
terminology adopted in [192], a register-dependent HTT transition is similar to an
unstable block transition.

Given an EFSM E = 〈S, I,O,D, T 〉, a block is defined as a set of configurations
of E that have the same (symbolic) state. A block transition graph (BTG) can be
derived from E in the following way. The states of E represent the blocks, which
become the nodes of the BTG. The transitions of E become the block transitions of
the BTG. The labels of the block transitions are defined as follows. A transition t of
an EFSM with enabling function e(x, i) becomes a block transition tB of the BTG
with enabling function e(x, i)|i, where e(x, i)|i represents the projection of e(x, i)
with respect to inputs only. Note that, this abstraction removes, from the enabling
functions, all the expressions which involve comparisons on registers. Thus, the
BTG is free from register-dependent HTT transitions by construction. According
to this observation, the register-dependent HTT transitions of an SEFSM can be
replaced with easy-to-traverse transitions by extracting the corresponding BTG.
Unfortunately, abstracting away from registers can generate a non-deterministic

5.5 Avoiding Register-dependent HTT transitions 105

in1!=1 and in1!=0
and reset=0

reg:=in1;
out1<=1;
out2<=1;

in2!=0 and
reset=0

reg := reg+in2;
out1<=1;
out2<=1;

in1=0 and
reset=0

reg := in2;
out1<=0;
out2<=0;

A

C

reset=1

reset=1

t
0 t

1

t
2

t
5

t
3

reg*in1!=1 and
reset=0

out1<=reg;
out2<=(reg*in1)*2;

reg*in1=1 and
reset=0

out1<=0;
out2<=0;

in2=0 and in1=0
and reset=0
out1<=reg;
out2<=reg/2;

in2=0 and in1!=0
and reset=0
out1<=reg/2;
out2<=reg;

t
10

B2

in1=1 and
reset=0

reg:=in1;
out1<=1;
out2<=1;

B1

t
4

t
7

t
6

t
8

reg*in1!=1 and
reset=0

out1<=0;
out2<=(reg*in1)*2;

reg*in1=1 and
reset=0

out1<=reg;
out2<=0;

t
11

t
12

reset=1

reset=1

t
9

t
13

Fig. 5.10. S2EFSM generated from the SEFSM of Figure 5.9.

BTG. In fact, a transition out-going from a block can have more than one destina-
tion block. Such a kind of block transitions is defined as unstable. The stabilization
process has been proposed to remove the non-determinism of the BTG by splitting
the blocks and the input symbols. The use of stabilization should be limited, since
it can lead to the explosion of states [9]. Thus, generating the BTG, we applied
the register abstraction only on register-dependent HTT transitions rather than
on all the transitions involving registers.

Let us consider, for example, the STG of Figure 5.9. Clearly tS3 is a register-
dependent HTT transition, since the probability that reg assumes the value 1 is
infinitesimal. The BTG corresponding to such an SEFSM consists of the same
structure (1 block and 10 transitions), but the enabling functions of the block
transitions, from tS0 to tS9 , become respectively:

r e s e t =1;
r e s e t=0 and in1 !=0;
r e s e t=0 and in1 =0;
r e s e t=0 and reg ∗ in1) !=1 ;
r e s e t=0 and (reg ∗ in1)=1;
r e s e t=0 and (reg ∗ in1)=1;
r e s e t=0 and (reg ∗ in1) !=1 ;
r e s e t=0 and in2 !=0;
r e s e t=0 and in2=0 and in1 =0;
r e s e t=0 and in2=0 and in1 !=0

In particular, the enabling functions of block transitions tS3 and tS6 becomes
undistinguishable (reset=0 and reg*in1!=1). By applying the stabilization pro-
cess, we obtain the stabilized SEFSM of Figure 5.10 which present only ETT
transitions.

Summarizing, a Stabilized SEFSM (S2EFSM) does not contain input-dependent
HTT transitions, nor register-dependent HTT transitions. Thus, moving from the

106 5 Methodology: Computational model

REFSM to the S2EFSM definitely improves the capability of the reference ATPG
to uniformly traverse the whole state space of the DUV.

5.6 Modeling system events

An Extended Event FSM (EEFSM) is an input/output finite state machine aug-
mented by a set of registers that range over a finite alphabet and by a set of
input/output events that trigger the transitions of the machine. Input and output
events are used to model synchronization with a clock signal and the sensitivity list
construct defined in hardware description languages. When a clock tick occurs or
when an input signal in the sensitivity list changes its value, an event is generated
and the EEFSM executes a transition. When changes occur only in input signals
that do not belong to the sensitivity list, no events are generated and the state of
the machine is not updated. This event-based semantics allows for a cleaner repre-
sentation of the asynchronous composition of EEFSMs: when different components
of the system react to different clocks, or when they are sensitive to different sets
of signals, events are used to activate only the components that should trigger a
transition, keeping silent the other ones.

The register alphabet, the input alphabet, and the output alphabet of an EEFSM
are defined as tuples R = R1× · · ·×Rn, I = I1× · · ·× Im, and O = O1× · · ·×Ol,
where each Rj , Ij , and Oj is the finite alphabet of the j-th register, input signal
and output signal, respectively. Given a generic alphabet Q = Q1 × · · · ×Qn, we
define the set Q⊥ = Q1∪{⊥}×· · ·×Qn∪{⊥}, where ⊥ does not belong to any of
the Qi. The symbol ⊥ will be used to represent the fact that a transition does not
change the value of a register or of an output signal. Given a set of values p ∈ Q
and a set of values t ∈ Q⊥, we define the operation of updating the values of p
with respect to t as follows:

Update(p, t) = (q1, . . . , qn), with qi =
{
pi if ti = ⊥
ti if ti 6= ⊥

An event alphabet is a finite set E of event symbols. We extend every event alphabet
E by adding a new symbol τ to model the fact that no events to which the EEFSM
is sensitive occur. We define Eτ as the set E∪{τ}. EEFSMs are defined as follows.

Definition 9 An Extended event finite state machine (EEFSM) is a tuple M =
〈S,R,E, F, I,O,En,Upd , s0, r0〉 where:

• S is a finite set of states;
• R = R1 × · · · ×Rn is a finite register alphabet;
• E is a finite input events alphabet;
• F is a finite output events alphabet;
• I = I1 × · · · × Im is a finite input alphabet;
• O = O1 × · · · ×Ol is a finite output alphabet;
• En is an enabling function S × R × Eτ × I 7→ S such that En(s1, r, τ, i) = s1

for all r ∈ R and i ∈ I;
• Upd is an update function S × S × R × Eτ × I 7→ R⊥ × F τ × O⊥ such that

Upd(s1, s2, r, τ, i) = (⊥, τ,⊥) for all r ∈ R and i ∈ I;

5.6 Modeling system events 107

M : process(i)
begin
case state is
when s0 =>
if α (i) then
A1(o); state := s1;

else
A2(o); state := s0;

end if;
when s1 =>
if β (i) then
B1(o); state := s0;

I = { i }

E = {e}

O= { o }

F = { f }

s0

s1

α(i,e) / A1(o,f)

β(i,e) / B1(o,f)

e = τ
e = τ

! α(i,e) / A2(o,f)

B1(o); state := s0;
else
B2(o); state := s1;

end if;
end case;

end process;

! β(i,e) / B2(o,f)M

Fig. 5.11. An example of EEFSM and the corresponding HDL code.

• (s0, r0) ∈ S ×R⊥ is the reset configuration of M 2.

Notice the event alphabets E and F are respectively companions of the alphabets
I and O, in order to model asynchronous EEFSM composition (Section 5.7), where
none, one or more EEFSMs may be triggered at a time by an event on a signal in
the sensitivity list. It would not be sufficient to extend the alphabets I and O with
the empty event τ to be Iτ and Oτ , because then one could not model the case of
the same input feeding say two EEFSMs and being in the sensitivity list of only
one of them. Indeed in that case the EEFSM with the alphabet in the sensitivity
list should react to it with a regular transition, whereas the other EEFSMs should
be inputted a τ signal and react with a silent transition (the state does not change
and the output is empty).

Given a state s1, registers value r, input event e and input symbol i, a transition
from state s1 to state s2 occurs only if En(s1, r, e, i) = s2. When the transition is
executed, the new values for the registers, the output event and the output symbol
are given by Upd(s1, s2, r, e, i). Note that, by the definition of EEFSM, when a τ
input event is received, a τ output event is generated and the state, register values
and output signals does not change. We usually represent EEFSMs as graphs
where vertices are the states in S and where edges (s1, s2) are labeled with a pair
γ(r, e, i)/A(r, e, i) such that En(s1, r, e, i) = s2 if and only if γ(r, e, i) = true and
Upd(s1, s2, r, e, i) = A(r, e, i). With a little abuse of notation, we call γ(r, e, i) and
A(r, e, i) the enabling function and the update function of the transition (s1, s2).
The semantics of an EEFSM is defined as follows.

Definition 10 Given a word α ∈ (Eτ × I)∗ , the corresponding trace (or compu-
tation) of an EEFSM M is a tuple (σ, ρ, ε, β) ∈

(
S ×R× F τ ×O⊥

)∗ such that:

2 Instead of introducing enabling and update functions, one could use a unique transition
relation as in Sectior 5.2.

108 5 Methodology: Computational model

• |σ| = |ρ| = |ε| = |β| = |α|
• If En(s0, r0, α(1)) = s′ and

Upd(s0, s′, r0, α(1)) = (r′, e′, o′), then
(σ(1), ρ(1), ε(1), β(1)) = (s′, Update(r0, r′), e′, o′);

• For every 2 ≤ j ≤ |α|, let En(σ(j − 1), ρ(j − 1), α(j)) = s′ and
Upd(σ(j − 1), s′, ρ(j − 1), α(j)) = (r′, e′, o′), then
(σ(j), ρ(j), ε(j), β(j)) = (s′, Update(ρ(j), r′), e′, Update(β(j), o′));

Given an EEFSM we define its output function Out : S×S×R×E×I 7→ F τ×O⊥
as the restriction of Upd to F τ × O⊥. A particular case of EEFSM, is the Moore
EEFSM, defined as follows.

Definition 11 A Moore EEFSM is an EEFSM where the output function does
not depend on input values, Out : S ×R 7→ F τ ×O⊥.

A digital system can be represented as a collection of concurrent EEFSMs,
one for each process. In this way, we capture the main characteristics of state-
oriented, activity-oriented and structure-oriented models [191]. In fact, the EEFSM
is composed of states and transitions, thus it is state-oriented, but each transition is
extended with instructions that act on the registers. In this sense, each transition
represents a set of activities on data, thus, the EEFSM is a structure-oriented
model too. Finally, concurrency is intended as the possibility that each EEFSM
changes its state concurrently with the other EEFSMs to reflect the concurrent
execution of the corresponding processes. Data communication between concurrent
EEFSMs is guaranteed by the presence of common signals. Figure 5.11 reports an
example of EEFSM that can be extracted from the corresponding HDL code.

5.7 EFSM composition

The effectiveness and the efficiency of functional ATPGs based on deterministic
strategies is influenced by the computational model adopted to represent the design
under validation. In this context the EEFSM paradigm permits to model properly
both synchronous and asynchronous system modules in a uniform way. The aim
of composition is to improve functional ATPG whose effectiveness and efficiency
may be limited when separate EFSMs are used to model the design under test.
In this section the problem of composing two EEFSMs is depicted. Three types
of composition has been identified: Serial composition, where outputs of the first
EEFSM are inputs of the second one, Parallel composition, where the two EEFSMs
may read the same inputs but compute in parallel different subsets of outputs, and
Feedback composition, where the two EEFSMs are composed in a loop by feeding
outputs of one as inputs to the other.

When composing two EEFSMs, can be assumed, without loss of generality, that
they share the same registers. If it is not the case, we can always add to or both
of them some “useless” registers that are never changed by the EEFSM and that
do not affect the value of the output function nor of the transition function. Given
a register alphabet R = R1 × · · · × Rn and the corresponding extended alphabet
R⊥, we define the operation of merging two symbols p, q ∈ R⊥ as follows:

5.7 EFSM composition 109

M1 M2

R

E

X

F

Y

G

Z

M1;M2

Fig. 5.12. Serial composition of EEFSMs.

Merge(p, q) = (r1, . . . , rn), where ri =
{
pi if qi = ⊥
qi if pi = ⊥

Note that Merge(p, q) is not defined if p and q are such that there exist pi and
qi with pi 6= ⊥ and qi 6= ⊥. This because we do not allow two EEFSMs to update
simultaneously the value of the same register.

5.7.1 Serial Composition

The serial composition of two EEFSMs M1 and M2 is denoted as M1;M2 and
is portrayed in Figure 5.12.

Definition 12 Given two EEFSMs M1 = 〈S1, R,E, F, X, Y,En1,Upd1, s
1
0, r

1
0〉

andM2 = 〈S2, R, F,G, Y, Z,En2,Upd2, s
2
0, r

2
0〉, their serial compositionM1;M2 =

〈S1 × S2, R,E,G,X,Z,En,Upd , (s10, s
2
0),Merge(r10, r

2
0)〉 is defined as follows:

• En((s1, s2), p, e, x) = (t1, t2) where t1 = En1(s1, p, e, x) and
t2 = En2(s2, p,Out1(s1, t1, p, e, x));

• Upd((s1, s2), (t1, t2), p, e, x) = (q, g, z) where (q1, f, y) = Upd1(s1, t1, p, e, x),
(q2, g, z) = Upd2(s2, t2, p, f, y), and q = Merge(q1, q2).

Notice that the serial composition of two EEFSMs is not always defined, since we
do not allow two EEFSMs to simultaneously change the value of the same register,
and thus it is not guaranteed that Merge(q1, q2) exists for any transition and any
pair of EEFSMs.

5.7.2 Parallel Composition

The parallel composition of two EEFSMs M1 and M2 is denoted as M1 ‖ M2

and is portrayed in Figure 5.13.

Definition 13 Given M1 = 〈S1, R,E,G,X, Y,En1,Upd1, s
1
0, r

1
0〉 and M2 =

〈S2, R, F,H,X,Z,En2,Upd2, s
2
0, r

2
0〉, their parallel composition M1 ‖ M2 = 〈S1×

S2, R,E×F,G×H,X, Y ×Z,En,Upd , (s10, s
2
0),Merge(r10, r

2
0)〉 is defined as follows:

• En((s1, s2), p, ef†, x) = (En1(s1, p, e, x),En2(s2, p, f, x));

† ef is an abbreviation for (e, f)

110 5 Methodology: Computational model

M1

M2

R

E

X

F

G

Y

H

Z

M1‖M2

Fig. 5.13. Parallel composition of EEFSMs.

• Upd((s1, s2), (t1, t2), p, ef, x) = (q, gh, yz) where
(q1, g, y) = Upd1(s1, t1, p, e, x),
(q2, h, z) = Upd2(s2, t2, p, f, x), and q = Merge(q1, q2).

As in the case of the serial composition, the parallel composition of two EEF-
SMs is not always defined, since it is not guaranteed that Merge(q1, q2) exists for
any transition and for any pair of EEFSMs.

5.7.3 Feedback Composition

The feedback composition of two EEFSMsM1 andM2 is denoted asM1×M2 and
is portrayed in Figure 5.14. Consider two EEFSMsM1 = 〈S1, R,G,H,U, V,En1,Upd1, s

1
0, r

1
0〉

andM2 = 〈S2, R,E×H,G×F,X×V,U×Z,En2,Upd2, s
2
0, r

2
0〉. To define their feed-

back compositionM1×M2 = 〈S1×S2, R,E, F,X,Z,En,Upd , (s10, s
2
0),Merge(r10, r

2
0)〉

we have to solve two problems.

• As in the case of the serial and parallel composition, we have to guarantee that
it is never the case that the value of a register is simultaneously changed by
the two machines.

• Since the output of M1 is part of the input of M2, and vice versa, we have
that the present values of h, v are a function of the present values of h, v:

(h, v) = Out1(s1, t1, r, g, u)
= Out1(s1, t1, r,Outg,u2 (s2, t2, r, eh, xv));

and that the present values of g, u are a function of the present values of g, u:

(g, u) = Outg,u2 (s2, t2, r, eh, xv)
= Outg,u2 (s2, t2, r, eOuth1 (s1, t1, r, g, u),

xOutv1(s1, t1, r, g, u)).

Given s1, s2, r, e, and x, it is not guaranteed that there are h, u, g and v such
that the above equations are satisfied.

5.8 The HLDD model 111

The first problem can be solved as in the other cases of composition: given
two update functions Upd1(s1, t1, r, g, u) = (r1, h, v) and Upd2(s2, t2, r, eh, xv) =
(r2, gf, uz), we allow their simultaneous activation only if Merge(r1, r2) is defined.

The second problem can be solved by three different strategies, with increasing
level of generality and of algorithmic complexity.

• A first possibility is to restrict to the case whenM1 orM2 is a Moore EEFSM.
In this case one of the two output function does not depend on the inputs
and thus the two above equations can be easily solved. For instance, if M2

is a Moore EEFSM, Out2 does not depend on the inputs and thus (h, v) =
Out1(s1, t1, r,Outg,u2 (s2, r)).

• The second possibility is study the algebraic dependencies between the different
input and output variables in U and V . Suppose that U = U1 × . . .× Un and
V = V1 × . . . × Vm. The dependency graph of M1 ×M2 is a directed graph
whose nodes are the Ui and the Vj and where we put an edge (Ui, Vj) if the
value of Vj depends on the value of Ui in Upd1 and an edge (Vj , Ui) if the value
of Ui depends on the value of Vj in Upd2. If this graph is acyclic then there
are no algebraic loops in Upd1 and Upd2, and the composition is well defined.

• Finally, one can admit the possibility of loops in the dependency graph and
still have a well-defined composition. It is known that a digital circuit can have
loops or feedback paths and still be combinational, i.e., the values of the out-
puts depend on the current inputs only [194, 195]. When a circuit is cyclic, it
is necessary to analyze it to determine whether it behaves combinationally or
not. This analysis problem is usually solved by encoding the circuit in ternary-
valued logic: zeros, ones and “undefined” values. Then the circuit is analyzed to
determine whether it produces definite output values for every definite assign-
ment of the input values. If this is the case then the circuit is combinational and
loops behave correctly. Recently, BDDs and SAT-based techniques have been
proposed to efficiently analyze cyclic circuits [196, 197]. The same approach
can be applied to the feedback composition of EEFSMs to determine whether
En and Upd are combinational even when there are loops in the dependency
graph.

5.8 The HLDD model

HLDDs are graph representations of discrete functions that can be considered as
a generalization of BDDs. Unlike in BDDs, where nodes are labeled by Boolean
variables and edges hold only Boolean values, in HLDDs, any scalar variable values
(e.g. integer, floating point, enumeration type, etc.) are allowed and edges are
labeled by partitions of the domains of respective variables. HLDDs have proven an
efficient model for simulation and fault modeling as they provide for fast evaluation
by graph traversal and for easy identification of cause-effect relationships. In the
following we present the definition of HLDDs and explain HLDD based modeling
on a simple example.

Definition 14 A HLDD representing a discrete function y = f(x) is a directed
non-cyclic labeled graph that can be defined as a quadruple G = 〈M,E,X,D〉,

112 5 Methodology: Computational model

M1

M2

R

E

X

G

U

H

V

F

Z

M1 ×M2

Fig. 5.14. Feedback composition of EEFSMs.

process (c lock , r e s e t)
variable reg : i n t e g e r range 32767 downto −32768;
variable s t a t e : i n t e g e r range 1 downto 0 ;

begin
i f r e s e t = ’1 ’ then

s t a t e := A;
out1 <= 0 ;
out2 <= 0 ;

e l s i f c lock ’ event and c l o ck = ’1 ’ then
case s t a t e i s
when A =>

i f in1 = 0 then
out1 <= 0 ;
out2 <= 0 ;

else
reg := in1 ;
out1 <= 1 ;
out2 <= 1 ;

end i f ;
when B =>

i f reg = 1 then
out1 <= in1 ∗2 ;
out2 <= in1 ;

else
out1 <= reg ;
out2 <= reg ∗2 ;

end i f ;
end case ;

end i f ;
end process ;

Fig. 5.15. A simple design suitable for HLDD generation.

5.8 The HLDD model 113

resetstate state B

A

0

1

A

B

statereg in1 in1

reg
0

εA

B

reset
out1 0

1

1

state in1 0

1
ε

A0

reg in1*2

regε

B

Fig. 5.16. HLDD models for variables state, reg and out1 of example in Figure 5.15.

where M is a finite set of vertices (referred to as nodes), E is a finite set of edges,
X is a function which defines the variables labeling the nodes and the variable
domains, and D is a function on E. The function X(mi) returns a pair (xi, Xi),
where xi is the variable letter, which is labeling node mi and Xi is the domain of xi.
Each node of a HLDD is labeled by a variable. In special cases, nodes can be labelled
by constants or algebraic expressions. An edge e ∈ E of a HLDD is an ordered pair
e = (m1,m2) ∈ E2, where E2 is the set of all the possible ordered pairs in set E.
D is a function on E representing the activating conditions of the edges for the
simulating procedures. The value of D(e) is a subset of Xi, where e = (mi,mj)
and X(mi) = (xi, Xi). It is required that Pmi = {D(e)|e = (mi,mj) ∈ E} is a
partition of the set Xi. HLDD has only one starting node (root node), for which
there are no preceding nodes. The nodes, for which successor nodes are missing are
referred to as terminal nodes.

In HLDD models representing digital systems, the non-terminal nodes corre-
spond to conditions or to control signals, and the terminal nodes represent opera-
tions (functional units). Register transfers and constant assignments are treated as
special cases of operations. Simulation on HLDDs takes place as follows. Consider
a situation, where all the node variables are fixed to some value. According to these
values, for each non-terminal node a certain output edge will be chosen which en-
ters into its corresponding successor node. Let us call such connections activated
edges under the given values. Succeeding each other, activated edges form in turn
activated paths. For each combination of values of all the node variables there exists
always a corresponding activated path from the root node to some terminal node.
We refer to this path as the main activated path. The simulated value of variable
represented by the HLDD will be the value of the variable labeling the terminal
node of the main activated path.

When representing systems by decision diagram models, in general case, a
system of HLDDs rather than a single HLDD is required. During the simulation
of HLDD systems, the values of some variables labeling the nodes of an HLDD are
calculated by other HLDDs of the system.

Figure 5.16 presents an example of an HLDD for three variables, state, reg
and out1 corresponding to DUV shown in Figure 5.15.

114 5 Methodology: Computational model

si

sj

x

x = 0

¬(x = 0)

0

[-256, 0) U (0,255]

si

sj

x

x = A

x = B

x = C

A

B

C

a. b.

[-256, 0) U (0,255]

c. d.

Fig. 5.17. EFSM states and transitions toward HLDD nodes and edges.

5.9 From EFSMs to HLDDs

At RT-level, DUV can be represented by a system of HLDDs, one for each variable
occurring in the DUV. Therefore the HLDD model is a variable-based representa-
tion of the EFSM model described in Section 5.2. For example, Figure 5.16 shows
the HLDDs of variables state, reg and out1 occurring in the DUV of Figure 5.15. In
this section, a procedure is proposed to automatically create HLDDs by traversing
the EFSM model.

Given a variable occurring in the EFSM, the nodes and edges of the correspond-
ing HLDD are defined by analyzing the enabling functions of the EFSM. Each
enabling function may involve one or more atomic propositions (e.g., x1 +x2 > 0),
referred as A(x1, x2, . . . , xn) where xi is a DUV variable, and boolean operators
(e.g., ∧,∨). Without loss of generality, we consider, in the following, that atomic
propositions involve only one variable.

Firs of all, let us consider the basic case where the enabling function of an EFSM
transition involves only one atomic proposition. If the atomic proposition depends
on the value of a variable x, whose type is an enumerative type, an HLDD node,
labeled with x, is generated with as many out-going transitions as the number of
values in the enumerative type domain of x (Figure 5.17.a, 5.17.c). Otherwise, if
the atomic proposition A(x) represents a generic condition, we generate an HLDD
node, labeled with x, with two out-going transitions, labeled, respectively, with
values of x domain which satisfy A(x) and ¬A(x) (Figure 5.17.b, 5.17.d).

Now, let us consider enabling functions consisting of two or more atomic propo-
sition, for example A(x) and B(y). The corresponding portion of HLDD is shown
in Figure 5.18.a and 5.18.b. Let X and Y respectively be the domains of variables
x and y. Let also A and A∗ be defined as A = {v|v ∈ X ∧ A(v) = true} and
A∗ = {v|v ∈ X ∧ ¬A(v) = true} = X \ A. B and B∗ can be defined likewise.

Given the HLDD portion corresponding to A(x), the generation of the HLDD
part corresponding to ¬A(x), is straightforward, and it is shown in Figure 5.18.c.

5.10 Experimental Results 115

x
A

A*

y
B

B*

x
A*

A

x
A

A*

y
B

B*

a. b.

c.

d.

A(x) B(y)

¬A(x)

A*

x
A

A*

y
B

B*

y
B

B*

d.

e.

A(x) ∧ B(y)

A(x) ∨ B(y)

Fig. 5.18. Example of HLDDs derived from enabling functions involving more than one
atomic proposition.

On the contrary, the portions of HLDD, depending on the conjunction and
disjunction of two atomic propositions, i.e., A(x) ∧ B(x) and A(x) ∨ B(x), are
shown, respectively, in Figure 5.18.d and in Figure 5.18.e.

During the generation of the HLDD, a terminal node is produced when, travers-
ing a path in the EFSM, we come back to the initial state. The terminal node is
labeled with the value (constant, variable or expression) assigned to the target
variable by traversing the corresponding path in the EFSM. If no value is as-
signed, the variable preserve the original value, that is, the node is labeled with
the variable itself.

The complete HLDD representation of the DUV is obtained by iteratively
applying the previous procedure for each variable of the DUV. The complexity of
the HLDD generation is linear with respect to the number of transitions in the
corresponding EFSM.

5.10 Experimental Results

Twofold experimental results have been performed to show the effectiveness of the
proposed work. First the theoretical results related to the probability of traversing
transitions on the different EFSMs are experimentally confirmed, as showed in
Section 5.10.1. This analysis shows that moving from the REFSM to the S2EFSM
the probability of traversing the transitions becomes more uniformly distributed.

Secondly, functional validation framework based on the S2EFSMs is applied to
analyze their capability of detecting functional faults. These experimental results
are presented in Section 5.10.2.

116 5 Methodology: Computational model

5.10.1 EFSM Traversing

The experimental confirmation of the theoretical analysis has been accomplished
on the example reported in Figure 5.1. The conditional blocks of the benchmark
are grouped according to their nesting levels. After the reference ATPG run for
100,000 clock cycles, the probability of activating the conditional blocks by using,
respectively, the REFSM, the LEFSM, the SEFSM and the S2EFSM is computed.

REFSM LEFSM SEFSM S2EFSM

Blocks Act P Act P Act P Act P

B0 50000 0.50 49976 0.55 44450 0.50 47094 0.47
B1 50000 0.50 16356 0.18 22216 0.25 31821 0.32
B2 0 0.00 24534 0.27 22234 0.25 20678 0.21

B3 50000 1.00 24930 0.50 22216 0.50 31638 0.67
B4 0 0.00 25046 0.50 22234 0.50 15456 0.33

B5 0 0.00 0 0.00 0 0.00 16121 0.50
B6 50000 1.00 16356 1.00 22216 1.00 15700 0.50

B7 50000 1.00 16356 1.00 22216 1.00 15934 0.50
B8 0 0.00 0 0.00 0 0.00 15887 0.50

B9 0 0.00 12188 0.50 7360 0.33 6780 0.33
B10 0 0.00 12260 0.50 14874 0.67 13898 0.67

B11 0 0.00 6076 0.50 7391 0.50 6925 0.50
B12 0 0.00 6184 0.50 7484 0.50 6973 0.50

Table 5.1. Probability of reaching conditional blocks.

SEFSM trans. Blocks REFSM LEFSM SEFSM S2EFSM

t0 reset - - - -

t1 B0-B3 0.5000 0.2750 0.2500 0.3149
t2 B0-B4 0.0000 0.2750 0.2500 0.1551
t3 B1-B6-B7 0.5000 0.1800 0.2500 0.0800
t4 B1-B5-B8 0.0000 0.0000 0.0000 0.0800
t5 B1-B6-B8 0.0000 0.0000 0.0000 0.0800
t6 B1-B5-B7 0.0000 0.0000 0.0000 0.0800
t7 B2-B9 0.0000 0.1350 0.0833 0.0700
t8 B2-B10-B11 0.0000 0.0675 0.0833 0.0700
t9 B2-B10-B12 0.0000 0.0675 0.0833 0.0700

Variance - 0.0432 0.0111 0.0108 0.0058

Table 5.2. Probability of firing transitions.

Consider Table 5.1. Columns Act report the number of activations, and
Columns P report the corresponding probabilities. It can be observed that on the
REFSM the ATPG activates only blocks B0, B1, B3, B6, B7, because it cannot ex-
ploit information hidden in the update functions of the transitions, and moreover,
t′1 is a HTT transition. Moving from the REFSM to the LEFSM, and finally to the

5.10 Experimental Results 117

SEFSM and S2EFSM the capability of traversing the whole state space is greatly
increased. However, block B5 and B8 are not activated on the LEFSM, nor on the
SEFSM. This is due to the presence of register-dependent HTT transitions (tL6 and
tL7 on the LEFSM, and tS3 and tS4 on the SEFSM). They are HTT because their
enabling functions include the condition reg=1, which has an infinitesimal prob-
ability of being satisfied without exploiting learning or backtracking techniques.
On the contrary, after the stabilization, register-dependent HTT transitions dis-
appeared and all the conditional blocks can be easily traversed on the S2EFSM.

A more detailed analysis can be performed by considering the probability of
activating transitions on the EFSM, rather than blocks on the HDL code (Ta-
ble 5.2). To compare the ATPG effectiveness on REFSM, LEFSM, SEFSM and
S2EFSM, the transitions of the SEFSM are grouped with respect to its unique
state. Then, each transition t is mapped with the set of conditional blocks of
the HDL code activated by traversing t. Thus, the probability of traversing one
transition is represented by the product of the probabilities of activating the cor-
responding conditional blocks. This computation is performed by exploiting the
probabilities of activating the conditional blocks collected for the REFSM, the
LEFSM, the SEFSM and the S2EFSM reported in Table 5.1. Finally, the variance
of the probabilities of traversing the transitions is computed. The variance mea-
sures the distance from the mean value. More the variance is closer to 0, more
the probabilities are uniformly distributed. It can be observed that the variance
decreases moving from the REFSM to the S2EFSM.

5.10.2 Fault Coverage

Name PIs POs FFs Gates S2EFSM Time (s.)

ex 16 bit 34 32 51 5358 0.014
vr1 16 bit 34 16 66 3069 0.013
vr2 16 bit 34 32 51 904 0.025
b04 13 8 66 650 0.029
b10 13 6 17 264 0.035
b11m 9 6 31 715 0.025
face rec 34 32 100 1475 0.016

Table 5.3. Characteristics of benchmarks.

The efficiency of the proposed EFSM transformations, applied to automatic
test pattern generation, has been evaluated by using the benchmarks described in
Table 5.3. Columns report the number of primary inputs (PIs), primary outputs
(POs), flip-flops (FFs) and gates (Gates). Finally, the last column reports the
time required to automatically generate the S2EFSM. Such benchmarks have been
selected because they present different characteristics which allow us to analyze
and confirm the effectiveness of the ATPG framework. ex is the example reported
in Figure 5.1. Two versions of such an example are implemented, one with 16 bit-
sized inputs and the other with 32 bit-sized inputs. The original HDL descriptions
of b04, b09 and b11m contain a large number of nested conditions on signals and

118 5 Methodology: Computational model

registers of different size. b04 and b09 have been selected from the well known
ITC-99 benchmarks suite [198], while b11m is a modified version of b11 created by
introducing a delay on some paths to make it harder to be traversed. Finally, vr1,
vr2 and face rec contain conditional statements where one branch has probability
1− 1

232 of being satisfied, while the other has probability 1
232 . Thus, they are very

hard to be tested by a random ATPG. vr1 and vr2 have been selected from a set
of internal benchmarks, while face rec is a real industrial case. It is a module
of a face recognition system, whose description is composed of two interacting
processes that have been composed into a single EFSM.

GA-ATPG PD-ATPG

Name B.C. FC% TV# T (s.) FC% TV# T (s.)

ex 16 bit 867 13.8 2 129 44.3 23 92
ex 32 bit 1439 13.7 2 180 44.3 33 220
vr1 16 bit 461 49.7 11 35 50.1 16 33
vr1 32 bit 907 78.2 38 92 80.3 58 80
vr2 16 bit 601 3.83 2 202 42.4 19 117
vr2 32 bit 1182 1.1 4 421 41.7 17 177
b04 408 94.9 119 40 99.0 255 15
b10 216 87.0 175 47 94.1 154 43
b11m 725 37.0 149 60 39.2 120 57
face rec 1041 0.9 35 1175 67.1 202 379

Table 5.4. Functional ATPG results.

The functional validation framework is independent from the adopted fault
model. To evaluate its efficiency, a high-level fault model has been selected: the
bit coverage fault model that will be deeply described in Section 7.1. According
to the selected fault model, this study compared the performance of a genetic-
based ATPG (GA-ATPG) [199] with the performance of the proposed pseudo-
deterministic ATPG (PD-ATPG) based on the S2EFSM. Table 5.4 shows, respec-
tively, the number of bit coverage faults (B.C.), the fault coverage (FC%), the size
of the test set (TV#), and the test generation time (T).

The very low fault coverage achieved by the GA-ATPG for vr2 and face rec is
due to the presence of a transition out-going from the initial state, whose enabling
function has an infinitesimal probability of being traversed by randomly fixing
the values of PIs. On the contrary, the pseudo-deterministic ATPG efficiently
exploits the constraint solver to generate the opportune PIs values by exploring
the S2EFSM model. This sensibly increases the achieved fault coverage for all
benchmarks. Finally, note that, less accurate coverage metrics (e.g., line coverage)
allow the proposed ATPG to achieve 100% of coverage, for every benchmark in
Table 5.3, by exploiting S2EFSMs.

5.10.3 EFSM and HLDD generation

Table 5.5 reports benchmark characteristic and generation times of EFMSs and
HLDDs. For each benchmark an EFSM has been automatically generated as de-
scribed in Section 5.4 and in Section 5.5, and for each variable of the EFSM

5.11 Published contributions 119

the corresponding HLDD model has been automatically generated as described
in Section 5.9. Columns of Table 5.5 report, for each benchmark, the number of
code lines (Lines), the number of states (States) and transitions (Trans.) of the
generated EFSM, the number of HLDDs derived from the EFSM (HLDDs), the
number of nodes (Nodes) and edges (Edges) of the largest HLDD, and the time
required for automatically generating the EFMS (GTEFSM) and the correspond-
ing HLDDs (GTHLDD). As shown, generation times are almost negligible also for
large benchmarks, like dlx.

EFSM HLDD Time (sec.)

DUV Lines States Trans. HLDDs Nodes Edges GTEFSM GTHLDD

ex1 56 6 11 5 14 13 0.028 0.024
b00 71 5 12 4 15 14 0.028 0.016
b01 107 17 34 3 36 35 0.036 0.020
b02 69 11 22 2 24 23 0.032 0.024
b04 96 20 38 12 40 39 0.044 0.096
b09 100 5 13 5 16 15 0.040 0.012
b10 190 32 64 11 66 65 0.053 0.124
b11m 110 12 32 5 35 34 0.044 0.024
b00z 74 7 16 4 19 18 0.036 0.020
fr 201 6 20 9 13 12 0.040 0.022
dlx 714 1057 1642 32 1646 1645 2.604 1.024

Table 5.5. Benchmark characteristics and EFSM/HLDD generation times.

5.11 Published contributions

This work has lead to the following publications [200,201,202]:

Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini, and Graziano Pravadelli
EFSM Manipulation to Increase High-Level ATPG
In the Proceeding of “IEEE International Symposium on Quality Electronic De-
sign (ISQED’06)”
San Jose, CA, USA, March 27-29, 2006, pp. 62-67

Anton Chepurov, Giuseppe Di Guglielmo, Franco Fummi, Graziano Pravadelli,
Jain Raik, Raimund Ubar, Taavi Viilukas
Automatic generation of EFSMs and HLDDs for functional ATPG
In the Proceedings of “IEEE International Biennal Baltic Electronics Conference
(BEC’08)”
Tallinn, Estonia, October 6-8, 2008, pp. 143-146

D. Bresolin, G. Di Guglielmo, F. Fummi, G. Pravadelli and T. Villa
The impact of EFSM Composition on Functional ATPG

120 5 Methodology: Computational model

In the Proceedings of “12th IEEE Symposium on Design and Diagnostics of Elec-
tronic Systems (DDECS’09)”
Liberec, Czech Republic, April 15-17, 2009

These papers presented a classification of hard-to-traverse transitions for the
EFSM model. Then, such transitions can be replaced to obtain a new EFSM
(S2EFSM), where the probability of activating transitions is more uniformly dis-
tributed. The S2EFSM is obtained by stabilizing a particular kind of EFSM
(SEFSM) which is generated by linear-complexity manipulations. The potential
state explosion induced by the stabilization is limited, since it is applied to a
reduced number of HTT transitions.

This particular kind of EFSM which has been theoretically showed to allow
a more uniform traversing of the DUV state space. Determinism is obtained by
interfacing the proposed ATPG with a tool that adopts formal methods to solve the
conditions of the enabling functions. In particular, the ATPG has been interfaced
with both a CLP-based constraint solver and a SAT-solver. Experimental results
showed that the effectiveness of the proposed ATPG compared with a genetic-
based ATPG is evident. It greatly benefits from the fact that, by using the S2EFSM
model, all conditional statements included in the DUV are under its control.

An alternative paradigm, HLDD, is proposed to combine the beneficial prop-
erties of both HLDD-based and EFSM-based ATPG. The HLDDs are generated
automatically starting from EFSMs by using the proposed technique.

6

Methodology: Automatic Test Pattern Generation

Random-based automatic test pattern generators (ATPGs) [203, 204] quickly
achieve a quite high fault coverage at every abstraction level. However, the always
rising complexity of modern circuits increases the number of corner cases where
random-resistant faults reside. Thus, more evolved deterministic approaches, pos-
sibly based on learning [205] or backtracking [206], are needed to address such
faults. These techniques exploit information on the structure of the DUV to tra-
verse its state space. Many efficient deterministic ATPGs have been proposed at
gate-level [207, 208, 209], where the system is described as an interconnection of
primitive components. On the contrary, at functional level, the system is described
in an algorithmic way, thus extracting structure information is more difficult [199].
For this reason, mathematical models, as the Finite State Machines (FSM) or the
Extended Finite State Machines (EFSM) [9], can be adopted to apply deterministic
techniques during functional testing.

In particular, the EFSM paradigm is preferred, since it allows a more compact
representation of the state space with respect to the FSM one. Moreover, EFSMs
are a very attracting formalism to be applied to automatic test pattern generation.
A DUV description, based on states and transitions, can be easily adopted to fault
modeling and state-space traversing. This approach can constitute the basis of any
deterministic ATPG. A high-level fault model can be adopted to perturb the EFSM
representation. Then, fault detection can be performed by traversing the EFSMs
to activate the faults and propagate them to primary outputs. In this context, the
EFSM structure permits to exploit deterministic algorithms to traverse the DUV,
rather than random-based ones.

However, traversing an EFSM can be more difficult than traversing an FSM
limiting the use of EFSMs in the ATPG context. In fact, moving from a state of
an EFSM to another one depends on both primary inputs and internal registers.
Thus, the presence of conditions involving registers on the guard of transitions
imposes that already existent approaches, developed for traversing FSMs, cannot
be easily adapted to EFSMs. Such a kind of EFSM is referred to as an inconsistent
EFSM [9]. When the EFSM model is adopted to represent the DUV, its travers-
ing is a critical operation to efficiently perform testing. In particular, traversing
an EFSM is fundamental for functional ATPG, which requires to activate and
propagate faults through the states of the high-level description [26].

122 6 Methodology: Automatic Test Pattern Generation

Some papers, in the literature, propose EFSM-based techniques for high-level
test generation [210,211,9]. However test generation techniques adopted for FSMs
cannot be efficiently reused for EFSMs.

In [210, 211] different strategies are proposed to remove inconsistencies for
reusing FSM-targeted ATPGs. However, the removal of inconsistencies can lead
to the state space explosion if the HDL description contains a large number of
conditions. A different approach is proposed in [9], where the authors present an
orthogonalization process to extract an EFSM model from an HDL description.
Then, a stabilization process is presented to improve the traversing of the EFSM.
Finally, a breadth first search is used to generate a set of test patterns which cover
all the transitions on the stabilized EFSM. The main limitations of this approach
are represented by the complexity of the orthogonalization and stabilization pro-
cess, which may lead to state explosion, and by the bread-first search, which is not
targeted to fault detection. All previous approaches work on a single EFSM, but
this requires to merge multi-process designs into a unique process. This solution
is tedious and error-prone.

In this context, the contribution of proposing a functional ATPG framework
can be summarized as follow:

• exploit an easy-to-traverse EFSM model to guide a constraint solver during
the DUV traversal to explore the DUV state space;

• introduce backjumping techniques to move through hard-to-traverse transitions
avoiding the state explosion problem;

• generate functional test for multiprocess DUVs;
• define a EFSM-composition theory to improve EFSM-based functional ATPG

whose effectiveness and efficiency may be limited when separate EFSM are
used to model the DUV;

• implement combined approaches that mix different state space exploration
techniques and different computational models to address different DUVs and
different areas of the same DUV.

This Chapter is organized as follow. Section 6.1 describes the defined ATPG
framework. In particular, Section 6.1.2 presents the implemented ATPG archi-
tecture and a pseudo-deterministic EFSM-based engine, namely Random Walk.
Section 6.1.3 describes the scheduling algorithm defined to works on a set of con-
current EFSMs that models the DUV.

Section 6.2 describes the EFSM-based engine that relies on Learning, Back-
jumping and constraint logic programming to deterministically generate test vec-
tors for traversing all transition of the EFSM and activate the fault injected into
the DUV.

Section 6.3 compares the effectiveness of the proposed functional deterministic
ATPG, according to whether it exploits scheduling of concurrent EFSMs or EFSM
composition (presented in Section 5.7).

Finally, Section 6.4 describes an alternative ATPG engine which exploits both
EFSM and HLDD representations. The goal is to combine the beneficial properties
of both paradigms using EFSMs for targeting control FSM transition and variable-
oriented HLDDs for targeting faults in the data variables, respectively.

6.1 ATPG architecture 123

6.1 ATPG architecture

This Section presents the functional ATPG framework which exploits the EFSM
model to deterministically generate test sequences. A constraint solver is used
to generate test vectors that allow traversing the state space of the design under
test (DUV) deterministically and uniformly. This approach definitely increases the
ability of the ATPG to observe and control hard-to-detect faults.

The Section is organized as follows. Section 6.1.1 presents problem and the state
of the art. Section 6.1.2 describes the defined ATPG architecture. Section 6.1.3 de-
scribes the scheduling algorithm defined to explore DUVs composed by concurrent
EFSMs. The achieved experimental results are reported in Section 6.1.4.

6.1.1 Introduction

In this work the main characteristics of the S2EFSM are exploited to define a
functional ATPG framework. The transitions of the S2EFSM present the most uni-
formly distributed probability of being activated when such a pseudo-deterministic
ATPG is used, as discussed in Chapter 5 .

The framework is composed of two main modules. The first parses the DUV
description, generates the S2EFSM and performs fault injection. The second is the
ATPG engine, which pseudo-deterministically navigates the S2EFSM to generate
test sequences.

The determinism is obtained by interfacing with an external solver. Given a
transition of the S2EFSM, the solver is required to generate opportune values for
PIs that enable the S2EFSM to move across such a transition. The ATPG can
be configured to interface with different kinds of solvers (SAT-solver, CLP solver,
etc.). Moreover, it can exploit also model checking tools. Two different types of
solvers have been interfaced with the ATPG and then compared, as showed by the
experimental results in Section 6.1.4.

The main characteristics of the proposed framework are the following.

• The framework accepts VHDL, Verilog and SystemC behavioral descriptions,
on which a set of concurrent EFSMs is automatically identified, one for each
process of the DUV. Intuitively, an EFSM is a finite state machine that implic-
itly memorizes the values of the DUV registers into transitions. Thus, the use
of the EFSM model allows a compact representation of the DUV state space
that reduces the risk of state explosion typical of more traditional FSMs [192]:

• each EFSM is automatically manipulated to obtain a new EFSM which is more
uniformly traversable by exploiting a deterministic navigation strategy. This
allows reducing the use of time-consuming backtracking techniques;

• the deterministic navigation relies on constraint solving. The EFSM model
can be effectively integrated to CLP solver or SAT solver, since the ATPG to
invokes the constraint solver only when moving between EFSM states;

• the navigation of concurrent EFSMs is guaranteed by an opportune EFSM
scheduling algorithm that aims at maximizing the ATPG capability of explor-
ing the whole state space. In this way multiprocess DUVs can be uniformly
traversed.

The S2EFSM is referred simply as EFSM in the following.

124 6 Methodology: Automatic Test Pattern Generation

RTE

VHDL/
SystemC
DUT

DCG

S2EFSM
DOT

representation

Simulation
Engine

S2EFSM
Navigator

Constraint
Solver

Interface

Constraint
Solver

Test
Set

Fault
Injector

S2EFSM
DOT

Generator

Constraint
Generator

SystemC
Faulty
DUT

Fault
List

Constraints

Random
Engine

ATPG Framework

Fig. 6.1. The ATPG framework.

6.1.2 Functional ATPG Framework

The EFSM model is specially suited to be used with ATPGs that generate test
sequences by deterministically activating the enabling functions of the transitions.
According to this observation, this work proposes a functional ATPG framework
depicted in Figure 6.1. It has been implemented in C++/SystemC, however, it
accepts VHDL, Verilog and SystemC descriptions of the DUV. The framework is
composed of two main modules:

• DUV-dependent component generator (DCG). Given an HDL func-
tional description of the DUV, this module generates the State Transition
Graph (STG) representations of the corresponding EFSMs (EFSM STG Gen-
erator), the SystemC faulty description of the DUV and the related fault list
(Fault Injector), and the file containing a set of constraints involved in the
EFSM enabling and updating functions (Constraint Generator). Moreover, if
the original DUV is coded in VHDL or Verilog, a corresponding SystemC ver-
sion is provided, since the simulation engine is based on SystemC simulation
kernel.

• Run-time engine (RTE). This module is composed of the EFSM naviga-
tor, the Constraint-Solver Interface, the Random Engine, and the Simulation
Engine. The RTE navigates the STG representation of the EFSM to gener-
ate test sequences. An external constraint solver is used to generate values for
PIs of the DUV which allow to fire the enabling functions of transitions that
the EFSM navigator wants to traverse. Values for PIs, not involved in the en-
abling function, are provided by the Random Engine. Then, the generated test
sequences are provided to the Simulation Engine which compares the behavior
of the fault-free and faulty DUVs. Test sequences that highlight discrepancies
between the POs of the fault-free and faulty DUVs constitute the final test set.

Next paragraphs describe each module in details.

6.1 ATPG architecture 125

DUV-dependent component generator (DCG)

The DCG relies upon an HDL Intermediate Format (HIF) which allows to generate
a hierarchical syntactic tree of the DUV description. Each node of the tree is an
instance of an HDL construct. For example, the root represents the whole design
and it has two offsprings: the entity and the architecture; the entity offsprings
are PIs and POs, and so on for the other constructs. The leaves represent the
occurrences of basic constructs like constants, variables, data types, etc. A powerful
API allows user to navigate the syntactic tree to extract information or to add
new nodes, thus modifying the DUV. The HIF Suite is described more in depth in
Section 4. The DCG analyzes the DUV description and generates such a syntactic
tree which is used by its submodules: the EFSM STG Generator, the Fault Injector
and the Constraint Generator.

EFSM STG Generator

This module is responsible to automatically generate a DOT representation of the
STG of the EFSM. Such a DOT description is used by the EFSM navigator during
the test generation phase.

DOT is part of GraphViz, an OpenSource project developed by the AT&T
laboratories [212]. DOT is a language for a collection of scripting tools for graphs
vectorial representation. The Boost Graph Library (BGL) of C++ supplies all
the functions to write and read files in DOT format [213]. Thus, once an EFSM is
generated it is possible to save the EFSM structure on a DOT file, see the example
in Figure 6.2

digraph b00 {
0 [l a b e l=” s t a t e 0 ”] ;
1 [l a b e l=” s t a t e 3 ”] ;
0−>0 [l a b e l=” t r a n s i t i o n #1” , r e s e t=true] ;
0−>0 [l a b e l=” t r a n s i t i o n #1” , r e s e t=fa l se] ;
0−>0 [l a b e l=” t r a n s i t i o n #2” , r e s e t=fa l se] ;
0−>1 [l a b e l=” t r a n s i t i o n #3” , r e s e t=fa l se] ;
0−>1 [l a b e l=” t r a n s i t i o n #4” , r e s e t=fa l se] ;
1−>0 [l a b e l=” t r a n s i t i o n #5” , r e s e t=fa l se] ;
1−>0 [l a b e l=” t r a n s i t i o n #6” , r e s e t=fa l se] ;
0−>0 [l a b e l=” t r a n s i t i o n #7” , r e s e t=fa l se] ;
0−>0 [l a b e l=” t r a n s i t i o n #8” , r e s e t=fa l se] ;
0−>0 [l a b e l=” t r a n s i t i o n #9” , r e s e t=fa l se] ;

}

Fig. 6.2. DOT Description of the design in Figure 5.7.

Fault Injector

The Fault Injector is responsible to generate a faulty description of the DUV.
It performs fault injection by inserting saboteurs into the DUV description. As,

126 6 Methodology: Automatic Test Pattern Generation

described in Section 2.2.5, generally, a saboteur is a special component added to
the original model. The mission of this component is to alter the value, or timing
characteristics, of one or more signals when a fault is injected. On the contrary,
the saboteur remains inactive during the normal operation of the system. In this
case, saboteurs are functions which can supply the correct or the faulty value of
the target object (constants, variables, signals, and conditions) depending on the
value of a control signal.

The way a saboteur perturbs a DUV description depends on the adopted fault
model. Indeed, the RTE is independent from the fault model, thus, changing the
implementation of saboteur functions allows us to easily modify the fault model
semantics. Every occurrence of signals, variables and constants and every condi-
tion of the functional level description can be replaced by an opportune saboteur.
Moreover, a saboteur for every language type, i.e., bit, integer, standard logic,
boolean, etc, can be defined. Faults are enumerated and a bit vector-type port,
named fault port is added to the DUV. The fault port drives all control signals.
The number of elements of the fault port equals the number of injected faults. In
this way every fault is associated to a unique element of the fault port. A fault is
activated (deactivated) by the presence of a ‘1’ (‘0’) in the corresponding ele-
ment of the fault port. Thus, a fault port, with all elements fixed to ‘0’ does not
activate any fault. If the single fault assumption is desired, all configurations of
the fault port with more than one element fixed to ‘1’ are not taken into account.

The adopted fault injection technique will be more deeply described in Chap-
ter 7.

Constraint Generator

tS
0

tS
1

tS
2

tS
3

tS
5

reset=1
state:=A;
reg1:=0;
reg2:=0;
reg3:=0;

s
0

state=B and reset=0
out<=reg3*reg2;
state:=A;

state=A and reset=0 and
reg1<0 and in1!=0 and

reg1+in1<0
reg2:=–(reg1+in1);
out<=sqrt(reg2);
state:=B;
reg1:=reg1+in1;

state=A and reset=0
reg1>=0 and in1=0

reg3:=in2;
out<=0;
state:=B;

state=A and reset=0 and
reg1>=0 and in1!=0 and

reg1+in1>=0
reg3:=in2;
reg2:=reg1+in1;
out<=sqrt(reg2);
state:=B;
reg1:=reg1+in1;

tS
4

state=A and reset=0
reg1<0 and in1=0

out<=0;
state:=B;

state=A and reset=0 and
reg1>=0 and in1!=0 and

reg1+in1<0
reg3:=in2;
reg2:=–(reg1+in1);
out<=sqrt(reg2);
state:=B;
reg1:=reg1+in1;

state=A and reset=0 and
reg1<0 and in1!=0 and

reg1+in1>=0
reg2:=reg1+in1;
out<=sqrt(reg2);
state:=B;
reg1:=reg1+in1;

tS
6

tS
7

Fig. 6.3. Example of EFSM.

6.1 ATPG architecture 127

bool e v a l f u n c (LookInDesign ∗ l i d , int trans , TestVector ∗ tvs ,
map<s t r i ng , pair<int , int> >∗ tv nos , pipestream& s o o l v e r) {

int o f f s e t = 0 ;
int name s ize = 0 ;

// STEP 1
/∗ R e t r i e v i n g the v a l u e o f the r e s e t s i g n a l , i t s v a l u e

depends on the s imula t ion , thus i t cannot be f o r c e d ∗/
s c s i g n a l < s c b i t >∗ r e s e t = l i d−>r e t r i e v e r e s e t () ;
/∗ R e t r i e v i n g the v a l u e o f r e g i s t e r reg1 , i t s v a l u e depends

on the s imula t ion , thus i t cannot be f o r c e d ∗/
L r t s i g n a l v a r < s c i n t <32> >∗ l r t s i g r e g 1 =
(L r t s i g n a l v a r < s c i n t <32> >∗) l i d−>r e t r i e v e l s i g (” reg1 ”) ;
/∗ R e t r i e v i n g the v a l u e o f r e g i s t e r s t a t e , i t s v a l u e

depends on s imula t ion , thus i t cannot be f o r c e d ∗/
L r t s i g n a l v a r < s c b i t >∗ l r t s i g s t a t e =
(L r t s i g n a l v a r < s c b i t >∗) l i d−>r e t r i e v e l s i g (” s t a t e ”) ;
switch (t rans) {

. . .
case 3 :

// STEP 2
/∗ Eva lua t ing the s t a t i c par t o f the e n a b l i n g func t ion ,

i f i t i s not s a t i s f i e d the t r a n s i t i o n cannot be f i r e d ∗/
i f ((l r t s i g s t a t e −>read () != A) | | ((r e s e t−>read () != 0))

return (fa l se) ;
/∗ The dynamic par t o f the e n a b l i n g f u n c t i o n i s e v a l u a t e d ∗/
/∗ in1 i s an input port , i t s v a l u e can be f o r c e d to f i r e

the e n a b l i n g f u n c t i o n o f t r a n s i t i o n 3 ∗/
map<s t r i ng , pair<long int , long int> > ∗ vars =
new map<s t r i ng , pair<long int , long int> >();
map<s t r i ng , s t r i ng > ∗ va lue s = NULL;
(∗ vars) [” in1 ”] = make pair (−32768 , 32767) ;
/∗ A s t r i n g r e p r e s e n t i n g the c o n s t r a i n t in1 !=0 and

reg1>=0 and reg1+in1>=0 i s genera ted ∗/
s t r i n g exp = ” (! (in1 =0))&(”+i n t t o s t r i n g (l r t s i g r e g 1 −>read ())
+”>=0)&((”+i n t t o s t r i n g (l r t s i g r e g 1 −>read ())+ ”+in1)>=0)” ;
/∗ A c o n s t r a i n t s o l v e r i s invoked to s o l v e the c o n s t r a i n t ∗/
va lue s = so lve r−>g e t v a r i a b l e v a l u e (vars , exp) ;

// STEP 3
/∗ I f the c o n s t r a i n t cannot be s a t i s f i e d the

t r a n s i t i o n cannot be f i r e d ∗/
i f (values−>s i z e () == 0)

return (fa l se) ;
/∗ I f the c o n s t r a i n t i s s a t i s f i e d the t e s t v e c t o r i s modi f i ed

by a s s i g n i n g to in1 the v a l u e prov ided by the s o l v e r ∗/
s c i n t <32> in1 = s t r i n g t o i n t ((∗ va lue s) [” in1 ”]) ;
o f f s e t =(∗ tv nos) [” in1 ”] . f i r s t ;
for (int i = 0 ; i < in1 . l ength () ; i++) {

tvs−>f o r c e b i t ((char) (in1 [in1 . l ength ()− i −1] + ’ 0 ’) ,
o f f s e t ++);

}
return (true) ;
. . .

}
}

Fig. 6.4. Example of eval func.

128 6 Methodology: Automatic Test Pattern Generation

The Constraint Generator automatically creates a C++ function (referred as
eval func in the following) to allow the RTE to evaluate the enabling and up-
dated functions constraints when the EFSMs are navigated. Such a function is
constituted by a single case statement with one alternative for each transition of
the S2EFSM. For example, Figure 6.4 shows the slice of code of the eval func
related to transition tS3 of the EFSM of Figure 6.3(d). The eval func declares the
following parameters:

• lid: a reference to the SystemC code of the DUV. It is used to retrieve the
values of internal registers to evaluate the enabling function of the transition
that must be fired;

• trans: the identification number of the transition to be fired;
• tvs: a test vector generated by the random engine of the RTE. The RTE

initially fills the vector with random values. Then, when the eval func is
invoked, tvs is modified accordingly with the values provided by the constraint
solver. In particular, if the enabling function of the transition trans is satisfied,
the part of tvs related to the PIs involved in the enabling function is modified
accordingly to the values returned by the constraint solver (see Section 6.1.2);

• tv nos: a reference to a data structure which retains information about the
position of each PI in tvs;

• solver: a reference to the constraint solver interface module which allows to
use a constraint solver.

The eval func works as follows when it is invoked by the EFSM Navigator :

1. At each simulation cycle, the simulation state is frozen and the values of in-
ternal registers are retrieved. Then, the evaluation of the enabling function of
the transition to be traversed starts;

2. Some conditions of the enabling function can be evaluated without invoking a
constraint solver, i.e., those which involve only internal registers and constants.
If such conditions are not satisfied, the eval func return false. Thus, the
transition cannot be fired, and the EFSM Navigator must choose a different
one. Otherwise, conditions which involve PIs are extracted from the enabling
function, and a constraint solver is called.

3. If the constraint solver provides a solution, then the test vector is modified by
fixing the values of PIs involved in the constraint with the values returned by
the solver. Otherwise, false is returned like in step 2.

Run-time engine (RTE)

The RTE is a SystemC library which can be linked to the constraint description,
and to the faulty and fault-free descriptions of the DUV to obtain a single exe-
cutable. This definitely improves the performance of the test pattern generator.
The RTE involves three main submodules described in the following: the EFSM
Navigator, the Constraint Solver Interface and the Simulation Engine.

6.1 ATPG architecture 129

EFSM Navigator

The EFSM Navigator is the heart of the ATPG engine. In this paragraph a pseudo-
deterministic approach is proposed, referred as Random Walk. A more sophisti-
cated approach is described in Section 6.2. The Random Walk uniformly navigates
the STG of the EFSM, and it interacts with the Random Engine and with the
Constraint Solver Interface to generate test sequences. The DOT document de-
scribing the STG of the EFSM is parsed and an in-memory representation is
generated. Then, the EFSM Navigator exploits the information provided by the
enabling functions of the EFSM to increase the capability of detecting random
resistant faults. In particular, it tries to uniformly move across the transitions of
the EFSM. On the contrary, a random ATPG tends to traverse only transitions
whose enabling functions present a high probability of being satisfied. Starting
from a reset condition, the EFSM Navigator randomly selects a transition, then
it tries to satisfy its enabling function by assigning values to the PIs of the DUV.
When it succeeds, it provides the input vectors to the Simulation Engine which
performs a simulation cycle to update the internal registers of the DUV, and to
check for fault detection. Then, the EFSM Navigator selects another transition,
and so on.

It is worth to note that the EFSM navigator can be applied to traverse whatever
kind of EFSM, not only S2EFSMs. However, the EFSM navigator is particularly
suited to be applied to S2EFSMs, since their transitions have a more uniformly
distributed probability of being activated (see Section 5.4.3 and Section 5.5). More
formally, given the set Tsi

of transitions out-going from a state si, at step i, the
EFSM Navigator works as follows:

1. Randomly choose a transition tsi
∈ Tsi

;
2. check if the enabling function e of tsi is satisfiable, i.e., if it can be fired

by assigning opportune values to inputs involved in e. For example, let x be
an input of the EFSM, the enabling function x=0 can be fired by assigning
0 to x. On the contrary, if x is an internal register, the satisfiability of the
enabling function depends on the previous assignment to x, i.e., on the current
configuration of the EFSM1. This step is performed by invoking a constraint
solver by means of the Constraint Solver Interface module;

3. assign to inputs involved in e such opportune values if e is satisfiable. Other-
wise, remove tsi

from Tsi
and come back to step 1;

4. generate random values for inputs not involved in e. To accomplish this task,
the Random Engine is invoked;

5. simulate the test vector so obtained, move across tsi , and come back to step 1
to generate the next test vector.

The EFSM Navigator resets the EFSM state periodically according to a user
parameter, and it finally stops when the target fault coverage has been reached or
the maximum allowed computation time has been expired.

1 A configuration stores the status of the EFSM, i.e., the value of its internal registers
(cf. the definition of EFSM in Chapter 5)

130 6 Methodology: Automatic Test Pattern Generation

Constraint Solver Interface

This module interfaces the EFSM Navigator to an external constraint solver
through the eval func previously described. While the eval func is automat-
ically generated for each DUV, this interface does not require to be modified
when a different DUV is analyzed. To launch a solving session, the interface pro-
vides the get variable value function which is called by the eval func (see
Figure 6.4). Two different interface modules have been implemented: one is tai-
lored for invoking a SAT-solver: zChaff [214], the other for invoking a constraint
solver: ECLiPSe [215].

zChaff is invoked by supplying the negation of the constraint that represents
the enabling function to be satisfied to fire the corresponding transition. If a coun-
terexample is found, its input projection represents the set of values that PIs must
assume to fire the transition. On the contrary, the enabling function cannot be
satisfied, and the negative answer is reported to the EFSM Navigator.

The main problem related to the use of zChaff is due to the fact that different
invocation of the solver on the same constraint provides the same counterexample.
This reflects on the quality of the generated test sequences. They allow to uniformly
navigate across the EFSM, but always with the same data. Thus, the achieved fault
coverage can be very low for data-dominated circuits, even if all execution paths
of the EFSM are exercised. Consider, for example, the following slice of code:

if (data >= 0)

out = data;

Every time zChaff is invoked to solve the constraint data >= 0 , it provides
the same value for data, for example 0. Now, let us suppose the presence of a fault
on the statement out = data which, when it is active, forces out to assume the
value 0. Such a fault can never be detected! On the contrary, zChaff would provide
a value greater than 0 very likely, if it was able to provide a different value for
data each time it is called to solve the same constraint.

The problem can be avoided by using ECLiPSe instead of zChaff. ECLiPSe is
a Constraint Logic Programming system which can be adopted to search solutions
for symbolic and numeric constraints. Given a satisfiable constraint, it can pro-
vide its whole solution space, not just a single solution. Moreover, a random value
within the solution space can be easily extracted. The use of ECLiPSe is particu-
larly efficient, since there exist a C++ programming library which can be directly
linked to the other modules of the ATPG framework. In this way, no interprocess
communication mechanism (like pipe, sockets, etc.) is required at all.

Simulation Engine

This module interacts with the EFSM Navigator, each time a transition of the
EFSM is fired, to move the simulation of the DUV one step ahead. The Simulation
Engine has two purposes: updating the internal registers of the DUV when a
transition is traversed (i.e., executing its update function), and checking for fault
detection. In particular, the Simulation Engine works as follows:

1. A fault f is activated by opportunely acting on the saboteur control signals of
the faulty DUV;

6.1 ATPG architecture 131

2. the faulty and fault-free DUVs are reset;
3. each time a vector t is provided by the EFSM navigator, t is applied to the

PIs of the faulty and fault-free DUVs. Then, a simulation cycle is performed.
In this way, internal registers are updated;

4. the POs of the faulty and fault-free DUVs are compared. If a discrepancy is
observed:
a) f is marked as detected;
b) the sequence s constitutes by all the simulated test vectors starting from

the last reset are saved in the test set;
c) the faulty and fault-free DUVs are reset;
d) for performance reasons, s is simulated for all undetected faults if some of

them can be tested by s too.
5. on the contrary, if no discrepancies are observed, the simulator waits for an-

other test vector to be simulated, then it resumes from step 3. If the maximum
length for the test sequence is reached without any fault detection, the test
sequence is discarded, and the simulator resumes from step 1 by selecting a
new fault.

The complexity of industrial designs and the huge number of faults that must be
injected into them require efficient fault simulators, in order to make verification
via fault simulation an affordable task. To optimize fault simulation performances,
some parallelization techniques have been proposed at gate level. On the contrary,
they have not been fully exploited at RTL, where functional fault models, instead
of gate-level ones, are considered. Thus, Chapter 8 analyzes the impact of such
parallelization techniques on functional faults. In particular, possible issues are
presented together with optimizations that can be implemented to speed up the
simulation.

6.1.3 Multi-Process Scheduling

This thesis proposes a method to represent a digital system as a set of concurrent
EFSMs, one for each process of the DUV. Concurrency is intended as the pos-
sibility that each EFSM of the same DUV changes its state concurrently to the
other EFSMs to reflect the concurrent execution of the corresponding processes.
Data communication between concurrent EFSMs is guaranteed by the presence of
common signals. In this way, structured models can be represented.

The navigation of concurrent EFSMs is guaranteed by an opportune EFSM
scheduling algorithm that aims at maximizing the ATPG capability of exploring
the whole state space. In this way multiprocess DUVs can be uniformly traversed.

In particular, two reasons induce introducing a scheduling algorithm. A first
motivation is due to the fact that the same primary inputs may be involved in the
enabling functions of the transitions of two or more EFSMs. For example, let us
consider a DUV composed of two EFSMs, M and N . Moreover, let us suppose that
at a certain simulation cycle, the ATPG selects the transition tM from M and the
transitions tN from N . The enabling functions of tM and tN can be compatible
or conflicting. In the first case, there exists a value assignment to primary inputs
that satisfies the enabling functions of both tM and tN . Thus, primary inputs can
be deterministically fixed to traverse both tM and tN . In the second case, such

132 6 Methodology: Automatic Test Pattern Generation

an assignment does not exist. Thus, tM and tN cannot be traversed concurrently,
and one of them must be discarded and substituted with a different transition to
remove the conflict. In this case, the scheduling algorithm is used to decide the
priority of each EFSMs for fixing primary-input values. When a conflict happens,
the transitions to be substituted are selected starting from the EFSMs with the
lowest priority.

A second reason that motivates the use of a scheduling algorithm depends on
the fact that not all EFSMs must be triggered at each simulation cycle. Think, for
example, to an EFSM corresponding to a process whose sensitivity list’s signals
remain unchanged.

According to the previous considerations, a priority-based scheduling algorithm
has been implemented. In this way, at each simulation cycle, the ATPG generates
the test vector by deterministically fixing the primary inputs in order to traverse
the transition of the highest-priority EFSM. Then, the primary inputs not involved
in such a transition, are deterministically assigned according to the transition of
the next-priority EFSM, and so on, until all primary inputs are fixed.

To implement such a policy, the scheduler relies on a two-level-queue mecha-
nism without feedback. The queue with the highest priority permanently includes
EFSMs extracted from clock-sensitive processes. Such EFSMs are simulated at
each clock cycle. The second queue permanently includes EFSMs extracted from
asynchronous processes that are triggered by signals modified by the processes of
the first queue. Within each queue, the EFSMs are sorted by assigning a dynamic
priority computed as the sum of a constant value, F, and an aging factor A.

The value F assigned to each EFSM is inversely proportional to the number
of inputs included in its enabling functions. Larger is the number of inputs in-
volved in the enabling functions, lower is the value F assigned to the EFSM, and
later the EFSM is navigated. In this way, the DUV exploration is more uniformly
distributed. In fact, if an EFSM, which involves many inputs on the transition-to-
be-traversed, is scheduled first, its decision on inputs values definitely constraints
the behavior of the remaining EFSMs. This may cause an incomplete exploration
of the DUV. Analogously, the aging factor has been introduced to avoid that the
behavior of low-priority EFSMs is always constrained by decisions taken by high-
priority EFSMs. Initially, the value A is 0 for all EFSMs. Then, each time an
EFSM is forced to discard and substitute the transition to be traversed (because
the values assigned to inputs by a higher-priority EFSM do not satisfy its enabling
function) the aging factor of EFSM is incremented of a constant quantity. On the
contrary, the aging factor is reset to 0 after the EFSM reaches the highest priority.
Thus, sooner or later, every EFSM becomes the highest-priority one.

6.1.4 Experimental Results

The efficiency of the proposed ATPG framework has been evaluated by using the
benchmarks described in Table 6.1 where columns report the number of primary
inputs (PIs), primary outputs (POs), flip-flops (FFs), gates (Gates) and the num-
ber of bit coverage faults (B.C.. Such benchmarks have been selected because they
present different characteristics which allow to analyze and confirm the effective-
ness of the ATPG framework. ex1 is the example reported in Figure 6.3.

6.1 ATPG architecture 133

Name PIs POs FFs Gates B.C.

ex1 16 bit 34 16 66 3069 461
ex1 32 bit 66 32 130 10754 907
b00 16 bit 34 32 51 904 601
b00 32 bit 66 64 99 1692 1182
b04 13 8 66 650 408
b10 13 6 17 264 216
b11m 9 6 31 715 725
b00z 66 64 99 11874 1439
fr 34 32 100 1475 1041
dlx 29 31 25 232 1167

Table 6.1. Characteristics of benchmarks.

GA-ATPG PD-ATPG

Name FC% SC% TV# T FC% SC% TV# CLP T SAT T

ex1 16 bit 49.7 85.7 11 35 s. 50.1 92.9 16 33 s. 51 m.
ex1 32 bit 78.2 85.7 38 92 s. 80.3 92.9 58 80 s. aborted
b00 16 bit 3.83 26.7 2 202 s. 28.5 87.0 26 152 s. 60 m.
b00 32 bit 1.1 26.7 4 421 s. 48.7 87.0 66 360 s. aborted
b04 94.9 98.0 119 40 s. 99.0 100.0 255 15 s. 51 m.
b10 87.0 66.7 175 47 s. 93.0 69.7 194 47 s. 41 m.
b11m 37.0 80.0 149 60 s. 39.0 82.2 145 54 s. 64 m.
b00z 13.7 31.0 2 180 s. 44.3 75.9 33 220 s. aborted
fr 0.86 13.3 35 1175 s. 70.4 86.7 375 557 s. 135 m.
dlx 35.1 50.7 180 216 s. 46.7 63.9 145 211 s. 60 m.

Table 6.2. ATPG results.

Two versions of such an example have been implemented, one with 16 bit-
sized inputs and the other with 32 bit-sized inputs. b04, b09 have been selected
from the well known ITC-99 benchmarks suite [198]. b11m is a modified version
of b11, included in the same suite, created by introducing a delay on some paths
to make it harder to be traversed. The original HDL descriptions of b04, b09
and b11m contain a high number of nested conditions on signals and registers of
different size. b00, b00z and fr contain conditional statements where one branch
has probability 1− 1

232 of being satisfied, while the other has probability 1
232 . Thus,

they are very hard to be tested by a random ATPG. In particular, b00 and b00z are
internal benchmarks, while fr is a real industrial case, i.e., it is a module of a face
recognition system, whose description is composed of two interacting processes.
Finally, dlx is the controller of the well known RISC processor.

Section 6.1.2 reports that the framework is independent from the adopted fault
model. To evaluate its efficiency, a high-level fault model has been selected. It is
the bit coverage fault model that will be deeply described in Section 7.1. Moreover,
statement coverage has been computed too.

Table 6.2 reports a comparison between the performance of a genetic-based
ATPG, which outperforms a pure random-based ATPG, (GA-ATPG) and the
performance of the proposed ATPG (PD-ATPG). In particular, the Table shows
the fault coverage (FC%), the statement coverage (SC%), the size of the test set

134 6 Methodology: Automatic Test Pattern Generation

(TV#), and the test generation time (T, CLP T, SAT T, by using respectively the
GA-ATPG, the PD-ATPG with ECLiPSe, and the PD-ATPG with zChaff). The
time to obtain the EFSMs from the HDL code is negligible with respect to the test
generation time (few seconds). For some benchmarks zChaff was unable to solve
constraints, and it aborted. On the contrary, when it succeeded, the achieved fault
coverage was equal to the fault coverage achieved by using ECLiPSe. However,
ECLiPSe always outperformed zChaff from the execution time point of view.

6.2 Deterministic EFSM-based engine

This Section describes the functional ATPG engine that explores deterministically
the DUV state space by exploiting an easy-to-traverse extended FSM model. The
ATPG engine relies on Learning, Backjumping and constraint logic programming
techniques to deterministically generate test vectors for traversing all transitions
of the EFSM. Testing of hard-to-detect faults is thus improved.

This Section is organized as follows. Section 6.2.1 introduce the problem and
summarizes related previous works. Section 6.2.2 presents the defined deterministic
ATPG engine, namely FATE. Finally, Section 6.2.3 reports experimental results.

6.2.1 Introduction

Many high-level ATPGs have been proposed to generate effective test sequences [216,
217, 218, 199, 219, 220, 221]. Generally, high-level ATPGs can be divided in two
main categories: random-based and deterministic. The first set adopts simulation-
based strategies guided by genetic algorithms or other probabilistic-based tech-
niques [218, 199]. Generally, they rely on high-level fault models or coverage met-
rics which require to accordingly instrument and simulate a HDL description (e.g.,
SystemC, VHDL, Verilog, etc.) of the design under test (DUV). These ATPGs are
fast, and they allow to quickly achieve a high coverage for easy-to-test designs.
However, they tend to generate a large number of test sequences and they unlikely
cover corner cases on complex DUVs. On the contrary, deterministic ATPGs ex-
ploit mathematical strategies tailored to allow a complete exploration of the DUV
state space [216,217,219,220,221].

The development of a functional ATPG requires to deal with four basic aspects:

1. the formalism used to model the DUV (described in Chapter 5);
2. the algorithm to take decisions to move from a state to another one during

DUV state exploration (e.g., genetic algorithms [222], SAT-solving [220], con-
straint logic programming [221], linear programming [220], etc.);

3. the strategy to deterministically reach particular states of the DUV repre-
senting corner cases (e.g., learning [223], justification [219], backtracking [217],
backjumping [224], etc.);

4. the metrics to evaluate the quality of generated test sequences, i.e. transition
coverage [9], path coverage [25], statement coverage [25], fault coverage [216]
(the adopted metrics are described in Chapter 7).

6.2 Deterministic EFSM-based engine 135

Such ATPGs are more effective to cover corner cases than random-based ones,
but their execution time tends to increase proportionally to the complexity of the
adopted deterministic strategy. Moreover, deterministic ATPGs can be unable to
complete the testing session, when applied to complex systems that lead the DUV
model to the explosion of states.

Fig. 6.5. The FATE flow.

In this context, this thesis presents a functional deterministic ATPG, FATE,
which addresses the previous aspects as follows (see Figure 6.5):

1. The EFSM paradigm is used to model the DUV. In particular, FATE works on
a special kind of EFSM whose transitions present a quite uniformly distributed
probability of being deterministically traversed, see Chapter 5;

2. a constraint logic programming-based (CLP) strategy is adopted to determin-
istically generate test vectors that satisfy the guard of the EFSM transitions
selected to be traversed;

3. a two-step ATPG engine is implemented which exploits CLP to traverse the
DUV state space: first, the Random Walk -based approach is used to cover
the majority of easy-to-traverse (ETT) transitions; then a Backjumping-based
mode is used to activate hard-to-traverse (HTT) transitions. In both modes,
Learning is exploited to get critical information that improves the performance
of the ATPG;

4. transition coverage is used to verify the goodness of the proposed ATPG, since
100% transition coverage represents a necessary condition for fault coverage
and for more accurate coverage metrics. Then, the high-level bit coverage fault
model has been adopted, see Chapter 7, to measure the functional coverage of
the generated test sequences, which have been also simulated at gate-level on
stuck-at faults to check fault coverage on logic-level implementations.

136 6 Methodology: Automatic Test Pattern Generation

There are few papers in the literature propose ATPG based on the EFSM
model. However, as already introduced in this Chapter, test generation techniques
adopted for FSMs cannot be efficiently reused for EFSMs.

In [9] a breadth first search is used to generate a set of test patterns which
covers all the transitions on the stabilized EFSM. The main limitations of this
approach are represented by the complexity of the orthogonalization and stabi-
lization processes, which may lead to state explosion. Moreover, the breadth-first
search-based approach is surely less efficient than strategies based on learning and
backjumping. In fact, these methods improve the performance of the ATPG by
avoiding the starvation of DUV exploration in areas of the state space very far
from the desired target. In particular, Backjumping is a special kind of backtrack-
ing strategy, also known as non-chronological backtracking, which rollbacks from
an unsuccessful situation directly to the cause of the failure. Thus, it is more effi-
cient than backtracking. In fact, the basic backtracking algorithm rollbacks to the
most recent decision point before proceeding to a different search direction [225].
However, there is no guarantee that the most recent decision point is the source
of failure. Thus, backtracking, differently from backjumping, may require many
rollbacks before solving the conflict.

Many papers propose to use backtracking at gate-level to search for a path
that propagates a target value to a target net. On the contrary, to the best of
author knowledge, only the MIX-PLUS ATPG [226] exploits Backjumping for
gate-level test generation. However, the approach of MIX-PLUS is different from
what proposed in this work for the following reasons:

• MIX-PLUS uses Backjumping at gate-level, while FATE uses it at functional
level;

• MIX-PLUS needs to generate and dynamically maintain an implication graph
for using backjumping. However, the size of such a graph can exponentially
increase for complex sequential circuits where justification is applied for several
time frames. On the contrary, FATE statically generates a list that reports
which transitions of the EFSM update the value of each register. The size
of such a list is fixed and it equals at maximum R*T, where R is the total
number of registers and T is the total number of transitions of the EFSM (in
the extreme case where each register is updated in each transition).

The use of the implication graph is mandatory at gate-level, since the gate-level
netlist does not include information to bind a conflict point directly to its cause.
Such a problem is solved at functional level by FATE. In fact, the adoption of the
EFSM model, joint to an accurate Learning phase, allows FATE to:

1. deterministically backjumps to the source of failure when a transition, whose
guard depends on a previously set register, cannot be traversed;

2. modify the EFSM configuration to satisfy the condition on the register;
3. successfully come back to the target state to traverse the transition. In this

way, FATE can efficiently traverse EFSMs without requiring stabilization.

6.2.2 The FATE ATPG Engine

The proposed ATPG works on the set of concurrent EFSMs representing the DUV
in a three-step fashion. First, an off-line Learning phase is performed on the EF-

6.2 Deterministic EFSM-based engine 137

SMs to collect information about location of registers within enabling and update
functions. Then, in the second phase, a pseudo-deterministic test pattern genera-
tion approach is adopted to uniformly traverse easy-to-traverse transitions. During
this phase, information on state and transition reachability is also learned. Finally,
in the third phase, the ATPG exploits information collected in the previous steps,
by means of a backjumping-based approach, to traverse transitions that have not
been traversed yet.

In the last two phases, the ATPG exploits the information provided by the
enabling functions of the EFSMs to uniformly move across the transitions of each
EFSM of the DUV. In this way, the capability of traversing HTT transitions is
increased. On the contrary, a random ATPG tends to traverse only transitions
whose enabling function presents a high probability of being satisfied by assigning
random values to primary inputs.

Phase 1: Learning

The set of EFSMs representing the DUV is generated according to the approach
described in Chapter 5, starting from a functional description of the DUV. During
the EFSM generation, the following information is collected for each register reg:

• the set of transitions T ereg whose enabling functions involve reg;
• the set of transitions Tureg whose update functions update reg;
• the set of registers, and the corresponding locations in enabling and update

functions, which behave as counters.

The previous information is useful to deterministically traverse register-dependent
HTT transitions by exploiting Backjumping, as described in Section 6.2.2.

Moreover, a function eval func is generated for each EFSM of the DUV. The
eval func allows the ATPG to evaluate at run-time the enabling functions of the
transitions to be traversed. Each function consists of a single case statement with
one alternative for each transition of the corresponding EFSM. When the function
is invoked by the ATPG, the alternative related to the transition to be traversed
executes as follows:

1. At each simulation cycle, the simulation state is frozen and the values of DUV
internal registers are retrieved. Then, the evaluation of the enabling function
of the transition to be traversed starts.

2. Some conditions of the enabling function can be evaluated without invoking a
constraint solver, i.e., those which involve only internal registers and constants.
If such conditions are not satisfied, the eval func returns false. Thus, the
transition cannot be traversed, and the ATPG must either choose a different
transition, if it is running in Random-Walk mode (Section 6.2.2), or remove the
cause of unsatisfiability, if it is running in backjumping mode (Section 6.2.2).
When conditions on registers are satisfied, a constraint solver is called on
conditions which involve primary inputs.

3. If the constraint solver provides a solution for conditions on primary inputs,
then the values returned by the solver are collected to compose the test vector.
If the constraint solver fails, false is returned like in step 2.

138 6 Methodology: Automatic Test Pattern Generation

Phase 2: Random Walk

During the random walk phase, the ATPG randomly walks across the transitions of
the EFSMs representing the DUV. Thus, ETT transitions are very likely traversed.

Starting from a reset condition, the ATPG randomly selects a transition from
each EFSM according to the scheduling policy described in [227]. Then, it tries to
satisfy the enabling function of each selected transition by exploiting the constraint
solver invoked by the eval func previously described. When it succeeds, the values
for primary inputs provided by the constraint solver are used to generate a test
vector. Finally, a simulation cycle is performed, by using the generated test vector,
to update the internal registers of the DUV and to move to the destination state.
Then, another transition is selected, and the cycle repeats. More formally, given
the set Tsi of transitions out-going from a state si, at step i, the ATPG works as
follows:

6.2 Deterministic EFSM-based engine 139

/∗ sequence number and sequence l e n g t h counters ∗/
i n t e g e r seq num := 0 ; i n t e g e r s e q l e n := 0 ;

/∗ l oop : e x i t on achievement o f maximum number o f sequences or
t r a n s i t i o n coverage e q u a l s 100% ∗/

while seq num <= MAX SEQ NUM && t r a n s i t i o n c o v <= 100 do

/∗ r e s e t the DUV ∗/
r e s e t s t e p () ;
s e q l e n := 1 ;

/∗ l oop : e x i t on achievement o f maximum number o f
t e s t v e c t o r s f o r the current sequence ∗/

while s e q l e n <= MAX SEQ LEN do

/∗ c r e a t e an empty t e s t v e c t o r ∗/
TestVector tv ;

/∗ Step 1 , 2 , 3 : update the t e s t v e c t o r dur ing the
Random Walk phase ∗/

update tv (tv) ;

/∗ Step 4 : app ly t e s t v e c t o r to the DUV∗/
dr ive PI (tv) ;
c l o c k s t e p () ;

/∗ add t e s t v e c t o r to the curren t t e s t sequence ∗/
s e q l e n ++;

end while ;

/∗ add t e s t sequence to the t e s t s e t ∗/
seq num++;

end while ;

f unc t i on update tv (Testvector tv) {

/∗ Step 1 : order the EFSMs accord ing to the s c h e d u l i n g p o l i c y ∗/
l i s t <EFSM> e f s m l i s t = Scheduler (s c h e d u l i n g p o l i c y) ;

/∗ Step 2 : f o r each efsm in the s c h e d u l e ∗/
f o r e a c h efsm in e f s m l i s t do

/∗ i f t h e r e i s a t r a n s i t i o n outgo ing the current s t a t e ∗/
while efsm . h a s t r a n s i t i o n () do

/∗ Step 2 . a : choose randomly a t r a n s i t i o n ∗/
Trans i t i on t r a n s i t i o n := efsm . p i c k u p t r a n s i t i o n () ;

/∗ e x t r a c t the t r a n s i t i o n e n a b l i n g f u n c t i o n ∗/
e f = t r a n s i t i o n . e n a b l i n g f u n c i o n ;

140 6 Methodology: Automatic Test Pattern Generation

/∗ Step 2 . b : e v a l u a t e the e n a b l i n g f u n c t i o n
by us ing the CLP s o l v e r and a c c o r d i n g l y f i x the PIs ∗/

i f C o n s t r a i n t s o l v e r . e v a l f u n c (e f) then

/∗ Step 2 . c : a s s i g n v a l u e s prov ided by
the c o n s t r a i n t s o l v e r ∗/

f i x v a l u e (tv , C o n s t r a i n t s o l v e r . g e t v a l u e ()) ;

/∗ Step 3 : genera te random v a l u e s f o r the
PIs not i n v o l v e d in the e n a b l i n g f u n c t i o n ∗/

f i x randomly va lue (tv , e f) ;

/∗ e x i t from the w h i l e ∗/
break ;

end i f ;

end while ;

end f o r e a c h ;
end func t i on ;

Fig. 6.6. Pseudo-code of the random walk phase.

1. Order the EFSMs according to the scheduling policy reported in [227].
2. For each EFSM:

a) Randomly choose a transition tsi ∈ Tsi .
b) Call the eval func described in Section 6.2.2 to check if the enabling func-

tion e of tsi
is satisfiable, i.e., if it can be traversed by assigning opportune

values to inputs involved in e. For example, let x be an input of the EFSM,
the enabling function x=0 can be activated by assigning 0 to x. On the con-
trary, if x is an internal register, the satisfiability of the enabling function
depends on the previous assignment to x, i.e., on the current configuration
of the EFSM. Note that, for DUV composed of more than one EFSM, the
transitions selected at step (a) may require to assign conflicting values to
the same primary inputs to be concurrently traversed. In this case, ac-
cording to the scheduling policy, the EFSM with the highest priority wins,
while the others must consider such primary inputs as internal registers
whose value cannot be changed.

c) Assign to primary inputs involved in e the values provided by the constraint
solver, if e is satisfiable. Otherwise, remove tsi

from Tsi
and come back to

step 2.
3. Generate random values for primary inputs not involved in the enabling func-

tions of the selected transitions. To accomplish this task, a random engine is
invoked.

6.2 Deterministic EFSM-based engine 141

4. Invoke the simulation engine to simulate the test vector so obtained, move
across the selected transitions, and come back to step 2 to generate the next
test vector.

Each time a test vector is generated, the traversed transition is labeled with
the pair <test sequence number, test vector number>. A list of pairs of parametric
length is saved for each transition. In this way, the backjumping mode can exploits
such lists to quickly recover the prefix of a test sequence which allows the ATPG
to move from the reset state to an already visited target state.

The pseudo-code of the random walk algorithm is reported in Figure 6.6.

Phase 3: Backjumping

The ATPG automatically changes to the backjumping mode when the computation
time assigned to the random walk expires, or no coverage improvement is provided
for long time. Thus, the ATPG works as follows:

1. Collect the not yet traversed transitions in an ordered list. Not traversed tran-
sitions, out-going from a state already visited during the random walk phase,
are inserted at the beginning of the list. Such transitions should be more easily
traversable with respect to transitions out-going from states never reached2.

2. Pick up a transition t from the beginning of the list. Does its enabling function
involve only conditions on primary inputs?
• If yes, retrieve the pair <test sequence number, test vector number> cor-

responding to the source state St of t. Then, load and simulate such a test
sequence s up to the vector tv indicated in the pair. In this way, the DUV
moves from the reset state to St. Finally, invoke the constraint solver to
generate primary inputs values to traverse t, simulate the new test vector
so obtained, and go to step 8.

• If no, the enabling function of t involves conditions on registers. It could be
the case that the enabling functions is satisfiable by the register configura-
tion generated by simulating s3. Thus, in this case, generate values for pri-
mary inputs involved in the enabling functions by means of the constraint
solver, simulate the so obtained test vector, and go to step 8. Otherwise go
to step 3.

3. For sake of clarity, let us suppose that the enabling function of t is expressed
in the conjunctive normal form (CNF), and that its unsatisfiability depends
on clauses involving a single register reg4. Then, extract an already visited
transition tu from the set of transitions Tureg whose update function updates
reg. If all transitions in Tureg have never been visited, then, froze the situation
of t, move to step 2 and solve the reachability problem of transitions in Tureg,
finally come back to the problem related to t.

2 Note that, if the list is not empty, there is always at least a transition out-going from
an already visited state.

3 This may happen if tv is the last vector of s.
4 If the unsatisfiability of t depends on more than one register, the backjumping proce-

dure is repeated for each of them.

142 6 Methodology: Automatic Test Pattern Generation

4. Retrieve the pair <test sequence number, test vector number> corresponding
to the source state Stu of tu, and accordingly load the test sequence to move
from the reset state to Stu . Thus, the ATPG Backjumps from St to Stu .

5. Use the Dijkstra’s shortest path search algorithm [228] to provide a path π from
Stu to St starting with tu, without worrying about the satisfiability of enabling
functions involved in the path (the satisfiability of enabling functions of π is
addressed in step 7). The weight required by the Dijkstra’s algorithm for each
transition, to guide the search heuristic in a greedy-fashion, is computed by
considering the number of registers involved in the enabling function. Higher
is such a number, lower is the weight assigned to the corresponding transition.
This is motivated by the consideration that the hardness in satisfying an en-
abling function increases proportionally to the number of involved registers.
Thus, a path whose transitions involve few conditions on registers is easier to
be traversed.

6. Satisfy the enabling function of tu according to the constraints derived from
the enabling function of t as follows. Let us suppose that etu is the enabling
function of tu and et|tureg is the part of the enabling function of t which involves
the clauses depending on reg, where each occurrence of reg has been substituted
with the right-side expression of the assignment that updates reg in the update
function of tu (see, for example, Figure 6.7). Invoking the constraint solver to
satisfy the constraint etu∧et|tureg allows us to obtain a test vector which satisfies
etu and sets the value of reg in such a way that when simulation reaches
transition t, following π, its enabling function will be correctly activated. The
last observation may be false if there is a transition t′u 6= tu 6= t in π, such that
t′u updates reg after tu did. In this case, the ATPG moves the problem from
tu to t′u requiring a solution for et′u ∧ et|

t′u
reg.

7. Satisfy the enabling function of transitions included in π by iteratively apply-
ing the constraint solver to generate the corresponding test vectors. The test
sequence obtained by joining s, to move from the reset state to Stu , and the
test vectors generated to traverse π allow the ATPG to traverse t.

8. Remove t from the list of untraversed transitions and come back to step 1
until either the list of untraversed transitions is empty, or computation time
expires.

6.2 Deterministic EFSM-based engine 143

Fig. 6.7. The backjumping strategy.

/∗ Step 1 : r e t r i e v e the l i s t o f u n f i r e d t r a n s i t i o n ∗/

l i s t <Trans i t ion > u n f i r e d t r a n s i t i o n l i s t ;

f o r e a c h efsm in e f s m l i s t do

/∗ order the l i s t such t h a t in f r o n t o f i t t h e r e
are t r a n s i t i o n s e x i t i n g from s t a t e s a l r e a d y
v i s i t e d during Random Walk phase ∗/

u n f i r e d t r a n s i t i o n l i s t . append (efsm . g e t u n f i r e d t r a n s i t i o n s ()) ;

end f o r e a c h

f o r e a c h u n f i r e d t r a n s i t i o n in u n f i r e d t r a n s i t i o n l i s t do
/∗ Step 2 : p i c k up a t r a n s i t i o n and v e r i f y i f i t s

e n a b l i n g f u n c t i o n i s s a t i s f i a b l e ∗/

/∗ r e t r i e v e subsequence from p r e v i o u s l y genera ted t e s t s e t ∗/
pair<Tseq index , Tvec index> sub sequence ;
sub sequence := t e s t s e t . g e t s e q u n t i l (u n f i r e d t r a n s i t i o n) ;

/∗ s i m u l a t e the subsequence ∗/
r e s e t s t e p () ;
s imulate (sub sequence) ;

/∗ e x t r a c t the t r a n s i t i o n s e n a b l i n g f u n c t i o n ∗/
e f := u n f i r e d t r a n s i t i o n . enab l i ng func ;

/∗ e v a l u a t e the e n a b l i n g f u n c t i o n by us ing the CLP s o l v e r
and a c c o r d i n g l y f i x the PIs ∗/

i f C o n s t r a i n t s o l v e r . e v a l f u n c (e f) then
f i x v a l u e (tv , C o n s t r a i n t s o l v e r . g e t v a l u e ()) ;
s e q l e n ++;

else
/∗ i f t he e n a b l i n g f u n c t i o n i s not s a t i s f i a b l e

s w i t c h to the backjumping s t r a t e g y ∗/
backjump (u n f i r e d t r a n s i t i o n) ;

end i f ;

end f o r ea ch ;

func t i on backjump (Trans i t i on u n f i r e d t r a n s i t i o n)
/∗ Step 3 : e x t r a c t a t r a n s i t i o n which updates the

r e g i s t e r i n v o l v e d in the curren t u n f i r e d t r a n s i t i o n ∗/
R e g i s t e r e f r e g := u n f i r e d t r a n s i t i o n . enab l i ng func . get REGs () ;
Trans i t i on u p d a t e t r a n s i t i o n ;
u p d a t e t r a n s i t i o n := g e t t r a n s i t i o n u p d a t i n g r e g (reg) ;

6.2 Deterministic EFSM-based engine 145

/∗ Step 4 : r e t r i e v e the subsequence from the r e s e t s t a t e up to
the source o f the t r a n s i t i o n which updates the r e g i s t e r ∗/

pair<Tseq index , Tvec index> sub sequence ;
sub sequence := t e s t s e t . g e t s e q u n t i l (u p d a t e t r a n s i t i o n) ;

/∗ Backjump from u n f i r e d t r a n s i t i o n to updat ing t r a n s i t i o n ∗/
r e s e t s t e p () ; s imulate (sub sequence) ;

/∗ Phase 5 : use D i j k s t r a s a l gor i thm to genera te a path
from the updat ing t r a n s i t i o n to the u n f i r e d t r a n s i t i o n ∗/

l i s t <Trans i t ion > path := d i j k s t r a s p (u p d a t e t r a n s i t i o n . t a r g e t () ,
u n f i r e d t r a n s i t i o n . source ()) ;

/∗ Phase 6 : compose e n a b l i n g f u n c t i o n o f the u n f i r e d t r a n s i t i o n
∗ with the update f u n c t i o n o f the updat ing t r a n s i t i o n ∗/

EnablingFunction e f u n f i r e d := u n f i r e d t r a n s i t i o n . enab l i ng func ;
Enabl ingFunction e f update := u p d a t e t r a n s i t i o n . enab l i ng func ;
UpdateFunction uf update := u p d a t e t r a n s i t i o n . update func ;
Constra int c o n s t r a i n t := compose (e f u n f i r e d , u f update) ;
C o n s t r a i n t s o l v e r . e v a l f u n c (c o n s t r a i n t && ef update) ;
f i x v a l u e (tv , C o n s t r a i n t s o l v e r . g e t v a l u e ()) ;
s e q l e n ++;

/∗ Phase 7 : i t e r a t i v e l y app ly the c o n s t r a i n t s o l v e r to genera te
the t e s t v e c t o r s f o r the t r a n s i t i o n in the D i j k s t r a s path ∗/

f o r e a c h t r a n s i t i o n in path do
/∗ ∗/

end f o r e a c h ;

end func t i on ;

Fig. 6.8. Pseudo-code of the backjumping strategy.

The pseudo-code of the backjumping strategy is reported in Figure 6.8. The
backjumping-based approach allows the ATPG to traverse transitions not tra-
versed during the random walk, without requiring a complete stabilization of the
EFSM. However, the algorithm may fails when the register involved in the enabling
function of the transition to be traversed behaves as a counter variable. For this
reasons, the basic backjumping mode has been extended as reported in the next
paragraph.

Addressing Counters.

Let consider the case of a DUV with a register reg implementing a counter, as
reported in Figure 6.9. To traverse the target transition t, the ATPG backjumps to
the transition tu whose update function updates reg. Then, the path π = tu, πt is
provided by the Dijkstra’s algorithm. However, directly traversing π, after reaching
Stu from the reset state, would be useless to traverse t. In fact, the enabling

146 6 Methodology: Automatic Test Pattern Generation

function of t cannot be satisfied until the path π′ = tu, πc has been traversed at
least five times (if reg is initially fixed to 0).

The problem arising with counters can be avoided by stabilizing the EFSM.
However, the stabilization of a transition involving a counter represents the best
way to incur on the state explosion problem as reported in [9].

Thus, this study proposes to extend the backjumping mode of the ATPG as
follows. During the learning phase, all counter registers are statically identified,
as well as the transitions whose update function contains them. This is quite
easy, since, at functional level, a counter is detected each time an update function
contains an assignment where reg appears in both the left and the right sides. Thus,
at run-time, if transition tu has been labeled as “counter inside”, the Dijkstra’s
algorithm is invoked two times: one to search for a path from Stu+1 to St, and the
other to provide a path from Stu to Stu including tu. Then, the constraint solver
is exploited to compute how many times π′ must be traversed before moving on
π. Finally, steps 6 and 7 of the backjumping-based approach previously described
are applied to generate test vectors that allow to traverse π and π′.

This approach overcomes the strategy proposed in [9] to avoid stabilization
of counter-dependent transitions. In fact, in [9], the authors restrict the prob-
lem to the case where the update function tu includes only counters of the form
reg := reg + c, where c is a constant. Moreover, in [9] the incrementing loop of
the counter must be composed of a single transition going from Stu to Stu . On
the opposite, this approach, exploiting a constraint solver, allows us to solve more
complex situations, i.e., think to a counter whose increment depends on several
subsequent assignments distributed in a set of adjacent transitions.

Fig. 6.9. Example of counter behavior.

6.2.3 Experimental Results

The efficiency of FATE has been evaluated by using the benchmarks described
in Table 6.3, where columns report the number of primary inputs (PIs), primary
outputs (POs), flip-flops (FFs) and gates (Gates). Column Trns. shows the number
of transitions of the EFSM modeling the DUV and GT (sec.) the time required
to automatically generate the S2EFSM. Then, Column BC reports the number of
bit coverage faults injected into the designs to check the fault coverage.

Such benchmarks have been selected because they present different character-
istics which allow us to analyze and confirm the effectiveness of FATE. b04, b10

6.2 Deterministic EFSM-based engine 147

DUV PIs POs FFs Gates Trns. GT (sec.) BC

ex1 66 32 130 10754 7 0.1 907
b00 66 64 99 1692 7 0.1 1182
b04 13 8 66 650 20 0.3 408
b10 13 6 17 264 35 0.3 216
b11m 9 6 31 715 20 0.2 725
b00z 66 64 99 11874 9 0.2 1439
fr 34 32 100 1475 10 0.2 1041
dlx 29 31 25 232 28 0.3 1167
diffeq 161 96 289 33510 4 0.9 3017
am2910 23 16 145 1598 543 3.1 5236
prawn 11 23 84 1996 191 1.5 3716

Table 6.3. Benchmarks properties.

GA-ATPG PD-ATPG FATE

DUV TC% SC% FC% T (s.) TC% SC% FC% T (s.) TC% SC% FC% T (s.)

ex1 71.4 85.7 78.2 3.3 85.7 92.9 80.3 2.9 100.0 100.0 96.0 3.1
b00 28.6 26.7 1.1 3.0 85.7 87.0 48.7 2.6 100.0 100.0 52.5 2.9
b04 80.0 90.2 94.9 23.2 85.0 95.0 99.0 8.7 100.0 100.0 99.0 9.1
b10 37.1 66.7 87.0 5.7 40.0 69.7 93.0 5.7 100.0 100.0 94.0 6.8
b11m 90.0 80.0 37.0 5.7 95.0 82.2 39.0 5.1 100.0 100.0 54.6 5.1
b00z 22.2 31.0 13.7 4.1 66.6 75.9 44.3 5.0 100.0 100.0 51.8 5.4
fr 20.0 13.3 0.86 10.3 80.0 86.7 70.4 4.9 100.0 100.0 84.0 5.2
dlx 50.0 50.7 35.1 3.3 60.7 63.9 46.7 3.2 100.0 100.0 59.5 3.4
diffeq 100.0 100.0 95.4 50.0 100.0 100.0 98.6 59.9 100.0 100.0 98.7 61.7
am2910 95.1 87.3 84.1 99.1 98.2 90.3 88.7 88.1 100.0 100.0 93.1 87.0
prawn 87.2 70.6 63.9 144.2 91.3 73.5 68.9 131.8 96.0 77.1 72.8 183.3

Table 6.4. Comparison between a GA-based ATPG, a pseudo-deterministic ATPG and
FATE.

have been selected from the well known ITC-99 benchmarks suite [198]. b11m is a
modified version of b11, included in the same suite, created by introducing a delay
on some paths to make it harder to be traversed. The original HDL descriptions
of b04, b10 and b11m contain a high number of nested conditions on signals and
registers of different size. ex1, b00, b00z and fr contain conditional statements
where one branch has probability 1 − 1

232 of being satisfied, while the other has
probability 1

232 . Thus, they are very hard to be tested by a random ATPG. In
particular, ex1, b00 and b00z are internal benchmarks, while fr is a real industrial
case, i.e., it is a module of a face recognition system. diffeq is a data-dominated
benchmark for solving differential equations. Finally, dlx is the controller of a
RISC processor, am2910 is a microprogram address sequencer, and prawn is an
8-bit microprocessor.

At functional level the effectiveness of FATE has been evaluated by comparing
it to a genetic algorithm-based high-level ATPG, as shown below. Stopping crite-
rion are defined in term of the number and length of the generated test sequences.

148 6 Methodology: Automatic Test Pattern Generation

Genetic Algorithm vs. EFSM-based ATPG

FATE has been compared with a genetic algorithm-based high-level ATPG [229],
which outperforms a pure random-based ATPG but it is not aware about the
EFSM structure, and with a pseudo-deterministic ATPG [227], which uses only
the random walk mode to traverse the DUV state space. Table 6.4 reports the tran-
sition coverage (TC%), the statement coverage (SC%), the fault coverage (FC%),
and the test generation time (T (sec.)), by using respectively the genetic algorithm-
based ATPG (GA-ATPG), the pseudo-deterministic ATPG (PD-ATPG), and the
proposed ATPG (FATE). It can be observed that FATE outperforms both the
GA-ATPG and the PD-ATPG. The very low transition coverage achieved by the
GA-ATPG for some benchmarks is due to the presence of a transition out-going
from the initial state, whose enabling function has an infinitesimal probability of
being traversed by randomly fixing the values of primary inputs. Such a problem is
partially solved by the PD-ATPG which is aware about the enabling functions of
the EFSM, and definitely solved by the learning/backjumping-based ATPG that
reaches 100% transition and statement coverage for all benchmarks. Then, also
the achieved fault coverage for all benchmarks is sensibly increased.

6.3 EFSM composition vs EFSM scheduling

The impact of EFSM composition on functional ATPG is analyzed by considering
the scheduling algorithm proposed in Section 6.1.3 and the ATPG proposed in
Section 6.2. In particular, the ATPG works in a three-step fashion to traverse the
set of concurrent EFSMs that represent the DUV. During test pattern generation,
the enabling functions of the transitions belonging to different EFSMs of the same
DUV, which have been selected to be fired in the same simulation cycle, may
involve the same set of primary inputs. In some cases, these transitions cannot be
traversed concurrently because the values to be assigned to the primary inputs are
conflicting. Then, one or more of them should be discarded and substituted with
different transitions to remove the conflict. To avoid this situation, the scheduling
algorithm is used to decide the priority of the EFSMs in fixing the value of the
primary inputs.

The scheduling implements an aging mechanism which allows each EFSM to
be eventually the highest-priority one. This avoids the ATPG to starve in a subset
of the DUV state space. Still, working on a set of EFSMs, the ATPG could take
very long time to traverse some hard-to-fire execution paths in the DUV state
space, because at each simulation cycle it has only a local view of the DUV. Let us
consider, for example, a DUV composed of two EFSMsM1,M2, sharing a primary
input I and a signal S both of type 32-bit integer (Figure 6.10). The signal binds
an output line of M1 to an input line of M2; M1 is sensitive to I, while M2 is
sensitive to both I and S. Suppose that the enabling and update functions of a
transition t1 inM1 are, respectively, I!=10 and S<=I (the operator <= represents a
concurrent assignment between signals), while the enabling functions of transition
t2 and t3 in M2 are, respectively, I==100 and S==0.

Firing concurrently t1 and t2, or t1 and t3 is very difficult, since the ATPG
only considers an EFSM at a time to fix the value of primary inputs. In fact,

6.3 EFSM composition vs EFSM scheduling 149

M1
M2t

1

t
2

t
3

M1 ; M2

I != 10 & I == 100 / S <= I; …;
t
12

t
13

I!=10/S<=I; I==100/…;

S==0/…;

(I != 10) & (I == 0) / S <= I; …

Fig. 6.10. Example.

if M1 has the highest priority, the constraint solver may choose among 232 − 1
possible values to satisfy I!=10, but only one of them (i.e., 100) allows to fire both
t1 and t2. Similarly, only fixing I at 0, among 232 − 1 possible values, allows to
fire concurrently t1 and t3. On the contrary, if M2 has the highest priority, firing
concurrently t2 and t1 is straightforward, since the solver immediately chooses
the value 100 for I, but firing concurrently t3 and t1 requires backjumping across
different EFSMs, which is too time consuming when many EFSMs and many
signals are involved. Thus, the probability of traversing the DUV execution path
that concurrently involves t1 and t3 is almost 0, while traversing the execution
path involving t1 and t2 becomes easy only when M2 gets the highest priority.

On the contrary, in case of EFSM composition, the ATPG has a global view of
the unique EFSM that represents the DUV state space. Considering the previous
example, according to the Serial Composition defined in Section 5.7.1, we can gen-
erate a single EFSM where t1 and t2 are merged in a transition t12 whose enabling
function becomes I!=10 & I==100, while t1 and t3 are merged in a transition t13
whose enabling function becomes I!=10 & I==0. In this case, the constraint solver
exploited by the ATPG immediately provides the correct value for I, when asked
to solve either t12 or t13.

Another limitation of relying on a EFSM scheduling policy to traverse the DUV
is due to the fact that the ATPG, during the Random Walk phase, could be forced
to discard many transitions at each simulation cycle. Let us consider the same
EFSMs of the previous example, and suppose that the priority of M2 is higher
than the priority of M1. When the ATPG selects t2 as the transition to be fired
during the random walk, it fixes I at 100. Then, it randomly selects a transition
ti to be fired in M1. However, it could happen that the enabling function of ti
imposes the condition I!=100. In this case, ti must be discarded and substituted
with a different transition. But again the new transition could require I!=100,
and so on. The problem is due to the fact that the run-time composition of the
enabling function of t2 with the enabling function of the transition selected inM1

could generate an unsatisfiable constraint. This causes the ATPG to waste a lot
of time calling the constraint solver till a satisfiable constraint is found.

150 6 Methodology: Automatic Test Pattern Generation

DUT PI PO P FF Gate Trn T (sec.) BC

vr01 65 16 8 73 615 69 7.1 2168
ecc1 25 32 9 79 703 17 1.7 1022
ecc2 55 32 7 88 832 24 2.4 1302

Table 6.5. Benchmarks characteristics.

On the contrary, when two EFSMs are composed, all transitions generated
by merging two enabling functions that originate an unsatisfiable constraint are
statically discarded before running the ATPG. Thus, the composed EFSM contains
only transitions whose enabling functions can be satisfied. This largely reduces the
number of constraint solver calls.

As shown the EFSM composition approach is successful in supplying hard-
to-fire execution paths to the ATPG and in pruning the DUV state space, but
it suffers from one apparently unavoidable problem: the state explosion problem.
This problem arise in systems composed of many concurrent processes. In general,
the size of a composition may grow as the product of the sizes of the components.
Because of this phenomenon, a design with a relatively small number of processes
may have too many states and transitions for the proposed methodology to be
directly useful. This risk is reduced by applying EFSM composition only to the
EFSMs which involve not yet detected faults. This solution avoids both the state
and transition growth and the drawbacks of the scheduling policy previously de-
scribed. In any case, this is part of future works, while in this thesis the focus is
showing that EFSM composition has a positive impact on functional test pattern
generation.

6.3.1 Experimental Results

Experiments have been performed on industrial benchmarks provided by STMi-
croelectronics whose characteristics are reported in Table 6.5. Columns report the
number of primary inputs (PI), primary outputs (PO), process statements (P)5,
flip-flops (FF) and gates (Gate), the time required to automatically generate the
EFSM model (T), and the number of bit coverage faults (BC). ecc1 and ecc2 are
modules which compute the error-correcting code of a sixteen-bit page of data,
while vr01 is a module of a face recognition system. All experiments have been
carried out on an eight-processor Intel Xeon 2.8 MHz equipped with 8 GB RAM
and 2.6.23 Linux kernel. CPU time has been computed with time command and
getrusage() C-function by summing up User and System time.

Table 6.6 details the experimental results for the vr01 benchmark. Columns
report the composition degree (Degree), the transition coverage (TC %), the fault
coverage (FC %), the test generation time in seconds (T), the number of generated
test vectors (TV), the number of constraint solver invocations (CSI) and the
time in seconds spent by the constraint solver (CST). In the table, each row
corresponds to a different EFSM composition degree. The first row, degree 0,
provides the results in the case no EFSM has been composed. In the second row,
5 This represents the number of EFSMs generated for each benchmarks, one for each

process.

6.3 EFSM composition vs EFSM scheduling 151

Degree TC% FC% T (sec.) TV CSI CST (sec.)

0 80 54.10 228.384 15000 584935 182.7
1 80 54.10 201.345 15000 542523 162.1
2 80 54.10 187.340 15000 489031 159.3
3 93 71.80 134.918 15000 439413 103.4
4 93 71.80 132.332 15000 419321 100.0
5 93 71.80 103.431 15000 371391 73.1
6 100 98.90 13.926 256 16129 10.4
7 100 98.90 13.590 263 16089 10.1

Table 6.6. Experimental results: vr01 .

only two EFSMs have been composed among a total number of eight, and so on.
The last row, degree 7, provides the results when all EFSMs have been composed
in a single one. From degree 0 to degree 6, the ATPG exploits the scheduler,
since more than one EFSM is used to model the system. When all EFSMs are
composed, the scheduler is not necessary, so it is disabled. Results show that
transition coverage, and consequently fault coverage, is in direct proportion to the
composition degree. In particular, the scheduling methodology does not allow to
achieve 100% transition coverage till 7 among 8 EFSMs (degree 6) are composed.
The ATPG stops when either transition coverage is 100% or 15000 test vector have
been generated. In addition, it is worth to note that under the same transition
coverage, the constraint solver invocations, and the corresponding execution time,
decrease by increasing the composition degree.

Table 6.7 and Table 6.8 report the experimental results for the ecc1 and ecc2
benchmarks. Only the cases corresponding to no composition and maximum com-
position degrees are reported. Concerning ecc1, the scheduling policy allows to
achieve 100% transition coverage already at degree 0. However, when all EFSMs
are composed (degree 8) we can note a great reduction (about 66%) of constraint
solver invocations and a sensible decrement in terms of time spent by the con-
straint solver (about 26%). Concerning ecc2, the improvement given by EFSM
composition is very relevant as in terms of transition and fault coverages as in
terms of constraint solver calls.

The solver is invoked a lower number of times, with more complex constraints.
The cut is in terms of time spent for solver activation, constraint submission and
result returns.

The maximum number of constraint solver invocations can be determined in
two general cases. In the case of N EFSM, whose enabling functions involve only
primary inputs, or more in general assuming uniformly distributed the probability
of being activated of each transition, the maximum number of constraint solver
invocation is

CSIub = T

N∏
i=1

|Mi| (6.1)

where Mi is the i-th EFSM, |Mi| is the number of transitions in Mi, and T =
maxNi=1|Mi|.

If the enabling function of the EFSMs involves also register (and L counters)
or more in general assuming not uniformly distributed the probability of being

152 6 Methodology: Automatic Test Pattern Generation

Degree TC% FC% T (sec TV CSI CST (sec.)

0 100 87.7 4.852 884 / 1 11680 3.785
1 100 87.7 4.870 942 / 1 11332 3.945
2 100 87.7 4.548 865 / 1 9525 3.593
3 100 87.7 4.300 907 / 1 9138 3.397
4 100 87.7 4.184 968 / 1 8731 3.305
5 100 87.7 3.996 966 / 1 7767 3.317
6 100 87.7 4.002 998 / 1 7348 3.322
7 100 87.7 3.930 976 / 1 6175 3.223
8 100 87.7 3.612 973 / 1 5162 2.998

Table 6.7. Experimental results: ecc1 benchmark.

Degree TC% FC% T (sec TV CSI CST (sec.)

0 71 32.1 312.32 15000 612042 291.30
1 71 32.1 301.42 15000 598125 278.32
2 84 65.2 287.10 15000 541001 256.15
3 84 65.2 210.10 15000 500143 198.35
4 84 65.2 198.12 15000 514313 187.10
5 100 97.4 18.24 312 49041 17.51
6 100 97.4 17.13 315 48984 16.98

Table 6.8. Experimental results: ecc2 .

activated of each transition, the maximum number of constraint solver invocation
is

CSIub = max{T, Γ}
N∏
i=1

|Mi| (6.2)

where Cj is the j-th counter of the description, |Cj | is the size of the counter
((end− begin)/step), and Γ = maxLj=1|Cj |.

6.4 Combined use of HLDD and EFSM

This section presents the HLDD&EFSM Automatic Test Pattern Generator. Tra-
ditionally, deterministic ATPGs exploit mathematical strategies tailored to allow
a complete exploration of the DUV state space, thus covering corner cases, but
they require a larger amount of timing and memory resources.

A possible way for limiting the resource consumption of deterministic ATPGs
consists of implementing combined approaches that mix different state space explo-
ration techniques and different computational models to address different DUVs
and different areas of the same DUV. In this context, this Section presents a
functional ATPG that relies on two paradigms: High-Level Decision Diagrams
(HLDDs) and previously analyzed Extended Finite State Machines (EFSMs), and
two ATPG engines which are based, respectively, on propagation and justification
techniques across HLDDs, and Learning and Backjumping across EFSMs. Exper-
imental results show that the joint use of such techniques allows improving the
quality of generated test patterns and reduce the generation time.

6.4 Combined use of HLDD and EFSM 153

DUV

EFSM-based
engine

HLDD-based
engine

TBfault list

Fig. 6.11. The ATPG framework.

This Section is organized as follow. Section 6.4.1 describes the proposed ATPG
framework. Section 6.4.2 summarizes the basis of the HLDD-based engine, while
Section 6.4.3 proposes the integration between the FATE ATPG and the HLDD-
based approach. Finally, in Section 6.4.4 reports experimental results.

6.4.1 The HLDD&EFSM ATPG Framework

Figure 6.11 shows the proposed ATPG framework that joins an HLDD-based en-
gine with an EFSM-based engine. The framework measures the quality of gener-
ated test sequences according to the bit coverage fault model (see Chapter 7). The
HLDD-based engine is first applied in order to detect untestable areas within the
DUV. The tests are set up for variables and operations, which map to registers and
functional units of the datapath of DUV, respectively. Subsequent to the setup,
HLLD-based engine exploits propagation and justification techniques to traverse
the HLDDs corresponding to the DUV. Test path activation constraints extracted
during this process are satisfied by a constraint solver. Each variable is tested sepa-
rately, one after another. Relying on HLDD models the engine is capable of finding
all the consistent high-level test paths for a variable in DUV given enough time. If
the test path constraints of all possible paths are non-satisfiable then the variable
is considered to be untestable. Finally, when the HLDD-based engine have identi-
fied untestable areas (i.e. the set of untestable variables) of DUV, it will forward
this list to the EFSM-based engine.

The EFSM-based engine exploits information provided by the HLDD explo-
ration to traverse, via Backjumping, DUV areas that have not been explored. In
particular, the EFSM-based engine addresses transitions of the EFSMs derived
from the DUV that cannot be traversed by using the sequences generated during
the HLDD exploration. The EFSM-based engine takes advantage of an external
constraint solver to traverse hard-to-traverse transitions and it skips untestable
areas marked by the HLDD-based engine. Therefore, the EFSM-based engine tries
to increase the fault coverage without wasting time on untestable areas. This gen-
erally reflect on higher fault coverage and lower execution time, as reported in the
experimental results.

154 6 Methodology: Automatic Test Pattern Generation

Circuit

Propagation constraints

PIs POs
Path activation constraints

Conditions in

algorithm

graphflow
false = g(x2,x3)

true = f(x1,x2)

D= h(x3,x4)

y 3 = k(x4,x5,D)

D

x1

x2

x3

x4

x5

y1

y2

y3

y4

Variable

Under

Verification

Transformation constraints

Fig. 6.12. HLDD-based path activation with constraint extraction.

6.4.2 The HLDD-based Engine

The test pattern generation algorithm implemented in the HLDD-based engine
runs in two phases. During the first phase, a test path is activated to test a
variable in the circuit and constraints required to activate it are extracted using
HLDD models. At the second stage, the constraints are solved relying on the
general purpose constraint solver ECLiPSe [215].

Test generation for the variable under validation (VUV) starts by setting the
fault effect to VUV. In addition, a transformation constraint is created of current
VUV. Subsequently, fault effect propagation follows. During the propagation stage
we move forward in time (clock-cycles), fault effect is propagated towards primary
outputs and path activation constraints are created whenever conditions in the
control flow graph are traversed. Propagation is completed when we have obtained
a state sequence transfering the fault effect to a primary output of the circuit.

After propagation, constraint justification begins. Justification moves back-
wards in time, starting from the clock-cycle, where propagation ended. During
this process existing constraints are updated and additional path activation con-
straints are created. The process will be terminated when all the variables in all the
constraints are primary inputs. Finally, constraints solving procedure is applied to
the extracted constraints.

The test generation constraints considered in current paper can be divided
into three categories: Path Activation Constraints, Transformation Constraints
and Propagation Constraints. Path Activation Constraints correspond to the logic
conditions in the control flow graph that have to be satisfied in order to per-
form propagation and value justification through the circuit. Transformation Con-
straints, in turn, reflect the value changes along the paths from the variable under
validation to the primary inputs of the whole circuit. Finally, Propagation Con-
straints are necessary in order to calculate value transformation from the variable
under validation until the primary output at the end of the currently activated
test path. All three types of constraints can be represented by common data struc-
tures and manipulated by common procedures for creation, update, modeling and
simulation.

6.4 Combined use of HLDD and EFSM 155

Figure 6.12 explains the role of these constraints in test generation for a system
variable on an example. In the Figure there are two path activation constraints:
true = f(x1, x2) and false = g(x2, x3). The first one is necessary to propagate the
value from the output of the module to the primary output y3 of the circuit. The
latter is required for justification of the variable under validation D. Both these
constraints are extracted from the conditional nodes traversed in the HLDD for
the FSM of the system during high-level path activation. In addition, the Figure
presents a transformation constraint D = h(x3, x4). This constraint represents the
function for computing the value of the variable under validation based on the
values of primary inputs of the circuit. Finally, there is a propagation constraint
y3 = k(x4, x5, D) reflecting dependence of primary output y3 on VUV and on
primary inputs x4 and x5.

As it was mentioned above, the HLDD-based engine is applied in order to
detect untestable areas within the DUV. The tests are set up for variables and
operations, which map to registers and functional units of the datapath of DUV,
respectively. Relying on HLDD models the engine is capable of finding all the
consistent high-level test paths represented as a set of constraints similar to the
ones in the example of Figure 6.12. If the test path constraints of all possible paths
are non-satisfiable then the variable is considered to be untestable. In this paper
a scheme is applied, where the HLDD-based engine marks untestable variables of
DUV and will forward this list to the EFSM-based engine in order to improve
efficiency and speed of overall test generation.

6.4.3 The EFSM-based Engine

The EFSM-based ATPG engine works in a three-step fashion traversing EFSMs
that model the DUV. First, an off-line Learning phase is performed on the EF-
SMs to collect information about location of registers within enabling and update
functions. Then, in the second phase, namely HLDD-Test Simulation, ETT tran-
sitions are traversed by using the test sequences generated by the HLDD-based
engine. During this phase, information on state and transition reachability is also
learned. Finally, in the third phase, the information collected in the previous steps
are exploited to fire transitions that have not yet been activated, by means of a
Backjumping-based approach.

In the Backjumping phase, the ATPG exploits the information provided by
the enabling functions of the EFSMs to uniformly move across the transitions of
each EFSM of the DUV. In this way, the capability of traversing HTT transitions
is increased. On the contrary, a random ATPG tends to traverse only transitions
whose enabling function presents a high probability of being satisfied by assigning
random values to primary inputs. The EFSM-based engine changes to the Back-
jumping mode when it exhausts the test set provided by the HLDD-based engine.
The Backjumping mode works as depicted in Section 6.2.2. Figure 6.13 summarize
the HLDD&EFSM Backjumping strategy.

The Backjumping-based approach allows to fire transitions not traversed during
the HLDD-Test Simulation phase, without requiring a complete stabilization of the
EFSM.

156 6 Methodology: Automatic Test Pattern Generation

reg > 100 and in2=0 …
Stu St

t

in1>0reg := in1*2;tu

Stu+1
Reset
state

π

The ATPG solves the
following constraint to
fire tu fixing the value of reg required by t:
(in1 > 0) AND
(in1*2 > 100)

The ATPG
backjumps to
Stu to fire t13

The ATPG uses the
HLDD sequence s
to move from the
reset state to Stu

HLDD-based TB

2

A single transition
A path composed of one or more transitions

(in1*2 > 100)

EFSM-based engine

Fig. 6.13. The HLDD&EFSM Backjumping strategy.

DUV PIs POs FFs Gates Trns. GT (sec.)

ex1 66 32 130 10754 7 0.070
b00 66 64 99 1692 7 0.064
b04 13 8 66 650 20 0.168
b10 13 6 17 264 35 0.184
b11m 9 6 31 715 20 0.118
b00z 66 64 99 11874 9 0.084
fr 34 32 100 1475 10 0.182
dlx 29 31 25 232 28 0.212

Table 6.9. Benchmarks properties.

PD-ATPG HLDD-EFSM-ATPG

DUV SC% FC% T (sec.) SC% FC% T (sec.)

ex1 92.9 80.3 2.9 100.0 96.0 2.6
b00 87.0 48.7 2.6 100.0 52.5 2.4
b04 95.0 99.0 8.7 100.0 99.0 7.3
b10 69.7 93.0 5.7 100.0 94.0 5.2
b11m 82.2 39.0 5.1 100.0 54.6 3.8
b00z 75.9 44.3 5.0 100.0 51.8 4.0
fr 86.7 70.4 4.9 100.0 84.0 4.1
dlx 63.9 46.7 3.2 100.0 59.5 2.7

Table 6.10. Comparison between a pseudo-deterministic ATPG and the HLDD&EFSM-
based approach.

6.5 Published contributions 157

6.4.4 Experimental Results

The efficiency of the proposed ATPG framework has been evaluated by using the
benchmarks described in Table 6.9, where columns report the number of primary
inputs (PIs), primary outputs (POs), flip-flops (FFs) and gates (Gates). Such
benchmarks have been selected because they present different characteristics which
allow us to analyze and confirm the effectiveness of the proposed approach. b04, b09
have been selected from the well known ITC-99 benchmarks suite [198]. b11m is a
modified version of b11, included in the same suite, created by introducing a delay
on some paths to make it harder to be traversed. The original HDL descriptions
of b04, b09 and b11m contain a high number of nested conditions on signals and
registers of different size. ex1, b00, b00z and fr contain conditional statements
where one branch has probability 1 − 1

232 of being satisfied, while the other has
probability 1

232 . Thus, they are very hard to be tested by a random ATPG. In
particular, ex1, b00 and b00z are internal benchmarks, while fr is a real industrial
case, i.e., it is a module of a face recognition system. Finally, dlx is the controller
of the well known RISC processor.

The effectiveness of the proposed ATPG framework has been evaluated by
comparing it to a pseudo-deterministic ATPG [227], which outperforms pure ran-
dom and genetic algorithm-based high-level ATPGs. It uses a constraint solver
to traverse the DUV state space but it does not exploit neither propagation and
justification strategies on HLDDs nor backjumping on EFSMs. The Table 6.10
reports such a comparison. In particular, the Table shows the time required to
automatically generate the HLDDs and the corresponding S2EFSMs (GT (sec.)),
the statement coverage (SC%), the fault coverage (FC%) and the test genera-
tion time (T (sec.)), by using respectively the pseudo-deterministic ATPG (PD-
APTG), and the combination of the HLDD and EFSM-based ATPGs proposed in
this work (HLDD-EFSM-ATPG).

It can be observed that the HLDD-EFSM-ATPG outperforms the PD-ATPG.
The low statement coverage achieved by the PD-ATPG for some benchmarks is
due to the presence of hard-to-traverse transition, whose enabling function has an
infinitesimal probability of being traversed without backtracking or justification-
based strategies. Such a problem is solved by the HLDD-EFSM-ATPG which ex-
ploits learning/backjumping technique. Indeed, the HLDD-EFSM-ATPG reaches
100% statement coverage for all benchmarks. Moreover, the fault coverage is sen-
sibly increased for all benchmarks by adopting the HLDD-EFSM-ATPG. Finally,
the test generation time is reduced thanks to the capability of the HLDD-based
engine to identify untestable areas, which are skipped during the subsequent test
generation phase performed by the EFSM-based engine.

6.5 Published contributions

The work presented in this Chapter has lead to the following publications [230,
231,232,202].

G. Di Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli
A Pseudo-Deterministic Functional ATPG based on EFSM Traversing

158 6 Methodology: Automatic Test Pattern Generation

In Proceeding of ”IEEE International Workshop on Microprocessor Test and Ver-
ification (MTV)”
Austin, TX, USA, November 3-4, 2005, pp. 70-75

Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini, and Graziano Pravadelli
FATE: a Functional ATPG to Traverse unstabilized EFSMs
In Proceeding of ”IEEE European Test Symposium (ETS’06)”
Southampton, UK, May 21-24, 2006, pp. 179-184

D. Bresolin, G. Di Guglielmo, F. Fummi, G. Pravadelli and T. Villa
The impact of EFSM Composition on Functional ATPG
In the Proceedings of “12th IEEE Symposium on Design and Diagnostics of Elec-
tronic Systems (DDECS’09)”
Liberec, Czech Republic, April 15-17, 2009

Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini, and Graziano Pravadelli
Improving high-level and gate-level testing with FATE: A functional automatic test
pattern generator traversing unstabilised extended FSM
Computers & Digital Techniques, IET
Volume 1, Issue 3, 2007, pp. 187-196

In this paper some functional ATPG framework has been presented. All pro-
posed ATPGs exploit a particular kind of EFSM which has been theoretically
showed to allow a more uniform traversing of the DUV state space. Determinism
is obtained by interfacing with a tool that adopts formal methods to solve the con-
ditions of the enabling functions. In particular, the ATPG has been interfaced with
both a CLP-based constraint solver and a SAT-solver. Experimental results show
that the first outperforms the second. Moreover, the effectiveness of the proposed
ATPG compared with a genetic-based ATPG is evident. It greatly benefits from
the fact that, by using the EFSM model, all conditional statements included in the
DUV are under its control. This approach has been extended with a deterministic
ATPG, namely FATE. The deterministic functional ATPG relies on Learning, CLP
and backjumping to efficiently explore the DUV state space. The adoption of the
EFSM joint to the Learning/Backjumping-based mechanism allows to accurately
address HTT transitions, whose enabling function depends on registers, without
requiring EFSM stabilization. Then, the impact of bounded EFSM composition on
a functional ATPG has been analyzed. In particular, the presented work analyzed
the performance of the ATPG working on a set of concurrent EFSM, by mean of
Scheduling algorithm, and on a single EFSM, representing the same DUV. Finally,
an high-level ATPG framework which exploits different computational models has
been shown. The integration of the two engines (HLDD&EFSM ATPG) allows
improving fault coverage, while testing time is reduced.

7

Methodology: Functional fault model and
testbench quality

Defects of hardware system design can happen anywhere on die, on one or multi-
ple layers, packages, boards etc. They can consume arbitrary areas and can have
various electrical properties. Quality of designing circuits or systems may be evalu-
ated by defect coverage estimation but, generally, it is not possible to measure this
parameter directly because defects have to be modeled at the higher abstracted
level as faults.

Defects are manifested in different manners: by changing a logical value on a
node of a device under test, increasing the steady state supply current, changing
timing specifications or discrepancy in other circuit parameters. The main goal of
a fault modeling is to reduce the infinite set of possible defect behaviors into a
finite set of faults. Fault models are used in test pattern generation to measure
the test quality and bridge the gap between the physical reality and mathematical
abstracts. Faults and fault models should mirror real defects in the circuit and
system design, therefore defects have to be modeled in the right way and faults
have to be classified. Moreover, modeling of faults is closely related to the modeling
of the circuit and the corresponding degree or level of abstraction.

To increase the speed of fault coverage evaluation, high-level (functional or
behavioral) fault models have been developed. High-level faults represent the effect
of physical defects on the operation of a system represented on the functional
or behavioral level. A high-level fault model can be considered good if the tests
generated using this model provide a high coverage of stuck-at-faults or physical
defects.

The main idea of the high-level fault modeling is to obtain from the high-
level description of the system an incorrect version by introducing a fault into the
system representation. This approach is called model perturbation. The model can
be perturbed in certain ways, e.g. by truth-table modification, micro-operation
modification etc. In some or other way, this idea is implemented in different high-
level fault models, developed to change the behavior of the system by implementing
and injecting some saboteurs in the HDL description.

Many high-level fault models [233, 64, 234, 235, 236, 237, 238, 150] and cover-
age metrics [239, 240] have been proposed in the past to guide the generation of
functional tests. In some papers [234,235,236,237], the authors highlight how the
adopted high-level fault model is strictly correlated to the gate-level stuck-at fault

160 7 Methodology: Functional fault model and testbench quality

model. The degree of correlation is measured as the percentage of gate-level stuck-
at faults that are detected by fault simulating the test sequences generated at
functional level.

Alternatively, in the design functional validation, high-level fault model based
techniques are used to address the quality evaluation of the model checking pro-
cess [241, 242]. In particular Assertion Based Verification methodologies requires
effective automatic test pattern generator for investigating the capability of prop-
erties to identify functional perturbations of the design implementation [243].

Similarly to hardware, many techniques for analysis, testing and validation
have been proposed to assist the software development process [244, 245, 246]. In
general, there are three techniques to design test cases: functional, structural and
error or perturbation based. These techniques are complementary to each other as
they exercise different characteristics of the software being tested [247]; they are
also the source of several testing criteria. One way to evaluate the quality of the
test set is to use coverage measures derived from the required elements of a given
testing criteria [248].

Mutation Analysis is a perturbation-based technique for software unit testing.
It is used both to evaluate and generate the quality of a test set. The basic principle
is to mutate, i.e. change, the program and then run the test suite on the mutant, i.e.
the changed programs. If the test suite kills, i.e. detects, all mutants it provides
confidence that the test suite covers the program sufficiently. However, if there
remain mutants live, i.e. undetected, this can be seen as an indicator that the test
suite might be inadequate to test the software. A mutation operator is the rule
used to mutate a program. Figure 7.6 shows an example of a mutation where an
arithmetic operator is exchanged for another. In this example the − operator has
been substituted for other arithmetic operators, likewise every behavioral construct
in the program can have many associated mutations.

The fundamental hypothesis of mutation analysis is that if the program con-
tains live mutants then the program also could contain real bugs (or coding mis-
takes) that cannot be found by the existing tests. If the testing is improved so as to
kill live mutants, then these same tests can expose the vast majority of previously
unknown bugs in the original program. There were several mutation analysis sys-
tems developed in the 1980s (e.g. Mothra for the FORTRAN language [246]), and
experiments confirmed this hypothesis to be valid. In fact, experiments demon-
strated this to be the most comprehensive measurement of quality of the tests
for a given program. In the 1990s, researchers provided theoretical justifications
explaining why mutation analysis is so effective [96,97,98].

Mutation analysis assumes the competent programmer hypothesis to be valid [249].
The design is considered to be largely correct, i.e. the majority of the code is
assumed to not contain bugs. This is important because the mutation analysis
assesses the ability of the verification environment to measure the quality of the
current design implementation. When mutations are introduced, they take the
design slightly out of specification.

Mutation testing uses mutation analysis to judge the adequacy of test data. The
test data are judged adequate only if each mutant is either functionally equivalent
to the original program or computes output different from the original program

7.1 The Bit Coverage Fault Model 161

function i n j e c t f a u l t b i t
(ob j e c t : b i t ; f a u l t c o d e : i n t e g e r ; s t a r t s 0 : i n t e g e r ;

end s0 : i n t e g e r ; s t a r t s 1 : i n t e g e r ; end s1 : i n t e g e r)
return b i t i s

variable r e s : b i t ; begin
i f (f a u l t c o d e = s t a r t s 0) then

r e s := ’ 0 ’ ;
e l s i f (f a u l t c o d e = s t a r t s 1) then

r e s := ’ 1 ’ ;
else

r e s := ob j e c t ;
end i f ;
return r e s ;

end ;

Fig. 7.1. Saboteur VHDL function for bit operands.

on the test data. Inadequacy of the test data implies that certain faults can be
introduced into the code and go undetected by the test data.

Therefore, validation of hardware design, through simulation and high-level
fault models, and Mutation Analysis, originally proposed for software verifica-
tion and testing, presents many analogies. This Chapter summarize the adopted
bit-coverage fault model (Section 7.1) and the Mutation Analysis, oriented to func-
tional validation (Section 7.2).

Bit-coverage and mutation operators, considered as functional fault model, can
be exploited into the ATPG-fault-simulation engine proposed in this Chapter 8.

7.1 The Bit Coverage Fault Model

The first high-level fault model adopted in the proposed methodology is the bit
coverage [250]. During fault simulation or test pattern generation, at most one bit
coverage fault can be activated according to the following failure specification:

Bit failures. Each occurrence of variables, constants, signals or ports is consid-
ered as a vector of bits. Each bit can be stuck-at zero or stuck-at one.

Condition failures. Each condition can be stuck-at true or stuck-at false, thus
removing some execution paths in the faulty representation.

Bit coverage is chosen since it is related to design errors [237, 238, 150] and it
unifies into a single metrics the well known metrics [251] concerning statements,
branches and conditions coverage. In addition, paths needed to activate and prop-
agate faults from inputs to outputs of the DUV are also covered.

• Statement coverage. Any statement manipulates at least one variable or
signal. The bit failures are injected into all variables and signals on the left
hand and right hand side of each assignment. Thus at least one test vector is
generated for all statements. To reduce the proposed fault model to statement

162 7 Methodology: Functional fault model and testbench quality

function i n j e c t f a u l t b i t v e c t o r
(ob j e c t : b i t v e c t o r ; f a u l t c o d e : i n t e g e r ;

s t a r t s 0 : i n t e g e r ; end s0 : i n t e g e r ;
s t a r t s 1 : i n t e g e r ; end s1 : i n t e g e r)
return b i t v e c t o r i s

variable l e f t : i n t e g e r ; variable r i g h t : i n t e g e r ;
variable index : i n t e g e r ; variable i ndex s0 : i n t e g e r ;
variable i ndex s1 : i n t e g e r ; variable l ength : i n t e g e r ;
variable res downto : b i t v e c t o r (end s0 − s t a r t s 0 downto 0) ;
variable r e s t o : b i t v e c t o r (0 to end s0 − s t a r t s 0) ; begin

l e f t := object ’ l e f t ;
r i g h t := object ’ r i g h t ;
l ength := end s0 − s t a r t s 0 ;
i f (l e f t > r i g h t) then −− v e c t o r range i s downto

res downto := ob j e c t ;
for index in l enght downto 0 loop

i ndex s0 := index + s t a r t s 0 ;
index s1 := index + s t a r t s 1 ;
res downto (index) := i n j e c t f a u l t b i t (

ob j e c t (index) , f a u l t c o de ,
index s0 , index s0 ,
index s1 , index s1) ;

end loop ;
return res downto ;

else −− v e c t o r range i s to
r e s t o := ob j e c t ;
for index in 0 to l enght loop

i ndex s0 := index + s t a r t s 0 ;
index s1 := index + s t a r t s 1 ;
r e s t o (index) := i n j e c t f a u l t b i t (

ob j e c t (index) , f a u l t c o de ,
index s0 , index s0 ,
index s1 , index s1) ;

end loop ;
return r e s t o ;

end i f ;
end ;

Fig. 7.2. Saboteur VHDL function for bit vector operands.

coverage it is thus sufficient to inject only one bit failure into one of the variables
(signals) composing a statement. In conclusion, the bit coverage metric induces
an ATPG to produce a larger number of test patterns with respect to statement
coverage and it guarantees to cover all statements.

• Branch coverage. The branch coverage metric implies the identification of
patterns which verify the execution of both the true and false (if present) paths
of each branch. Modeling of the condition failures implies the identification
of patterns which differentiate the true behavior of a branch from the false
behavior, and vice versa. This differentiation is performed by making stuck

7.1 The Bit Coverage Fault Model 163

function i n j e c t f a u l t i n t e g e r
(ob j e c t : i n t e g e r ; f a u l t c o d e : i n t e g e r ; s t a r t s 0 : i n t e g e r ;

end s0 : i n t e g e r ; s t a r t s 1 : i n t e g e r ; end s1 : i n t e g e r)
return i n t e g e r i s

variable l ength : i n t e g e r ; variable r e s : i n t e g e r ; begin
l ength := end s0 − s t a r t s 0 + 1 ;
r e s := t o i n t (i n j e c t f a u l t b i t v e c t o r (

t o b i t v e c t o r (object , l ength) ,
f a u l t c o de , s t a r t s 0 , end s0 ,
s t a r t s 1 , end s1)) ;

return r e s ;
end ;

Fig. 7.3. Saboteur VHDL function for integer operands.

IF (da ta in > rmax) THEN
ack <= ’ 1 ’ ;

IF (i n j e c t f a u l t b o o l (
i n j e c t f a u l t i n t e g e r (data in , f a u l t , 1438 , 1445 , 1446 , 1453) >

i n j e c t f a u l t i n t e g e r (rmax , f a u l t , 1454 , 1461 , 1462 , 1469) ,
f au l t , 1470 , 1470 , 1471 , 1471)) THEN

ack <= i n j e c t f a u l t b i t (’ 1 ’ , f a u l t , 1472 , 1472 , 1473 ,1473) ;

Fig. 7.4. Fault-free and generated faulty VHDL code.

at true (false) the branch condition and by finding patterns executing the
false (true) branch, thus executing both paths. In conclusion, the proposed bit
coverage metric includes the branch-coverage metric.

• Condition coverage. The proposed fault model includes condition failures
which make stuck at true or stuck at false any condition disregarding the stuck
at values of its components.

• Path coverage. The verification of all paths of a SystemC method can be
a very complex task owing to the possible exponential grow of the number
of paths. The proposed fault model selects a finite subset of all paths to be
covered. The subset of covered paths is composed of all paths that are examined
to activate and propagate the injected faults from the inputs to the outputs of
the design module within a given time limit.

• Block coverage. In [252] statement coverage has been extended by partition-
ing the code in blocks and by activating these blocks a fixed number of times.
This block coverage criterion is included in the proposed fault model in the
case the number of bit faults included in a block is larger than the number of
times the block is activated. In fact, a test pattern is generated for each bit
fault, thus the block including the fault is activated when the fault is detected.

Finally, bit coverage shows a high correlation between stuck-at faults at differ-
ent levels of abstraction [237].

164 7 Methodology: Functional fault model and testbench quality

7.1.1 Bit-coverage Fault Injection

Bit coverage faults (faults in the following) are automatically injected into the
DUV by using UniVR Fault Injection Tool. The UniVR Fault Injection Tool tool
presented in [253] has been further enhanced and extended by exploiting the HDL
Intermediate Format and the corresponding HIF Suite described in Chapter 4.

Fault injection is performed by inserting saboteurs into the HIF representation
of the DUV. Generally, a saboteur is a special component added to the original
model [76]. The mission of this component is to alter the value, or timing charac-
teristics, of one or more signals when a fault is injected. The component remains
inactive during the normal operation of the system. In this case, saboteurs are
functions which can supply the correct or faulty value of the corresponding object
depending on the value of a control signal. Every occurrence of signals, variables
and constants and every condition of the functional level description is replaced
by an opportune bit coverage saboteur.

We define a saboteur for every language type, i.e., bit, integer, standard logic,
boolean, etc. Faults are enumerated and a integer-type port, named fault is added
to the DUV. The fault port drives all control signals. Figure 7.1, Figure 7.7 and
Figure 7.3 show respectively the saboteur function for VHDL bit, bit vector
and integer operands. Saboteurs for other data type are defined in a similar
way referring to the bit case. Changing the definition of the saboteur for bit,
the behavior of saboteurs for the other data types changes accordingly. The first
parameter (object) of the saboteur is the target of the fault, fault code is the
value of the fault port and finally start s0-1 and end s0-1 show the range for
fault code to activate the stuck-at 0-1 on the target object.

The fault injection process generates a unique faulty description of the design
that includes all bit coverage faults. Figure 7.4 shows an example of fault-free
and faulty VHDL descriptions by using bit coverage saboteurs. It illustrates how
the faults are recursively inserted in complex statements as an if-then-else
statement. For example, to activate the fault stuck-at 0 on the third bit of the
integer signal rmax, the signal fault must be set to 1456, since the range for
faults stuck-at 0 on rmax is from 1454 to 1461. On the other hand, to activate the
fault stuck-at true on the if-then-else condition the signal fault must be set
to 1473.

After the fault injection phase, the fault list is depurated from redundant faults
by using the methodology reported in [254].

7.2 The Mutation-based Fault Model

Assuming D, the design under validation, each alternate program, M , known as
a mutant of D, is formed by modifying a single statement of D according to
some predefined rules. Figure 7.5 gives an example of a twelve-mutant operators
inherited from unit testing. Each of the mutant statements is executed at a time.
The original design plus the mutant programs are collectively known as the design
neighborhood, N, of D. Mutation analysis is a method of evaluating the adequacy of
a set of test vectors for a system description. Informally, test vectors are considered

7.2 The Mutation-based Fault Model 165

Type Description

AOR Arithmetic Operator Replacement
ABS Absolute Value Insertion
CR Constant Replacement

CVR Constant for Variable Replacement
LOR Logical Operator Replacement
ROR Relational Operator Replacement
ODR Operation for Delay Replacement
OSR Operation for Skip Replacement
VCR Variable for Constant Replacement
VR Variable Replacement
UOI Unary Operator Insertion
BOR Bit Operator Replacement

Fig. 7.5. Software mutation operators set.

mutation-adequate for a design if they can distinguish the design from designs
that differ from it by small syntactic changes. Test vectors are then measured
by determining how many of the mutant designs produce incorrect output when
executed. Each live mutant is executed with the test vectors and when a mutant
produces incorrect output on a test vector, that mutant is said to be killed by that
test vector and is not executed against subsequent test vectors. This shows that
the current test vectors set is able to detect the faults represented by the dead
mutants.

Two designs are functionally equivalent if they always produce the same output
on every input. Some mutants are functionally equivalent to the original design
and cannot be killed. Despite recent work in automating detection of equivalent
mutants, this is usually done manually and is one of the greatest expenses of
current mutation systems. A mutation score of a test set is the percentage of
nonequivalent mutants that are killed by the test set. More formally, if a design
has M mutants, E of which are equivalent, and a test set T kills K mutants, the
mutation score is defined to be:

MS(D,T) =
K

(M − E)
.

A test set is mutation-adequate if its score is 100 percent (all nonequivalent mutants
were killed). In practice, vectors sets that score above 95 percent on a mutation
system tend to be difficult to create, but are effective at detecting faults.

Whereas in ordinary mutation analysis, which is often called Strong Mutation
Analysis, a mutant M is considered killed by a test vector t only if the output
M(t) is different than D(t), in Weak Mutation Analysis, a mutant is considered
to be killed by t if the design state of M after some execution of the mutated
statement is different than the program state of D at that same point.

It stands to reason that Weak Mutation adequacy is easier to check and prob-
ably less costly to use than Strong Mutation adequacy, since it is not necessary to
execute a mutant completely, but only to the first point at which its internal state
differs from that of the original program. In fact, because the states of a mutant

166 7 Methodology: Functional fault model and testbench quality

Original version

x := z − 5;

Mutant

x := z + 5;
x := z ∗ 5;
x := z / 5;
x := z MOD 5;
x := z .LEFTOP. 5;
x := z .RIGHTOP. 5;

Fig. 7.6. Mutations (b) of an arithmetic expression (a).

and the original program can only diverge at the mutated statement, a more ef-
ficient approach is to execute the original program alone, saving each mutant of
that statement in that state only. This speeds up program execution and saves
memory resources.

7.2.1 Mutation Analysis using Program Schemata

The essence of this method lies in the creation of a specially parameterized pro-
gram called the metamutant. Derived from D, the metamutant is compiled and
runs at compiled-speeds. While running, the metamutant can be instantiated to
function as any of the alternate programs found in N. Thus the metamutant is a
type of program schema. A program schema is a template. As defined by Baruch
and Katz [255], a schema syntactically resembles a program, but contains free
identifiers, called abstract entities, in place of some program variables, datatypes
identifiers, constants and program statements. A schema can be instantiated by
providing appropriate substitutions for abstract entities. To explain how a meta-
mutant is able to represent the functionality of a collection of mutants, a closer
look at mutation analysis is necessary. Recall that for a program D, each mutant
of D is formed as a result of a single modification to some statement of D. Each
mutant in N differs from the original description in only one mutated statement.
How these statements are altered is dictated by the modification rules used.

Consider the arithmetic operator replacement rule (AOR) which states that
each occurrence of an arithmetic operator is replaced by each of the other pos-
sible arithmetic operators. Each operator is also replaced by special operators
LEFTOP, RIGHTOP and SKIP. Where LEFTOP returns the left operand (the
right is ignored) and RIGHTOP returns the right operand.

Applying this rule to the assignment statement of Figure 7.6(a) yields the six
mutations in (b). These mutations could be generically represented as
x := z ArithOp 5; where ArithOp is an abstract entity. The generic representa-
tion above can be recast as a syntactically valid statement x := AOrr(z, 5, 78);
where the AOrr function performs one arithmetic operation. A (simplified) imple-
mentation of the AOrr function is given in Figure 7.7. The third argument, 78, is
simply a control value identifying where in the program the function is invoked.
At run-time, a special global parameter selects which of the arithmetic operations
to perform. A statement that has been changed to reflect such a generic form is
said to have been metamutaded. A metamutation is a syntactically valid change

7.2 The Mutation-based Fault Model 167

function AOrr
(l e f t o p : i n t e g e r ; r i g h t o p : i n t e g e r ; mut index : i n t e g e r)
return i n t e g e r i s

begin
case mut index i s

when aoADD => return l e f t o p + r i g h t o p ;
when aoSUB => return l e f t o p − r i g h t o p ;
when aoMULT => return l e f t o p ∗ r i g h t o p ;
when aoDIV => return l e f t o p / r i g h t o p ;
when aoMOD => return l e f t o p MOD r i g h t o p ;
when aoLEFT => return l e f t o p ;
when aoRIGHT => return r i g h t o p ;
others =>

assert (f a l s e)
report ”AOrr case out o f range ”
severity warning ;

return 0 ;
end case ;

end ;

Fig. 7.7. Simplified version of Arithmetic Operation function.

that embodies other changes and virtually all mutations can be represented by
metamutations.

While generating the metamutant ofD, a list of mutant descriptors is produced.
This list details the alternative operations to be used at each change point in
the program. Using this list, the metamutant can be dynamically instantiated to
function as any of the mutants of D. A driver procedure invokes the metamutant
and directs which mutants are to be instantiated. The driver takes care of such
administrative matters as managing the test cases, handling exceptions, comparing
mutant output to the original program output, and recording results. A common
driver procedure is used for all metamutants.

The metamutant is not unduly greater in size than the original. Consequently
compilation time is not a significant factor in measuring performance.

7.2.2 Mutation operators for HDL descriptions

Mutants generation is realized with a set of mutation operators. These operators
are specific to HDL and allow to cover all paths, conditions, limit values and
perturbation areas relevant to a given design. A big challenge is to avoid equivalent
mutants, which increase the test time, reduce the usefulness of the mutation score,
and complicate the designer’s task. Some Mothra operator systematically produce
equivalent mutants. For instance ABS replaces expressions and sub-expressions by
their absolute values. Absolute values are identical to original values for unsigned
vectors.

The HDL operators proposed in Figure 7.8 were designed to represent the most
common errors that a designer might take. These operators model many types of
design faults that can appear in a HDL description. For instance, a frequently

168 7 Methodology: Functional fault model and testbench quality

Type Description

CLR Constant Limit replacement. Test upper and lower boundaries of differ-
ent registers. The same process is made for variables. The perturbation
area is also simulated.

CNR Comparable Array Name Replacement. Each array is replaced by one
of the same type, but with a different name, present in the VHDL
description.

CSR Constant for Scalar Variable Replacement. Each variable and signal is
replaced by a constant of the same type.

GRP Generic Replacement. Simulate a misconnection. This operator is most
interesting for structural designs.

SUR Signed/Unsigned Replacement. Test signed and unsigned binary vec-
tors.

VSAR Variable and Signal Replacement. Test the bad variables and signals as-
signment resulting in synchronization errors and bad action sequences.

SAR Signal Assignment Replacement. Test assignment to incorrect register.
SVIR Signal and Variable Initialization Replacement. Generates incorrect ini-

tialization.
SSR State Sequence Replacement. Modify the state sequence in a state ma-

chine.
LCR Logical Constant Replacement. Each logical operator is successively

replaced by others.
COR Conditional Operator Replacement. Substitute all possible conditions.
LER Level Replacement. Modify the sensitivity (high or low)

Fig. 7.8. HDL mutation operators set.

used method for the validation of designs is to test limit values. In this case, a
perturbation area is simulated by increasing slightly the constants, variables or
signals responsible of the boundary conditions.

Another example is the incorrect writing of data integers. To detect such errors,
the operators assign the content of all arrays to all others array of the same type.

In general, the functionality is controlled by state machines. Some errors can
produce an infinite loop or change the original state sequence of the machine.
Mutations applied to state machines also test the branch coverage, modifying
each condition by others.

8

Methodology: Fault simulation

Verification via fault injection and fault simulation is a widely adopted technique
to evaluate the correctness of a design implementation. However, the complexity of
industrial designs and the huge number of faults that must be injected into them
require efficient fault simulators, in order to make verification via fault simulation
an affordable task. To optimize fault simulation performances, some parallelization
techniques have been proposed at gate level. On the contrary, they have not been
fully exploited at RTL, where functional fault models, instead of gate-level ones,
are considered. Thus, this Chapter analyzes the impact of such parallelization
techniques on functional faults. In particular, possible issues are presented together
with optimizations that can be implemented to speed up the simulation.

This Chapter, after an introduction of the problem (Section 8.1), presents the
problems arising by applying parallel fault simulation to functional faults (Sec-
tion 8.2). Section 8.3 explains some proposed optimizations to further increase
parallel simulation performance. Finally, Section 8.4 reports experimental results
and a comparisons between high-level simulation and bit-level parallel simulation.

8.1 Introduction

Fault simulation is used in test generation to determine the fault coverage of a
test set. Given a circuit, a set of faults in the circuit, and a set of tests (the input
stimuli), fault simulation is typically used to decide which faults can be detected
by at least one test. New test vectors are then generated trying to cover the unde-
tected faults, and fault simulation is performed again to determine the fitness of
the new vectors. The cycle of test generation and fault simulation is repeated until
a satisfactory test set is obtained [256]. In complex designs, the number of faults
is very large, thereby stressing the importance of implementing fast and efficient
fault simulators. Traditionally, serial fault simulation is the simplest method of
simulating faults. It consists of transforming the model of the fault-free circuit N
so that it models the circuit Nf created by fault f . Then Nf is simulated. The en-
tire process is repeated for each fault of interest. Thus faults are simulated one at a
time [257]. Even if this can be applied to industrial circuits, it is possible to explore
the potentialities of parallel simulation to further increase performances. This pos-

170 8 Methodology: Fault simulation

sibility has led to the development of special purpose computer architectures for
fault simulation [258, 259, 260] at gate level. These accelerators are designed to
take into account the concurrencies that exist in fault simulation. Indeed, besides
serial fault simulation, there are, at least, three further types of fault simulation:
parallel [261], concurrent [262] and deductive [263, 264]. These techniques differ
from serial method in two fundamental aspects:

• they determine the behavior of the design in presence of faults without explic-
itly changing the model of the design;

• they are capable of simultaneously simulating a set of faults.

In parallel fault simulation, the fault-free circuit and a certain number of faulty
circuits are simultaneously simulated. The subset of faulty circuits is opportunely
selected to avoid interactions among faults. Concurrent fault simulation is based
on the observation that, generally, during a simulation session, the majority of
signals/variables values in faulty circuits equal the values of corresponding signal-
s/variables in the fault-free circuit. Finally, the deductive fault simulation simulates
the fault-free circuit to determine all of the good values on the inputs and outputs.
Then, using these values, the list of all faults that cause changes in the output are
“deduced” from the input values and the gate function. These techniques may also
be implemented in conjunction with distributed and parallel processing [265].

When applying such techniques, fault simulation is generally performed on
gate-level circuits, and failures are approximated by using classical gate-level fault
models (e.g. stuck-at, bridge, etc.). In particular, several algorithms have been de-
veloped, in the past, to address efficient gate-level fault simulation under the stuck-
at fault model by using parallel [266], deductive [263], concurrent [267], parallel-
valued list [268], differential [269], and parallel-differential [270] approaches.

Indeed, fault parallelization can be obtained also at functional (RTL) level,
by running multiple instances of the design [271] on a parallel architecture-based
machine. However, at RTL it is not possible to directly exploit word-level vec-
torization, as done at gate level. Nevertheless, gate-level simulation is definitely
slower than RTL simulation to the additional information modeled at the gate
level. Such conflicting considerations give rise to two main questions:

1. Can the gate-level parallelization produce better performance results than se-
rial functional simulation?

2. If yes, are there some cases in which this advantage is higher than in other
cases?

This Chapter tries to answer the previous questions. In particular, it discusses
how to benefit from the use of gate-level parallel simulation techniques for sim-
ulating functional-level faults, along with the issues implied by porting parallel
simulation from gate level to functional level. In this context, the rest of the Sec-
tion refers to the concept of simulating functional faults by exploiting paralleliza-
tion techniques on a gate-level netlist with the expression parallel functional fault
simulation.

Figure 8.1 shows the implemented framework to compare serial RTL simulation
with parallel gate-level simulation on the same set of functional faults. The RTL
design under validation (DUV) is instrumented by injecting functional faults and

8.2 Open issues 171

RTL code

Functional

fault injection

Fault-injected

RTL code

HDL synthesis

Fault-injected

gate-level code

Functional ATPG

Testcases
gate-level code

Testcases

Gate-level simulation

report

Gate-level

parallel fault simulation

RTL

serial fault simulation

RTL

simulation report

Comparison

Fig. 8.1. Simulation framework.

a set of testcases are generated by exploiting the functional FATE ATPG proposed
in Section 6.2.2. Then, the instrumented DUV is synthesized to obtain a gate-level
netlist. Finally, the testcases are simulated on both the RTL faulty designs, by
exploiting a serial simulation engine, and the gate-level faulty netlist, by exploiting
a parallel simulation engine. The fault propagation results is definitely the same,
but the simulation time may sensibly vary as reported in the experimental results
section.

8.2 Open issues

The parallel functional fault simulation is a complex task with many tradeoffs
between design decisions. The main and most important ones are the followings:

• the adopted fault model, which shall be behavioral but synthesizable;
• the choice of which kind of functional fault parallelization shall be used;
• the parallel faults management engine and its integration with the parallel

netlist;

172 8 Methodology: Fault simulation

• the simulation kernel and the adopted simulation language;
• the possible infinite simulation loop due to flipping bits.

Each of these problems is addressed in the next sections.

8.2.1 The functional fault model

In the literature there is a great variety of different fault models, and each of them
has been developed to focus on particular design problems and design levels [56,
272]. When approaching the parallel simulation at functional level, not all the fault
models are suitable. In fact the parallel simulation is implemented at gate level, and
hence, the injected design must be synthesizable. This implies that the chosen fault
model shall not introduce non-synthesizable constructs. Moreover, it is required
that the injected designs have a new port (or variable), namely the fault port,
which is used to select which fault to enable, because, after parallelization, this
port shall be driven and managed by the parallel simulation engine (Figure 8.2).

For the experiments a couple of fault models have been chosen, the Mutant
Fault Model and the Bit Coverage Fault Model, because they meet this require-
ment.

The bit coverage fault model [273] has been developed for the RT level, with the
objective to correlate the RTL faults with the gate-level ones [274,254]. This fault
model is very similar to the traditional gate-level stuck-at fault model, because it
sticks a bit either to zero or to one as stuck-at does. Moreover, it can also stick
a condition to true or false. One of the main differences between these two fault
models is that bit coverage is at the functional level, and it is designed to inject
faults into variables, functions and operations, rather than gate-level nets. Hence,
it has to perform complex injection operations because it has to deal correctly
with all the RTL data types.

The mutant fault model is far more abstract than the bit coverage, and it is
more focused on functional validation [249]. In the past testing based on mutation
has been depicted as powerful but computationally expensive. This expense has
prevented mutation from becoming widely used in practical situations, but recent
engineering advances have provided techniques and algorithms for significantly
reducing the cost of mutation testing [275, 276]. There are a lot of different kinds
of possible code mutations: a statement can be deleted, a condition can be stucked
at true, false or it can be negated, an arithmetic operator can be substituted with
another one, and each boolean relation can be substituted with another one.

In the experiments, the usage of these two different fault models, which are
also related with different verification objectives, points out that the explained
techniques can be widely adopted, even in very different context.

8.2.2 Functional fault parallelization

Among all possible parallelization techniques, vectorization and concurrency have
been chosen. The deductive technique has not been considered, because it requires
to modify the simulation kernel. On the contrary, vectorization and concurrency
can be implemented with a hardware design language and then simulated by using
the designers preferred simulator.

8.2 Open issues 173

Vectorization can be applied only to bit-blasted netlists. Bit-blasting is the
term for breaking down each netlist element to its individual bit members. The
vectorization is implemented by mapping each single bit to a vector of bits. Then
each operation on bits is transformed into an operation on such vectors. It is done
in order to associate each bit of the vector to a netlist copy, enabling the faults on
all the copies but one, namely the “reference copy”, which performs the normal
computation. Inside the netlist it is required to transform each computation on
bits to a computation on bit-vectors, i.e., to transform a logic operator to the
corresponding bitwise one. This task is quite simple because all the usual languages
support bitwise operations natively.

module(M)

port (…)

begin

…

end

module(M)

port (…

fault_port [N]

…

)

begin

…

fault (fault_port)

…

end

fault_port

N
et

lis
t

R
T

L

vectorization

fault injection

synthesis

reference copies

N
et

lis
t

vectorization

Fig. 8.2. Steps required to vectorize functional faults.

Figure 8.2 shows the steps required to implement this parallelism. In the pro-
posed implementation, which is written in C, each vectorized bit have been mapped
on a machine word, in order to use directly the machine instructions, avoiding the
possible overhead of using more complex constructs. This mapping to a machine
word allows switching from a 32-bit machine machine to a 64-bit one, to further
increase performance, without any code changing.

The other kind of implemented parallelization that is the concurrency. It consist
in enabling more than one fault per netlist copy. The main problem is that if
two faults will impact on the same outputs or on the same registers, a priori
they cannot be classified because it is not possible to understand their interaction
and their effects in the simulation. To avoid this problem there are two possible
strategies. The first strategy is to enable different faults as long they will not
interact, i.e., their impacted registers and outputs will never interact. This check
can be performed offline, but it can require some long computation time. Moreover
in real-life netlists, each fault impacts on many registers, and hence this implies

174 8 Methodology: Fault simulation

that only few faults could be enabled at the same time. The other solution is to just
enable the faults without any offline check, but the netlist has to be instrumented
in order to check eventual conflicts at runtime, i.e., during the simulation itself.
This means that if a fault is going to conflict, it must be disabled before this will
happen, and all the impacted registers and outputs must be reset to the reference
netlist value. Moreover as soon as a fault is classified as propagated, it can also
be disabled, in order to minimize the conflicts. This second strategy has been
implemented.

In the rest of this Chapter, where not specified differently, the term “paral-
lelism” refers to these two joint parallelization approaches.

8.2.3 The parallel simulation engine

While the injected netlist must be synthesizable, this is not the case for the engine
which checks the faults propagation, and manages the parallel faults simulation.
It could be useful to synthesize also the management code in order to deploy it on
an hardware accelerator [277], but due to its complexity and to the high cost of
hardware accelerators, this idea could be addressed in some future work. For this
reason, in the developed parallel simulation engine there are two main conceptual
modules: the parallelized netlist, and a wrapper. The problem is that it is not easy
to integrate these parts, due to their different abstraction levels:

• The wrapper has to read the inputs to be passed to the netlist, but such inputs
are designed for the RT level. Hence, the wrapper has to split them into single
bits, and then to vectorize them, in order to be applicable to the bit-blasted
and vectorized ports of the netlist.

• The outputs of the netlist are bit-blasted and vectorized. Hence, the wrapper
has to compare each bit to check differences between the reference netlist and
the injected netlist copies. A naive approach could considerably increment the
simulation time: hence, it is required to implement an optimized algorithm
which uses bitwise operations and low-level bit manipulation functions.

• The registers must be taken into account for fault concurrency on the same
netlist copy. In fact, each low-level register has been substituted with a function
which implements the register itself but also checks for fault collisions. More-
over, when a collision happens, one of the colliding faults must be disabled,
restoring its mutated registers to the reference copy value.

• The fault port must be vectorized and split as each other netlist input. Moreover
a mechanism must be implemented to enable multiple faults on the same netlist
copy. A lot of fault injection mechanisms use an integer for the fault port type,
in order to identify which fault to inject. For the simulation purposes it is
better to use a fault port with a bit for each fault, and hence its vectorization
and management is as simple as every other input port.

8.2.4 The simulation kernel and the simulation language

Usual hardware description languages (HDLs), like VHDL, Verilog and SystemC,
are event driven. Their advantages are simplicity, and the existence of a lot of

8.2 Open issues 175

tools that have been developed to deal efficiently with them. But at gate level,
the number of events is substantially higher with respect to RTL, especially with
a bit-blasted netlist. This implies that performance is degraded because most of
the simulation time is used in managing and dispatching the events, instead of
simulating the design. To avoid this problem, it is necessary to switch to a simu-
lation schema that is not event-driven but cycle-based. In fact cycle-based simula-
tion is targeted to deal with few (or no) events, but it increases the computation
complexity. In other words, each event must be translated into an equivalent ex-
pression, and such expressions must be evaluated following a special order, which
must lead to the same computation results as the event driven model. This is not
only a choice related with the simulation engine performance, but also a choice
about which language to adopt: on one hand, HDLs are event-driven but they
are widely used by designers; on the other hand, a language like C guarantees
high computational performances, but it is not suitable for a large part of designs.
The proposed solution exploits a translator, which has as input a standard HDL
netlist, and it automatically generates a netlist written in C, which uses a cycle-
based-like technique. The generated C netlist has to follow the schema depicted
in Figure 8.3, in order to have the correct simulation results. The main point of
this hybrid schema is that delta cycles are emulated by cycling through the netlist,
but they are performed only when there is a new register value to be propagated.
This optimizes the iterations, grouping all the events together. In fact the logic
is computed following a top-down order, i.e., the output of a gate is computed
before computing other gates impacted by this output: this reordering removes
the need for the events, and hence all the values are directly propagated, instead
of requiring a delta-cycle, like happens, for instance, for signals in usual netlists.
Instead, the registers preserve the need of two phases, one of computation and
one of propagation of the new values: this is why the writing on their output nets
is performed at once. The outputs are checked only at the end of delta cycles, in
order to avoid to check values during eventual glitching.

8.2.5 The flipping bit problem

Suppose that a fault negates the value of a net which is driven by a register,
and that, this faulted value, impacts on such a register. Then it is possible that,
according with the proposed cycle-based schema, the value of the register is up-
dated, creating a delta-cycle, but then the fault negates the output bit, and hence
it changes again the value of the register, creating another delta-cycle, and so on.
This faulted bit, named “flipping bit”, creates an infinite loop. To avoid this prob-
lem, a mechanism have been implemented to detect such a fault and disable it.
The idea is to count the number of delta-cycles, and if it becomes greater than a
prefixed threshold, the simulation goes on, but a special tracking code is activated.
This code tracks the value of each register for another prefixed number of itera-
tions. At the end of this tracking time, it checks which registers had continuously
changed their values, and hence, it disables the fault which impacts on them.

176 8 Methodology: Fault simulation

compute the

registers values

assign the

ouputs

compute the

logic

assign the inputs

assign the

registers output

nets

check the

outputs for

propagation

register outputs

changed

no

yes

Fig. 8.3. The simulation algorithm.

8.3 Optimizations

Having resolved open issues as reported in the previous section, and implemented
the basic parallel simulation engine, it is possible to investigate some different
ideas to further optimize the performance:

• optimizing the inputs management;
• optimizing the mux computations;
• splitting the netlist in logic cones;
• optimizing the flops computations;
• dealing with the compilers;
• adopting a four-values logic;
• exploiting the function inlining.

All these optimizations have been implemented in the proposed parallel simulation
engine, and each of them is detailed in the following sections.

8.3.1 Optimized inputs management

The wrapper must split and vectorize all the input values of the netlist. This
operation is quite slow, thus a good idea consists of checking if an input is changed,
and in this case to recalculate only the associated input port values.

8.3 Optimizations 177

8.3.2 Mux computation optimization

Each mux can be seen as a sort of conditional construct. Then the mux can be
rewritten as an if construct, into which the guard will be the selector, the then
branch will normally compute the mux result, while the else branch will just
propagate the input to be propagated in the case of the selector holds zero. The
idea is that, if all the vectorized bits of the selector are at zero, then there is no
need of computation. Moreover. it is possible also to encompass inside the else
branch all the logic which impacts only on the zero-propagated mux input. In this
way, it is possible to avoid many computations.

8.3.3 Splitting the netlist logic cones

Recomputing all the logic expressions at each simulation iteration is very time
consuming. But usually only some expressions must be recomputed, because large
parts of the netlist do not change their values. Hence, it is possible to divide the
logic into different groups, which are classified with respect to the inputs and
outputs of the logic. The main groups are:

• Logic driven only by inputs: this logic must be updated only when an input
changes. During the delta-cycles this group will never be recomputed, because
the inputs will preserve their values.

• Register driven logic: this logic is driven only by registers. Hence, it must be
computed only during delta-cycles.

• Data logic: this logic impacts only the data input signals of flip-flops. Then it
must be computed only when there is a “rising edge” on the clock.

• Mixed logic: this is all the logic which is not inside any other set. This logic
must be always recomputed, and hence its computation cannot be optimized.

Each split part is written encompassed by an appropriate conditional construct,
so it shall be recomputed only when it will be really required.

8.3.4 Optimizing the flops computations

The flop values are updated only on a clock “rising edge”. But usually large groups
of flops are driven by the same clock signal, thus it is useless to perform a check
for each of them. The idea is to encompass all of them inside a unique conditional
construct, in order to minimize the checks. This implies that, if the flop has also
asynchronous inputs, as it can be a reset signal, the flop implementation must be
divided into both the conditional branches: the code to manage the synchronous
signals be put inside the then branch only, while the asynchronous signals will be
managed inside both the branches.

8.3.5 Dealing with the compiler

When dealing with low level circuit representations, like netlists, HDL compilers
have to deal with the following problems:

178 8 Methodology: Fault simulation

• manage files with thousands of instructions and declarations inside the same
scope;

• compile a large number of files in a short time.

Usually, for traditional HDLs this is not a problem, because they are languages
with simple semantics and constructs.

However the proposed parallel simulation engine has been prototyped in Sys-
temC, which is a C++ library, and which is usually compiled by software-oriented
compilers, such as GNU gcc. To avoid the arising compilation problems, these steps
have been performed:

1. Eliminate HDL code to avoid mixed C++/HDL language compiler and simu-
lator, as, for instance, Modelsim. This speeds up the compile time.

2. Break the netlist implementation into many short functions. In fact, it is a
software engineering error to implement C++ functions made by thousands of
lines, because it ends up with unmaintainable code. For this reason, gcc is not
able to compile such huge functions. Breaking the netlist in small functions
avoids this gcc limitation.

3. Declare all the netlist variables as globals. This avoids the scope problems
which could arise when splitting the netlist implementation into many func-
tions.

4. Implement the parallel simulation engine in C. Note that, C is a very simple
language in comparison with C++. In fact, C++ compilers have to deal with
complex classes, and complex resolution rules. Switching to C code sensibly
reduces the compiling time.

These optimizations reduced the compilation time by three orders of magnitude.

8.3.6 The four value logic

One of the most used HDL data types is the logic type, which is able to describe
complex bit behaviors. At gate level, all the components are usually described by
using such a type, and all gates and register behaviors are described taking into
account all the possible logic values. As explained before, the parallel simulation
engine is implemented by using the C language, to optimize computation per-
formances, but such a language does not natively support logic types. To obtain
the same behavior of a netlist described in an HDL, a logic with four values, i.e.,
zero, one, unknown and high impedance has been choosen. Each value has been
described by using a couple of bits, and then all the logic gates have been encoded
by using Karneaugh maps. This implementation is highly optimized, because it
uses only few bitwise operations and it is faster than other strategies, like, for
instance, the lookup tables used by SystemC.

8.3.7 Function inlining

A widely implemented software optimization is the inlining of functions. In C there
are at least two ways to implement this optimization:

• implement the function as a preprocessor macro;

8.4 Experimental results 179

• using the keyword inline.

Using a macro guarantees that the function body will be inlined into the final code,
but on the other hand, the final executable could suffer from “code bloating”, i.e.,
it could be unnecessarily huge, causing a performances loss. This usually happens
when the inlined function is very long. Instead using the appropriate keyword is
safer, because it is a sort of hint for the compiler: in fact it is up to the compiler
to decide whether to inline the function. The drawback is that the compiler may
not inline the function, whereas the programmer knows that it really leads to a
good optimization.

In the parallel engine there are a lot of small functions, each of them imple-
menting a different kind of logic gate. Such functions are implemented in few lines
of code, because they are highly compact and optimized using bitwise operators.
Hence such functions have been re-implemented as macro-function, in order to
avoid the overhead of their calls.

8.4 Experimental results

When a simulation is going to be performed, one of the factors which has ma-
jor impact on the performances is the abstraction level at which the design is
described. In fact, the simulation at RTL is much faster than the simulation at
gate level, because, with less abstraction, a lot of new details must be taken into
account during the simulation. In this case, interest is not on a pure simulation
at gate level, but the objective is to check the faults propagation. In other words,
even if the single run at gate level is slower than a single run at RTL, maybe the
overall faults classification time is lower, thanks to the parallel approach that is
not applicable at RT level.

To check if this is possible, some designs have been injected with both bit cov-
erage and mutant fault models. The designs are a 12-bit microprogram sequencer,
named am2910 [278], a CPU core, named hc11 [279], and few tests taken from
the ITC-99 benchmark suite [280]. For each design 60 input sequences have been
generated by using a genetic engine-based functional ATPG, each one composed of
100 test vectors. The faults have been classified both at RTL, using a serial simu-
lation engine (SSE), and at gate-level, using the parallel simulation engine (PSE).
Execution has been performed on an eight-processor Intel Xeon 2.8 MHz equipped
with 8 GB of RAM and 2.6.23 Linux kernel. CPU time has been computed with
the time command by summing up User and System time, and it is expressed in
seconds. Experimental results are reported in table 8.1.

Columns report the name of the DUV (Design), the considered functional fault
model (FM), the number of injected faults (Fault #), the simulation time achieved
by using the RTL serial simulator (SSE time), the simulation time achieved by
using the gate-level parallel simulator (PSE time), the achieved fault coverage
(FC %), and the speed up gained by using the PSE simulator instead of the SSE
simulator (Speed up %).

It is possible to note that for the majority of the designs, a good speedup has
been gained by using the parallel fault simulator. On the b04 design, using the
bit coverage fault model, the parallel simulation is very slow with respect to RTL.

180 8 Methodology: Fault simulation

Design FM Fault # SSE time PSE time FC % Speedup %

b10 bitcov 244 9.647 7.504 91.0 22.21
b04 bitcov 398 2.816 14.194 99.0 -403.87
b10 mutant 185 25.319 7.984 81.1 68.46
b04 mutant 66 10.337 6.728 74.2 34.94
hc11 mutant 2245 811.115 204.341 49.8 74.81
am2910 bitcov 3608 755.82 505.23 83.3 33.15
am2910 mutant 2763 2219.46 636.98 76.5 71.3

Table 8.1. Experimental results: comparison between serial and parallel simulation.

The reason for this performance low is that all the faults have been propagated
by the first testcase. This means that the parallelism has not been fully exploited,
because there were too few faults to be simulated in simulation runs after the first.

Hence, in order to optimize the overall performances, it could be a good idea to
use the parallelism at the beginning, and when the faults to be analyzed became
few, return to RTL and use the serial simulation. This idea is shown in Figure 8.4.

n
o

t y
et

 c
la

ss
if

ie
d

 fa
u

lt
s PSE SSE

simulation time

Fig. 8.4. Fault detection.

9

Application to Embedded Systems

This chapter is devoted to present how the proposed methodology can be efficiently
applied to improve validation of embedded systems. The functional validation has
assumed an essential role in the digital design, as the functional approach to the
test generation permits to gain optimal results, sometimes better than the results
provided by pattern generation techniques at lower levels [281,216,282,250,48,283].

A wide range of approaches for functional validation are based on automatic
test pattern generation. In particular, early functional validation approaches were
based on random-like-ATPG solutions. These algorithms produce effective se-
quences for easy-to-detects faults [203, 204]. Nevertheless, due to the increasing
complexity of digital designs and the presence of hard-to-detect faults, these tech-
niques require excessive execution times. Deterministic pattern generation algo-
rithms deal very effectively with large systems at the expense of high amount of
CPU time and memory.

Likewise, the environment description of the digital design is a key factor in
efficiently generating patterns for hard-to-detect faults. In this context, the co-
simulation is a design technique which provides the inter-communication between
two modeling and simulation environments. The co-simulation aim is the inte-
grated simulation of hardware and software systems [284]. In particular, the hard-
ware is described by hardware description languages and simulated by HDL sim-
ulator, while the software environment typically is an Instruction Set Simulator
(ISS) or an operating system emulator.

Traditionally, the ATPG approaches are applied to the design under valida-
tion: the digital system is stand-alone with respect to the environment. On the
contrary, the proposed approach applies the ATPG techniques to the design under
validation interacting with the software system, so the co-simulation is mandatory.
As depicted in Figure 9.1, in the case of a validation approach based on ATPG
and co-simulation, both the fault free and the faulty designs need to communicate
with an independent instance of the software-environment simulator (Simulator 1
and Simulator 2). The first instance of the software environment is co-simulated
with the correct design (CDUV), while he second instance is co-simulated with
the erroneous design (EDUV). Each of this executes an user defined application
targeted the hardware device. The Device Driver allows higher-level applications

182 9 Application to Embedded Systems

User
application

Device
Drivers

User
application

Device
Drivers

ISS – Instance 1 ISS – Instance 2

HDL Simulator

ATPG

EDUT CDUT

HDL HDL

Fig. 9.1. Validation framework based on co-simulation and ATPG approach.

to interact with the hardware device. The hardware devices are modeled by HDL
descriptions.

In the following sections the APTG framework, proposed in this thesis, is ap-
plied to a case study by extending the methodology to support the co-simulation
approach. In particular, Section 9.1 summarize the case study platform. Section 9.2
introduces the multi-instance co-simulation basis. The proposed solution guaran-
tees the integration of the ATPG and the ISS. Section 9.3 extends the proposed
ATPG to permit the communication with independent instances of the software
environment. The ATPG exploits the structural information of the device to ex-
plore deterministically the DUV state space, as described in Chapter 5 and in
Chapter 6. As well, the adopted fault model and fault simulation techniques have
been described in Chapter 7 and in Chapter 8.

9.1 Vertigo reference design platform

The design and validation methodology described in this thesis has been devel-
oped in the context of the Vertigo European Project [285]. The main goal of the
Vertigo project was the development of a systematic methodology to combine a
simulation-based approach (dynamic verification) together with formal methods
(static verification) integrated into an IP-cores and platform based design flow, for
the purpose of producing a software kit applied to the platform validation.

The system specification and the RTL code of the Project Reference Design
Platform have been provided by STMicroelectronics [286]. The platform is com-

9.2 Mixing modeled hardware devices and applications 183

posed of three main devices and memory elements interconnected by AHB e IPS
buses, as reported in Figure 9.2. In particular, the ECC is an error correction
code module for read-write operations on memory elements. The CRC is a cyclic-
redundancy checking module which guarantees the correctness of the transferred
streaming data. Finally the DSPI is a synchronous peripheral interface module
which interconnects the system to serial ports.

QEMU
(CPU+OS)User

application

Device
Drivers

Socket-based communication

AHB Bus

IPS Bus ECC

CRC DSPI

MEM

MEM

Fig. 9.2. The Vertigo platform.

One of projects aims was to identify a more comprehensive metric to assess the
effectiveness of simulation patterns based on error simulation. This metric allows to
measure the observability of the applied patterns, contrasted to the controllability
achieved by code coverage. The fault injection techniques proposed in this thesis
was one necessary feature. Moreover, STMicroelectronics have established 90% as
the minimum target to sign off the Verification Environment. In addition, having
the possibility to automatically generate new test patterns at RTL has been vital
to speed up the achievement of the 90% Fault Coverage target.

The characteristics of each device are reported in Table 9.1: the PIs column
reports the Primary Inputs, the POs reports the Primary Outputs and FFs reports
the Flip Flops.

9.2 Mixing modeled hardware devices and applications

In the design of ever complex embedded systems, a major task is handling several
platforms consisting of different processors and operating systems as well as a

184 9 Application to Embedded Systems

Device PIs POs Gates FFs

ECC 25 32 993 79
CRC 56 34 9213 442
DSPI 25 21 1335 462

Table 9.1. Characteristics of main devices in the Vertigo platform.

large amount of HW devices such as memory, DSPs, I/O interfaces and ASICs.
Instruction set simulators (ISS’s) can be used to reproduce the behavior of target
processors; their use offers several advantages, such as the flexibility of specifying
different targets and the wide availability of standard development tools [287].
Even if some ISS has the capability to model simple HW components, such as
memory and timers, in general, the simulation of HW components relies on the
use of HW description languages and their simulation environments. Furthermore,
in the last decade, HW/SW co-simulation has come in the mainstream [141, 142,
143,144,145,146,147,148].

Figure 9.3 depicts different co-simulation strategies which can be used to sim-
ulate HW components:

• host-mapping approach: devices are mapped on the actual ones on the host
machine;

• model-level co-simulation approach: devices are simulated by using HDL models
and every driver controls the corresponding device through a dedicated channel
connected to the corresponding HDL model;

• tool-level co-simulation approach: devices are simulated by using HDL models
and synchronization between HW and SW simulations is done at tool level by
exchanging messages through a single control channel.

In literature the model-level co-simulation approach has been addressed by [288].
In that work an ISS, e.g., QEmu [289], executes the application and the operat-
ing system, some HW components are mapped on the corresponding host devices
while others are modeled in SystemC [290]. The communication between drivers
and the corresponding devices modeled in SystemC is implemented through dedi-
cated inter-process channels (i.e., sockets) leading to two main drawbacks:

1. HW/SW communication in case of SystemC-simulated devices is different from
the final actual implementation since the designer has to put explicit socket
calls in the driver implementation and in the SystemC device description;

2. in case of multiple SystemC devices the number of sockets between QEmu and
SystemC may decrease simulation speed.

The proposed work aims at solving these issues by supporting HW/SW com-
munication directly in the ISS and in the HDL simulator. The advantages are:

1. the way in which device drivers access HW devices is the same both in case of
host-mapped components and HDL models;

2. a single inter-process channel is established between the ISS and the HDL
simulator thus increasing the efficiency and scalability of the co-simulation
framework which can handle several CPUs connected to many HDL models.

9.2 Mixing modeled hardware devices and applications 185

Fig. 9.3. Co-simulation strategies.

In the follow, Section 9.2.1 introduces the basic co-simulation architecture and
the requirements of the work. Section 9.2.2 describes the main contribution of the
paper.

9.2.1 Co-simulation architecture

Co-simulation is a methodology for the accurate verification of mixed HW/SW
systems. It allows to meet the requirements for fast HW prototyping and for early
SW development, because high level HW models can be effectively inserted into
the development flow. The framework described in this work uses SystemC to
model the HW and QEmu to emulate the SW even if the methodology can be
applied to other similar tools. The reasons of the choice are:

1. QEmu already supports the use of host-mapped devices;
2. SystemC supports the HW description at many abstraction levels;
3. QEmu source code is available and easy to understand and modify.

QEmu: SW simulation

QEmu [289] achieves good SW simulation speed by using dynamic code translation
to map SW instructions of the guest CPU to the host CPU so that it behaves as
an ISS. QEmu has two operating modes:

• Full system simulation. In this mode, QEmu simulates a full system (for exam-
ple a PC), including one or several processors and various peripherals; QEmu
exploits the components present on the host platform to map the guest com-
ponents.

186 9 Application to Embedded Systems

• User mode simulation. In this mode, QEmu can launch processes compiled for
one CPU on another CPU. It can be used to simplify cross-compilation and
cross-debugging. Several processors are supported, e.g., x86, PowerPC, ARM,
32-bit MIPS, Sparc32/64 and ColdFire (i.e., m68k).

SystemC: HW simulation

HW devices are modeled in SystemC and module interfaces (i.e., input/output
ports) follow the rules presented in [291]. The communication between the SystemC
simulator and the ISS is implemented by means of three new type of ports added
to the SystemC library, i.e., iss in, iss out, iss inout (in the following they
are also grouped under the term iss port) and iss interrupt. The iss in port
is derived from the standard sc in port and it is used to read data coming from
ISS, the iss out port extends the SystemC sc out port and it allows to send data
from SystemC to the ISS. These special ports can be used to model HW registers,
thus allowing the ISS to read and write them. In the following text, we assume
that HW registers are memory-mapped.

The connection between the two sides of the co-simulation is performed by
binding specific addresses of the ISS memory space to SystemC iss port contained
in the HW models. When the CPU accesses some registers through their addresses,
the SystemC kernel determines the corresponding special ports of the HW model.
The link between SystemC ports and memory addresses in the ISS is implemented
by using a binding table stored in the SystemC kernel.

Device driver structure

In actual embedded platforms, SW applications access HW devices through device
drivers. The same mechanism is needed in a co-simulation model. According to
good-practice rules [292] device drivers should follow a two-levels structure:

• The II level device driver contains the functions used by user applications to
access the device (e.g., read, write, config, etc.). Each function implements a
specific communication protocol according to the type of device.

• The I level device driver implements atomic operations used to access the
device registers (such as read and write). These operations are invoked by the
second level functions: the sequence of invocations forms the communication
protocol. This level is equal for all devices except for some architectural choices
(e.g., the addresses on which the device is mapped, interrupt handling, etc.).

Figure 9.4 shows an example of HW device and the corresponding driver code
organized in two levels.

Co-simulation requirements

Since co-simulation is used for verification, the device drivers used in the co-
simulation platform must be the same as on the actual operating system. This
fact creates some requirements that must be met by the co-simulation architec-
ture.

9.2 Mixing modeled hardware devices and applications 187

Fig. 9.4. HW device (a) and the corresponding driver code (b).

• The CPU - device communication mechanisms must be managed. The way
used to access I/O depends on the computer architecture, bus and devices
being used. However, the main mechanism used to communicate with devices
is through memory-mapped I/O (MMIO) according to which specific areas of
CPU’s addressable space are reserved for I/O. Each I/O device responds to
the CPU’s access of device-assigned address space. In the co-simulation archi-
tecture, access to MMIO regions must be managed by an external wrapper.
Whenever the device driver accesses MMIO regions with read or write oper-
ations, the request must be forwarded to the simulated device and then the
result must be brought back to the driver.

188 9 Application to Embedded Systems

• Device drivers handle interrupts: thus, co-simulation must guarantee that in-
terrupts risen by the SystemC device are forwarded to the ISS side of co-
simulation.

• A device driver might contain mutual exclusion resources to avoid race condi-
tions. Thus, co-simulation must manage concurrent access to the modules that
handle communication with the SystemC side.

9.2.2 Co-simulation methodology

Application
Software

Operating
System

Device drivers

QEmu SystemC

SystemC
module

Device drivers

I/O memory

QEmu-SystemC
wrapper

iss_port

SystemC-QEmu
wrapper

IPC
Channel

Fig. 9.5. QEmu-SystemC co-simulation schema.

Figure 9.5 shows how the SW application running on the QEmu simulator
exchanges data with the SystemC simulator. An user application simply accesses
the hardware devices by using their drivers, that read and write device registers
through the I/O memory where the device is registered. Operations over this I/O
memory pass through QEmu kernel virtualizing the hardware device implemented
in SystemC. Communication with HW device, modeled in SystemC, is managed
by SystemC kernel, suitably modified to support the co-simulation methodology.
In order to implement this HW/SW simulator framework two steps are required:

• Modifications to the QEmu both to communicate with the SystemC simulator
and to manage the HW device.

9.2 Mixing modeled hardware devices and applications 189

• Modifications to the SystemC simulator kernel. For the SystemC simulator,
it is necessary to add the capability of reading and interpreting the messages
coming from the QEmu side, as well as of sending interrupts to QEmu whenever
the HW models generate them. These operations must be transparent to the
designer who just writes the model by using the standard SystemC statements.

Communication between QEmu and SystemC simulator kernel is established by
an inter-process channel (i.e., a socket) implementing the HW/SW interface in
order to transmit synchronization messages.

SystemC-QEmu wrapper

The most meaningful parts of the SystemC - QEmu wrapper code are reported in
Figure 9.6.

The SystemC - QEmu wrapper handles the SystemC side of co-simulation: it
activates execution on the SystemC modules by setting the iss port to the values
received from QEmu through the socket.

Messages from QEmu are directed to four ISS ports on the SystemC side. The
methods of the SystemC-QEmu wrapper are sensitive to these ports: whenever a
data is received on a port, the corresponding method is called in order to update
the wrapper registers and eventually trigger other events on the SystemC platform.

The wrapper consists of four main functions:

• Read iss data register: this method is sensitive to the ISS data port. When-
ever a new data is written to this port, the new value is saved in the data
register;

• Read iss address register: this method is sensitive to the ISS address port.
Whenever a new data is written to this port, the new value is saved in the
address register;

• Read iss command register: this method is sensitive to the ISS command
port. If a new data is written to this port, it means that the QEmu side has
finished transmitting data and thus the SystemC side has already received the
updated values for both data and address. The read iss command register
function updates the command register and it writes 0 to the ISS control port,
to keep the QEmu side waiting. Then, the read iss command register wakes
up the entry method by notifying a run io process event: the entry function
will process the QEmu request and write the result to the ISS data port.

• Entry: this function waits for a run io process event. Whenever such an event
is notified, the function writes the values of data, address and command on an
ahb transport port to the SystemC platform. The SystemC AHB bus will
receive the data and forward it to the corresponding device. Then, the entry
function gets the execution result from the ahb transport port and it writes
it to the ISS data port. Finally, the ISS control port is updated to 1, to notify
QEmu that execution on SystemC side is finished. This value will raise an
interrupt on the QEmu side.

190 9 Application to Embedded Systems

Fig. 9.6. SystemC - QEmu wrapper code.

QEmu-SystemC wrapper

The most meaningful parts of the Qemu - SystemC wrapper code are reported
in Figure 9.7. The Qemu - SystemC wrapper has an important role in the co-
simulation architecture: it manages accesses to MMIO regions assigned to devices,
forwarding the requests to the SystemC side and bringing the result back to the
device driver.

The wrapper consists of six main functions:

• Update: this function is used to raise an interrupt or to knock an interrupt
down;

• Init: this function is used to initialize memory and I/O resources, to manage
the addresses of the ISS ports on the SystemC side and to start the socket
communication;

• Restore: it restores the socket communication;
• Read: this function is invoked whenever a read operation is performed by the

driver on the I/O memory assigned to the device. This function prepares the
data to be sent via socket to the SystemC side and it invokes the cosim function.
Then, it returns the result received via socket;

9.2 Mixing modeled hardware devices and applications 191

• Write: this function is invoked whenever a write operation is performed by
the driver on the I/O memory assigned to the device. This function prepares
the data to be sent via socket to the SystemC side and it invokes the cosim
function;

• Cosim: this function sends data to the SystemC side via socket. It is invoked
by both the read and the write functions.

Fig. 9.7. QEmu - SystemC wrapper code.

Execution flow

The execution flow to access a simulated device is the following:

1. A user application wants to access the device. Thus, it invokes the ioctl
function of the corresponding second level device driver.

2. The second level device driver implements the communication protocol with a
certain number of invocations of the functions implemented by the first level
device driver (sclink write and sclink read).

3. The first level device driver writes data to the MMIO locations assigned to the
device. Then, it invokes the wait event interruptible function to suspend
its execution until an interrupt is received.

192 9 Application to Embedded Systems

Appl.

II lev
driver.

I lev
driver.

SystemC
- QEmu
wrapper

ioctl (hw_dev, HW_WRITE, &arg);

hw_dev_ioctl (hw_dev, file, HW_WRITE, &arg);

do_write (&arg){

for (1 to 128){

sclink_write (HW_ADDR, &send_data);

sclink_write (HW_ADDR, &send_data);
sclink_write (HW_ADDR, &send_data);

} }

sclink_write (addr, value){

*address = addr;

*data = value;

*command = 1;

wait_event_interruptible

sclink_interrupt_handler (irq, devid, regs){

irq_flag = 1;

wake_up_interruptible (irq_wq);

}

entry (){

wait (run_io_process);

request = set_request

(address_register, data_register);

SystemC
platform

HW_DEVICE

BUS

QEmu –
SystemC
wrapper

I/O
memory

DATA

ADDRESS

COMMAND

CONTROL

(irq_wq, irq_flag!=0);

}

send_data

HW_ADDR

1

0

write (status, addr, val){

switch (addr){

case DATA:

cosim (1, DATA, val);

case ADDR:

cosim (1, ADDR, val);

case COMMAND:

cosim (1, COMM, val);

while (cosim

(0, CONTROL, 0)!=1);

set_irq (pic, irq, irq_flag!=0);

} }

response = ahb_transport (request);

if (command_register == READ){

data_register = response.get_data();

iss_data_port-> write (data_reister, size); }

iss_control_register->write(1, size);

}

read_iss_data_register ();

read_iss_address_register ();

read_iss_control_register ();

read_iss_command_register () {

iss_command_register-> read (tmp, size);

command_register = tmp;

iss_control_register->write(0, size);

run_io_process.notify();

}

Fig. 9.8. Execution flow.

4. QEmu catches the accesses to the MMIO locations and invokes the functions
of the QEmu-SystemC wrapper to forward the requests to the SystemC side of
co-simulation. When the SystemC-QEmu wrapper receives a command value,
the simulated device is activated.

5. As soon as the requested operation has been executed, the SystemC-QEmu
wrapper sends an acknowledge message to the QEmu side of co-simulation.
This message in interpreted as an interrupt: thus, the QEmu-SystemC wrapper
functions notifies that execution is finished by rising an interrupt.

6. The interrupt is forwarded to the target CPU.
7. The target CPU invokes the interrupt handler function (sclink interrupt handler),

that knocks the interrupt down and executes the wake up interruptible
function.

8. The first level device driver resumes execution and it returns the result to the
second level device driver.

9. As soon as the second level device driver has completed the communication
protocol, it returns the final result to the user application, that resumes exe-
cution.

Figure 9.8 shows and clarifies the main steps of the execution flow.

9.2 Mixing modeled hardware devices and applications 193

Fig. 9.9. General architecture of the multi-ISS co-simulation.

9.2.3 Multi-instance co-simulation

This section presents the SystemC simulator extensions to support a multi-ISS
simulation. The multi-ISS co-simulation mechanism is based on the communication
protocol established between the ISS and SystemC as described in Section 9.2.2.

The communication between the HW simulator and the ISS is implemented
by means of three new type of ports added to the SystemC library, i.e., iss in,
iss out and iss interrupt. The iss in port is derived from the standard sc in
port and it is used to read data coming from ISS, the iss out port extends the
SystemC sc out port and it allows to send data from SystemC to the ISS. These
special ports can be used to model HW registers, thus allowing the ISS to read
and write them. In the following text, we assume that HW registers are memory-
mapped. The connection between the two sides of the co-simulation is performed
by binding specific addresses of the ISS memory space to SystemC iss in and
iss out ports contained in the HW models. When the CPU accesses some registers
through their addresses, the SystemC kernel determines the corresponding special
ports of the corresponding hardware model. The link between the SystemC port
and the corresponding memory address in the ISS is implemented by using a
binding table stored in the SystemC kernel.

To support multi-ISS simulation, the SystemC simulator has been modified to
manage messages incoming from all ISS’s. First of all, the constructor of previously
described special ports (i.e., iss in and iss out) has been extended to obtain a
string which identifies the ISS instance which can issue read/write requests. For
example, an iss in port has to be initialized as follows:

iss int ∗ reg1 = iss in(0x12340000, ISS1)

Corresponding to this declaration, the following record is inserted into the binding
table:

< reg1, 0x12340000, ISS1 >

194 9 Application to Embedded Systems

Fig. 9.10. The communication between different ISS instances and SystemC.

This mechanism allows to cluster HW models and ISS instances to model inde-
pendent processing units containing a CPU and some related HW devices.

The SystemC kernel creates an IPC channel for each ISS, as shown in Fig-
ure 9.9. Since the SystemC kernel has to know the mapping between the ISS
identification string and the IPC channel, during the setup phase, each ISS in-
stance sends its identification string to SystemC which updates the binding table
accordingly. An example of binding table is depicted in Figure 9.10; it shows the
relationship between addresses, ISS identification strings and IPC channels. It is
worth noting that the same address can be used for different registers connected
to different ISS’s since their memory spaces are disjoint.

Figure 9.11 shows the pseudo-code of the SystemC simulator to support multi-
ISS simulation; bold text represents added code with respect to the pseudo-code
described in Figure 9.11. Lines 1-4 implement the setup phase. After this phase,
each ISS is able to send/receive data to/from the SystemC simulator. In the multi-
ISS scenario the SystemC kernel could receive messages from different ISS’s. There-
fore each IPC channel has to be monitored to verify the presence of an ISS request
(Line 6 and 7). Corresponding to each ISS request, the SystemC kernel has to reply
to the proper ISS identified by the iss id variable. Finally, the simulator extracts
the next event from the queue to schedule it. In the multi-ISS case, SystemC has
to find the ISS able to receive the response (Line 17).

9.3 Automatic Test Pattern Generation and Co-simulation

The methodology proposed in previous sections guarantees the intercommunica-
tion between SystemC simulation kernel and the multi-instance ISS. This section
summarizes how to extend the reference ATPG to exploit co-simulation. The main
problem arising in integration of the proposed ATPG and the ISS is related to time
synchronization. In particular it is necessary to extend the framework previously

9.3 Automatic Test Pattern Generation and Co-simulation 195

1 for (iss_id=0; iss_id < ISS_NUM; iss_id++) {
2 create_IPC_channel(iss_id);
3 update_binding_table(iss_id);
4 }
5 do {
6 for (iss_id=0; iss_id < ISS_NUM; iss_id++) {
7 if (!channel [iss_id]->isEmpty()) {
8 receive(msg);
9 if (SystemC_Time < msg.ISS_Time)
10 add_timed_event(<operation,

msg.ISS_Time, ISS_Port, iss_id>);
11 else
12 send_response_to_ISS (iss_id);
13 }
14 }
15 event = extract_event_from_queue();
16 if (event == “TIMED_EVENT”)
17 iss_response = find_iss_by_event(event);
18 send_response_to_ISS (iss_response);
19 else
20 // NORMAL SystemC Kernel code
21 } while(…SystemC events…);

Fig. 9.11. SystemC procedure to support multi-ISS co-simulation.

described to gain timing accuracy. A mandatory requirement to implement the
timing-accurate ISS/SystemC co-simulation is the notion of time inside the ISS
and the ATPG. With this feature the local time of the ISS can be compared with
the time of the SystemC simulator.

Time synchronization has to be guaranteed between ISS/SystemC-simulator
kernels and between the ATPG and the simulated DUV. The first issue requires to
correlate the ISS events to the SystemC kernel, in particular the simulation of the
modules is clock-based, so a common clock signal is generated by the ATPG, both
for the CDUV and the EDUV. Traditionally, the behavior of this signal is generated
by a clock_step() method which exploits the SystemC method sc_start() as
follow:

up()

sc_start(semiper);

down();

sc_start(semiper);

The clock value is set to 1, then the simulation time advances of a semi-period, then
the clock value is set to 0 and the simulation advances of an other semi-period. The
sc_start method resumes the SystemC scheduler from the time it had reached at the
end of the previous call. The scheduler runs for the time passed as an argument (the
semi-period), relative to the current simulation time. The sc_start() method does not
support the ISS events to guarantee the synchronization between the HW/SW simulated
environments, therefore a new SystemC method, iss_clock_step.

A co-simulated design has to wait for the commands coming from the ISS, this causes
the follow synchronization problem between the ATPG and the DUV. The proposed
solution exploits the transaction concept: the ATPG waits for the DUVs to complete the
interaction with the ISS before to generate a new pattern. This solution require to define
the following signals:

• sc_signal <sc_bit> *iss_start_transaction

• sc_signal <sc_bit> *iss_end_transaction

• sc_signal <sc_bit> *iss_eend_transaction

196 9 Application to Embedded Systems

These signals are involved in the ATPG simulation cycle:

if(ISS_flag){

iss_start_transaction->write((sc_bit)1); //drive start to a transaction

}

...

...

if (ISS_flag){

while(iss_end_transaction->read()==(sc_bit)0){

// wait until cdut transaction returns

clock_step();

}

if(iss_eend_transaction->read()==(sc_bit)0) {

fault_suspicious = true;

}

iss_start_transaction->write((sc_bit)0);

iss_end_transaction->write((sc_bit)0);

iss_eend_transaction->write((sc_bit)0);

clock_step();

}

If the ATPG is activated in co-simulation mode the ISS_flag is enabled; in this case
the iss_start_transaction is set to 1 to identify the beginning of a new transaction.
The iss_end_transaction and iss_eend_transaction flags are set to 1 by each DUV
(faulty and fault free) when they complete their respective co-simulation cycle.

There is the possibility that the faulty DUV does not terminate due to an injected
fault. A termination threshold is defined, if the faulty DUV exceeds this threshold the
computation is terminated and the fault is marked as suspicious.

10

Conclusions

This thesis proposes a functional deterministic ATPG framework to perform functional
validation of embedded design description.

The main problems of defining a deterministic ATPG have been presented and an-
alyzed. An EFSM model to represent the DUV has been chosen and motivated and a
strategy to deterministically generate test sequences by exploiting the EFSM model has
been defined. Then, a high-level fault model has been adopted to quantify the effec-
tiveness of the ATPG. Finally, a parallel fault simulation engine has been developed to
improve framework efficiency. The proposed methodology has been extended to support
co-simulation and validation of a complete industrial embedded system.

The main contributions presented by this works are:

1. The EFSM model has been chosen to model the DUV and an accurate analysis of its
advantages have been performed and presented. This study presents a methodology
to automatically manipulate the original EFSM that can be extracted form every
functional design description to generate a particular kind of EFSM that is easy-
to-traverse, so that the ATPG can uniformly navigate the whole DUV states space.
The new EFSM is more uniformly traversable by exploiting a forward navigation
strategy. This allows reducing the use of time-consuming backtracking.

2. A technique to automatically generate high-level decision diagrams (HLDDs) from
EFSMs has been proposed. Then, these two paradigms are exploited inside a func-
tional test pattern generator. The goal is to combine the beneficial properties of the
above paradigms using EFSMs for targeting control FSM transitions and variable-
oriented HLDDs for targeting faults in the data variables, respectively.

3. An ATPG framework has been defined that works on high-level description and
efficiently exploit the features of this abstraction level. This framework is built on
the top of the HIF Suite. The HIF Suite is a set of tools and APIs that relies on HIF
language. HIF Suite provides designers and verification engineers with conversion
from VHDL/Verilog/SystemC descriptions to HIF and viceversa, merging of mixed
HDL descriptions and HIF code manipulation.

4. The navigation of concurrent EFSMs is guaranteed by an opportune EFSM schedul-
ing algorithm that aims at maximizing the ATPG capability of exploring the whole
state space. In this way multiprocess DUVs can be uniformly traversed.

5. The quality of test sequence generation is evaluated by using high-level fault models,
the bit coverage and the mutation based fault model. In particular, this work presents
a validation approach at a high description level, which is based on an adaptation of
the mutation analysis technique. This technique was originally proposed for software
testing.

198 10 Conclusions

6. The proposed ATPG can be configured to interface with different kinds of solvers, a
CLP solver, a SAT-solver and a Model Checker. In fact the determinism is obtained
by interfacing with a tool that adopts formal methods to solve the conditions of
the enabling functions. In particular, the ATPG has been interfaced with both a
CLP-based constraint solver, SAT-solver and Model Checker. The effectiveness of
the proposed ATPG compared with a genetic-based ATPG is evident. It greatly
benefits from the fact that, by using the EFSM model, all conditional statements
included in the DUV are under its control.

7. A two-step ATPG engine is implemented which exploits constraint solving to traverse
the DUV state space. At first, a random walk-based approach is used to cover the
majority of easy-to-traverse (ETT) transitions. Then a backjumping-based mode
is used to activate hard-to-traverse (HTT) transitions. In both modes, learning is
exploited to get critical information that improves the performance of the ATPG.
Testing of hard-to-detect faults is thus improved.

8. A new kind of EFSM triggered by events, called EEFSM, has been introduced. An
Extended Event Finite State Machine is an finite state machine augmented by a set
of registers that range over a finite alphabet and by a set of input/ output events
that trigger the transitions of the machine. Input and output events are used to
model synchronization with a clock signal and the sensitivity list construct defined
in hardware description languages.

9. A theory to compose such EEFSMs has been defined. Then, the impact of bounded
EEFSM composition has been analyzed on a functional ATPG, which exploits a
constraint solver to deterministically traverse EEFSM transitions. In particular, the
performance of the ATPG working on a set of concurrent EEFSMs and on a single
EEFSM, representing the same DUV, have been compared. Experimental results
showed that the ATPG benefits from EFSM composition, since this allows a global
view of the DUV. This generally reflects on the achievement of higher transition and
fault coverages, and on the reduction of constraint solver invocation which sensibly
impacts on the the ATPG execution time.

10. The main issues arising to implement an efficient parallel simulation engine for func-
tional faults has been analyzed. Moreover, this work describes a set of optimizations
implemented to increase performance of parallel simulation. Experimental results
show that even if the parallelization requires bit-level simulation, which is generally
slower than high-level simulation, the overall simulation time is reduced as long as
there are enough faults to be checked in parallel.

11. The proposed ATPG methodology has been integrated in a HW/SW co-simulation
framework, based on the interaction of SystemC with a time-aware instruction set
simulator. The co-simulation framework performs timing-accurate co-simulation and
supports multiple ISS instances. The overall ATPG/co-simulation framework has
been applied to an industrial case study.

The methodology presented in this thesis has given interesting results, but it opens still
space for future works:

1. The EFSM composition methodology has been defined and implemented. A rigorous
demonstration of correctness is necessary.

2. Actually the stimuli generation is transition oriented. It is necessary to extend the
methodology supporting fault-oriented pattern generation. Therefore, if the design
under validation is represented as a set of EFSMs, it is necessary to identify the
relations between the high-level faults and the structure of the models, i.e. states
and transitions.

3. The proposed ATPG methodology is dedicated to hardware verification. The next
step consists of extending it to software testing. Software testing is aimed at evalu-
ating the quality of a program or system and determining that it meets its required

10 Conclusions 199

results. Correctness testing and reliability testing are two major areas of testing.
For is nature, the complexity with software is generally intractable and most of the
defects in software are design errors. A further complication has to do with the dy-
namic nature of programs. If a failure occurs during preliminary testing and the code
is changed, the software may now work for a test case that it didn’t work for pre-
viously. But its behavior on pre-error test cases that it passed before can no longer
be guaranteed. To account for this possibility, testing should be restarted. Differ-
ent problem should be accomplished. As first step, different faults models, specific
for software, should be defined. Consequently an accurate analysis should be per-
formed to identify the relationship between mutants and fault models for software.
Another challenging tasks is to deal with the dependability of software. As software
is executed, it should be checked if it is tolerant to problem in executions.

4. The CLP engine is based on semi-formal techniques that for their nature tend to
increase the problem complexity and require time and resources. Optimization tech-
niques have been already proposed that gives reduce the complexity for the solver.
However, other heuristics for the paths script generation could be considered and
compared to improve the engine effectiveness.

5. Further techniques, different from CLP, could be applied to generate the sequences.
Solvers that can be interfaced trough C++ could be exploited by the functional
ATPG.

11

Published Contributions

11.1 Journal papers

Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini, Graziano Pravadelli
Improving high-level and gate-level testing with FATE: A functional automatic test pat-
tern generator traversing unstabilised extended FSM
Computers & Digital Techniques, IET
Volume 1, Issue 3, 2007, pp. 187-196

11.2 International Conference

Davide Bresolin, Giuseppe Di Guglielmo, Franco Fummi, Graziano Pravadelli, Tiziano Villa
The impact of EFSM Composition on Functional ATPG
In the Proceedings of “12th IEEE Symposium on Design and Diagnostics of Electronic
Systems (DDECS’09)”
Liberec, Czech Republic, April 15-17, 2009

Giuseppe Di Guglielmo, Franco Fummi, Mark Hampton, Graziano Pravadelli, Francesco Ste-
fanni
The Role of Parallel Simulation on Functional Verification
In the Proceedings of “IEEE International High Level Design Validation and Test Work-
shop (HLDVT’08)”
Nevada, USA, November 19-21, 2008, pp. 117-124

Anton Chepurov, Giuseppe Di Guglielmo, Franco Fummi, Graziano Pravadelli, Jain Raik,
Raimund Ubar, Taavi Viilukas
Automatic generation of EFSMs and HLDDs for functional ATPG
In the Proceedings of “IEEE International Biennal Baltic Electronics Conference (BEC’08)”
Tallinn, Estonia, October 6-8, 2008, pp. 143-146

Giuseppe Di Guglielmo
On the Validation of Embedded Systems through Functional ATPG
In the Proceedings of “IEEE Conference on Ph.D. Research in Microelectronics and Elec-
tronics (PRIME’08)”

202 11 Published Contributions

Istanbul, Turkey, June 22-25, 2008, pp. 149-152

Giuseppe Di Guglielmo, Franco Fummi, Maksim Jenihhin, Graziano Pravadelli, Jaan
Raik, Raimund Ubar
On the Combined Use of HLDDs and EFSMs for Functional ATPG
In the Proceedings of “5th IEEE East-West Design & Test International Symposium
(EWDTS’07)”
Yerevan, Armenia, September 7-10, 2007, pp. 503-508

Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini, Graziano Pravadelli
FATE: a Functional ATPG to Traverse unstabilized EFSMs
In Proceeding of ”IEEE European Test Symposium (ETS’06)”
Southampton, UK, May 21-24, 2006, pp. 179-184

Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini, Graziano Pravadelli
Improving Gate-Level ATPG by Traversing Concurrent EFSMs
In Proceeding of ”IEEE VLSI Test Symposium (VTS’06)”
Berkeley, CA, USA April 30 - May 4, 2006

Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini, Graziano Pravadelli
EFSM Manipulation to Increase High-Level ATPG
In Proceeding of ”IEEE International Symposium on Quality Electronic Design (ISQED’06)”
San Jose, CA, USA, March 27-29, 2006, pp. 62-67

Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini, Graziano Pravadelli
A Pseudo-Deterministic Functional ATPG based on EFSM Traversing
In Proceeding of ”IEEE International Workshop on Microprocessor Test and Verification
(MTV’05)”
Austin, TX, USA, November 3-4, 2005, pp. 70-75

11.3 PhD Forums 203

11.3 PhD Forums

Giuseppe Di Guglielmo
On the Validation of Embedded Systems through Functional ATPG
IEEE International Design Automation & Test in Europe DATE (DATE’09) EDAA PhD
Forum
Nice, France, April 20-24, 2009

Giuseppe Di Guglielmo
On the Validation of Embedded Systems through Functional ATPG
IEEE Conference on PhD Research in Microelectronics and Electronics (PRIME’08)
Istanbul, Turkey, June 22-25, 2008, pp. 149-152

Giuseppe Di Guglielmo
On the Validation of Embedded Systems through Functional ATPG
TTTC PhD at IEEE VLSI Test Symposium (VTS’08)
San Diego, CA, April 27 - May 1, 2008

References

1. J. Bergeron. Writing Testbenches: Functional Verification of HDL Models. Kluwer
Academic Publishers, Norwell Massachusetts, 2000.

2. M.A. Breuer, M. Abramovici, and A.D. Friedman. Digital Systems Testing and
Testable Design. IEEE Press, 1990.

3. P.J. Ashenden. The VHDL Cookbook. Kluwer Academic Publishers, first edition,
1990.

4. D.E. Thomas and P.R. Moorby. The Verilog Hardware Description Language.
Kluwer Academic Publishers, second edition, 1994.

5. Synopsys. SystemC User’s Guide. 2002.
6. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-

actions on Computers, C-35(8):79–85, 1986.
7. I. Ghosh and M. Fujita. Automatic test pattern generation for functional register-

transfer level circuits using assignment decision diagrams. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 20(3):402–415, 2001.

8. D.D. Gajski, N.D. Dutt, S. Allen, C.H. Wu, and Y.L. Lin. High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic Publishers, first edition,
1992.

9. K.T.Cheng and A.S. Krishnakumar. Automatic generation of functional vectors
using the extended finite state machine model. ACM Trans. on Design Automation
of Electronic Systems, 1(1):57–79, 1996.

10. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.
11. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skele-

tons using branching time temporal logic. In Proceedings of Workshop on Logic of
Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer-
Verlag, 1981.

12. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
cesar. In In Proceedings of the International Symposium in Programming, volume
137 of Lecture Notes in Computer Science, pages 337–351. Springer-Verlag, 1981.

13. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logics.
Journal of the ACM, 32(3):733–749, 1985.

14. O. Lichtenstein and A. Pnueli. Checking that finite-state concurrents programs
satisfy their linear specification. In Proceedings of ACM Symposium on Principles
of Programming Languages (POPL), pages 97–186, 1985.

15. E. Clark, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

206 References

16. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell
Massachusetts, 1993.

17. D. Brand. Verification of large synthesized designs. In Proceedings of IEEE Inter-
national Conference on Computer Aided Design (ICCAD), pages 534–537, 1993.

18. A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. In
Proceedings of ACM/IEEE Design Automation Conference (DAC), pages 263–268,
1997.

19. W. Kunz and D. Pradhan. Recursive learning: a new implication technique for ef-
ficient solutions to cad problems - test, verification and optimization. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 13(9):1143–
1158, 1994.

20. H. Cho, G.D. Hachtel, E. Macii, B. Plessier, and F. Somenzi. Algorithms for ap-
proximate FSM traversal based on space state decomposition. In Proceedings of
ACM/IEEE Design Automation Conference (DAC), pages 25–30, 1993.

21. H.J. Touati, H. Savoj, B. Lin, R.K. Brayton, and A. Sangiovanni-Vincentelli. Im-
plicit state enumeration of finite state machines using bdds. In Proceedings of
IEEE International Conference on Computer Aided Design (ICCAD), pages 130–
133, 1990.

22. G. Cabodi, P. Camurati, and S. Quer. Implicit manipulation of equivalence classes
for large finite state machines. IEE Computer and Digital Techniques, 145(6):395–
402, 1998.

23. G. Cabodi, P. Camurati, and S. Quer. Improved reachability analysis of large finite
state machines. In Proceedings of IEEE International Conference on Computer
Aided Design (ICCAD), pages 354–360, 1996.

24. B. Wile, J. C. Goss, and W. Roesner. Comprehensive Functional Verification - The
Complete Industry Cycle. Elsevier, 2005.

25. G.J. Myers. The Art of Software Testing. Wiley - Interscience, New York, 1979.
26. F. Ferrandi, M. Rendine, and D. Sciuto. Functional verification for systemc descrip-

tions using constraint solving. In Proceedings of IEEE Design Automation and Test
in Europe (DATE), pages 744–751, 2002.

27. M.E. Amyeen, I. Pomeranz, and W.K. Fuchs. Theorems for efficient identification
of indistinguishable fault pairs in synchronous sequential circuits. In Proceedings of
IEEE VLSI Test Symposium (VTS), pages 181–186, 2002.

28. H. Shi-Yu, C. Kwang-Ting, H. Chung-Yang, and F. Brewer. Aquila: An equivalence
checking system for large sequential designs. IEEE Transactions on Computers,
49(5):443–464, 2000.

29. D. Moundanos, J.A. Abraham, and Y.V. Heskote. A unified framework for de-
sign validation and manufacturing test. In Proceedings of IEEE International Test
Conference (ITC), pages 875–884, 1996.

30. Q. Wu and M. Hsiao. Efficient sequential atpg based on partitioned finite-state-
machine traversal. In Proceedings of IEEE International Test Conference (ITC),
pages 281–289, 2003.

31. S. Tasiran, F. Fallah, D.G. Chinnery, S.J. Weber, and K. Keutzer. A functional val-
idation technique: Biased-random simulation guided by observability-based cover-
age. In Proceedings of IEEE International Conference on Computer Design (ICCD),
pages 82–88, 2001.

32. B. Shaer, S.A. Al-Arian, and D. Landis. Partitioning sequential circuits for pseu-
doexhaustive testing. IEEE Transactions on VLSI, 8(5):534–541, 2000.

33. N. Kamiura, Y. Hata, and N. Matsui. Controllability/observability measures for
multiple-valued test generation based on d-algorithm. In Proceedings of IEEE In-
ternational Symposium on Multiple-Valued Logic (ISMVL), pages 245–250, 2000.

References 207

34. S. Devadas, A. Ghosh, and K. Keutzer. An observability-based code coverage met-
ric for functional simulation. In Proceedings of IEEE International Conference on
Computer Design (ICCD), pages 418–425, 1996.

35. F. Fallah, S. Devadas, and K. Keutzer. Functional vector generation for HDL models
using linear programming and 3-satisfiability. In Proceedings of ACM/IEEE Design
Automation Conference (DAC), pages 528–533, 1998.

36. F. Fallah, S. Devadas, and K. Keutzer. Occom: Efficient computation of
observability-based code coverage metrics for functional verification. In Proceed-
ings of ACM/IEEE Design Automation Conference (DAC), pages 152–157, 1998.

37. F. Fallah, P. Ashar, and S. Devadas. Simulation vector generation from hdl descrip-
tions for observability-enhanced statement coverage. In Proceedings of ACM/IEEE
Design Automation Conference (DAC), pages 666–671, 1999.

38. X. Yu, J. Wu, and E.M. Rudnick. Diagnostic test generation for sequential circuits.
In Proceedings of IEEE International Test Conference (ITC), pages 225–234, 2000.

39. W.E. Dougherty and R.D. Blanton. Using regression analysis for ga-based atpg
parameter optimization. In Proceedings of IEEE International Conference on Com-
puter Design (ICCD), pages 516 –521, 1998.

40. M.J. O’Dare and T. Arslan. Generating test patterns for vlsi circuits using a genetic
algorithm. Electronics Letters, 30(10):778–779, 5 1994.

41. F. Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, and G. Squillero. Initial-
izability analysis of synchronous sequential circuits. ACM Transactions on Design
Automation of Electronic Systems, 15(2):249–264, 2002.

42. E.M. Rudnick and J.H. Patel. A genetic algorithm framework for test generation.
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
16(9):1034–1044, 1997.

43. F. Corno, P. Prinetto, M. Rebaudengo, , and M. Sonza Reorda. Gatto: A genetic
algorithm for automatic test pattern generation for large synchronous sequential
circuit. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(8):991–1000, 1996.

44. E.M. Rudnick and J.H. Patel. Combining deterministic and genetic approaches for
sequential circuit test generation. In Proceedings of ACM/IEEE Design Automation
Conference (DAC), pages 183–188, 1995.

45. F. Corno, M. Sonza Reorda, G. Squillero, and M. Violante. A genetic algorithm-
based system for generating test programs for microprocessor ip cores. In Proceed-
ings of IEEE International Conference on Tools with Artificial Intelligence (ICTAI),
pages 195–198, 2000.

46. M. Boschini, X. Yu, F. Fummi, and E.M. Rudnick. Combining symbolic and genetic
techniques for efficient sequential circuit test generation. In Proceedings of IEEE
European Test Workshop (ETW), pages 105–110, 2000.

47. M. Lajolo, L. Lavagno, M. Rebaudengo, M. Sonza Reorda, and M. Violante.
Behavioral-level test vector generation for system-on-chip designs. In Proceedings
of IEEE International High-level Design Validation and Test Workshop (HLDVT),
pages 21–26, 2000.

48. F. Ferrandi, A. Fin, F. Fummi, and D. Sciuto. An application of genetic algorithms
and bdds to functional testing. In Proceedings of IEEE International Conference
on Computer Design (ICCD), pages 48–56, 2000.

49. M.S. Hsiao, E.M. Rudnick, and J.H. Patel. Fast static compaction algorithms for
sequential circuit test vectors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 48(3):311–322, 1999.

50. E.M. Rudnick and J.H. Patel. Efficient techniques for dynamic test sequence com-
paction. IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, 48(3):323–330, 1999.

208 References

51. F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero. Effective techniques for
high-level atpg. In Proceedings of IEEE Asian and Test Symposium (ATS), pages
225–230, 2001.

52. M.S. Hsiao, E.M. Rudnick, and J.H. Patel. Dynamic state traversal for sequential
circuit test generation. ACM Transactions on Design Automation of Electronic
Systems, 5(3):548–565, 2000.

53. G. Biasoli, F. Ferrandi, A. Fin, F. Fummi, and D. Sciuto. Behavioral test generation
for the selection of bist logic. Journal of System Automation (JSA), 47(10):821–829,
2002.

54. G. Harik. Linkage learning via probabilistic modeling in the ecga. Technical Report
99010, University of Illinois at Urbana-Champaign, 1999.

55. J.A. Abraham and V.K. Agarwal. Test Generation for Digital Systems - Fault-
Tolerant Computing: Theory and Techniques. Prentice-Hall, first edition, 1985.

56. J.A. Abraham and K. Fuchs. Fault and error models for vlsi. Proceedings of the
IEEE, 74(5):639–654, 5 1986.

57. D. Brahme and J.A. Abraham. Functional testing of microprocessors. IEEE Trans-
actions on Computers, C-33(6):475–485, 1985.

58. S.M. Thatte and J.A. Abraham. A methodology for functional level testing of
microprocessors. In Proceedings of IEEE International Conference on Fault-Tolerant
Computing (ICFC), pages 90–95, 1978.

59. S.M. Thatte and J.A. Abraham. Test generation for microprocessors. IEEE Trans-
actions on Computers, 29(3):429–441, 1980.

60. M.C. Hansen and J.P. Hayes. High-level test generation using physically-induced
faults. In Proceedings of IEEE VLSI Test Symposium (VTS), pages 20–28, 1995.

61. J.P. Hayes. Fault modeling for digital mos integrated circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 3(3):200–207, 1984.

62. J.P. Hayes. A fault simulation methodology for vlsi. In Proceedings of ACM/IEEE
Design Automation Conference (DAC), pages 393–399, 1982.

63. T. Sridhar and J.P. Hayes. A functional approach to testing bit-sliced microproces-
sors. IEEE Transactions on Computers, 30(8):563–571, 1981.

64. C.H. Cho and J.R. Armstrong. B-algorithm: A behavioral test generation algorithm.
In Proceedings of IEEE International Test Conference (ITC), pages 968–979, 1994.

65. F.S. Lam J.R. Armstrong and P.C. Ward. Test Generation and Fault Simulation for
Behavioral Models - Performance and Fault Modeling with VHDL. Prentice Hall,
first edition, 1992.

66. P.C. Ward and J.R. Armstrong. Behavioral fault simulation in vhdl. In Proceedings
of ACM/IEEE Design Automation Conference (DAC), pages 587–593, 1990.

67. J.R. Armstrong. Chip Level Modeling with VHDL. Prentice Hall, first edition, 1989.
68. J.R. Armstrong. Chip level modeling with hdls. IEEE Design and Test of Comput-

ers, 5(1):8–18, 1988.
69. A.K. Gupta and J.R. Armstrong. Functional fault modeling and simulation for

vlsi devices. In Proceedings of ACM/IEEE Design Automation Conference (DAC),
pages 720–726, 1985.

70. J.R. Armstrong. Chip level modeling of lsi devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 3(4):288–297, 1984.

71. S. Ghosh and T.J. Chakraborty. On behavior fault modeling for digital designs.
International Journal of Electronic Testing: Theory and Applications, 2(2):135–151,
1991.

72. T.J. Chakraborty and S. Gosh. On behavior fault modeling for combinational
digital designs. In Proceedings of IEEE International Test Conference (ITC), pages
593–600, 1988.

References 209

73. S. Gosh. Behavior-level fault simulation. IEEE Design and Test of Computers,
5(3):31–42, 1988.

74. P. Banerjee. A model for simulating physical failures in mos vlsi circuits. Technical
Report CSG-13, University of Illinois at Urbana-Champaign, 1985.

75. C.H. Chao and F.G. Gray. Micro-operation perturbations in chip level fault mod-
eling. In Proceedings of ACM/IEEE Design Automation Conference (DAC), pages
579–582, 1988.

76. J. Gracia, J.C. Baraza, D. Gil, and P.J. Gil. Comparison and application of dif-
ferent vhdl-based fault injection techniques. In Proceedings of IEEE International
Symposium on Defect and Fault Tolerance (DFT), pages 579–582, 2001.

77. E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection into
vhdl models: The mefisto tool. In Proceedings of IEEE International Symposium
on Fault-Tolerant Computing (FTCS), pages 66–75, 1994.

78. A.M. Amendola, A. Benso, F. Corno, L. Impagliazzo, P. Marmo, P. Prinetto, M. Re-
baudengo, and M. Sonza Reorda. Fault behaviour observation of a microprocessor
system through a vhdl simulation-based fault injection experiment. In Proceedings
of IEEE European Design Automation Conference (EURO-DAC), pages 536 –541,
1996.

79. V. Sieh, O. Tschche, and F. Balbach. Verify: Evaluation of reliability using vhdl-
models with embedded fault descriptions. In Proceedings of IEEE International
Symposium on Fault-Tolerant Computing (FTCS), pages 32–36, 1997.

80. J.A. Profeta III T.A. DeLong, B.W. Johnson. A fault injection technique for vhdl
behavioral-level models. IEEE Design and Test of Computers, 13(4):24–33, 1996.

81. J.C. Baraza, J. Gracia, D. Gil, and P.J. Gil. A prototype of a vhdl-based fault
injection tool: Description and application. Journal of System Automation (JSA),
47(10):847–867, 2002.

82. J. Gracia, J.C. Baraza, D. Gil, and P.J. Gil. Application of different vhdl-based
fault injection techniques to the validation of a fault-tolerant microcomputer sys-
tem. In Proceedings of IEEE International Symposium on Fault-Tolerant Computing
(FTCS), pages 54–55, 2000.

83. T. Budd and F. Sayward. Users guide to the Pilot mutation system. In technical
report 114, 1977.

84. R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on
Software Engineering, 3:279–290, July 1977.

85. R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. IEEE Computer, 11:34–41, April 1978.

86. T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. The design of a
prototype mutation system for program testing. In In the Proc. of NCC, AFIPS
Conference Record, pages 623–627, 1978.

87. R. J. Lipton and F. G. Sayward. The status of research on program mutation.
In Digest for the Workshop on Software Testing and Test Documentation, pages
355–373, December 1978.

88. A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Mutation
analysis. In technical report GITICS-79/08, 1979.

89. A. J. Offutt and K. N. King. A Fortran 77 interpreter for mutation analysis. In
In the Proc. of 1987 Symposium on Interpreters and Interpretive Techniques, pages
177–188, June 1987.

90. R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. Offutt.
An extended overview of the Mothra software testing environment. In IEEE Com-
puter Society Press, editor, In the Proc. of the Second Workshop on Software Test-
ing, Verification, and Analysis, pages 142–151, July 1988.

210 References

91. A. J. Offutt. Automatic Test Data Generation. In PhD thesis, Technical report
GIT-ICS 88/28, 1988.

92. R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, 17:900–910, September 1991.

93. R. A. DeMillo, E. W. Krauser, and A. P. Mathur. Compiler-integrated program
mutation.

94. R. H. Untch, M. J. Harrold, and J. Offutt. Schema-based mutation analysis.
95. M. E. Delamaro and J. C. Maldonado. Proteum-A tool for the assessment of test

adequacy for C programs. In in the Proc. of the Conference on Performability in
Computing Systems (PCS 96), pages 79–95, July 1996.

96. A. J. Offutt. Investigations of the software testing coupling effect. ACM Transac-
tions on Software Engineering Methodology, 1:3–18, January 1992.

97. K. S. H. T. Wah. Fault coupling in finite bijective functions. The Journal of Software
Testing, Verification, and Reliability, 5:3–47, March 1995.

98. K. S. H. T. Wah. A theoretical study of fault coupling. The Journal of Software
Testing, Verification, and Reliability, 10:3–46, March 2000.

99. D. Wu, M. A. Hennell, D. Hedley, and I. J. Riddell. A practical method for software
quality control via program mutation. In IEEE Computer Society Press, editor, In
the Proc. of the Second Workshop on Software Testing, Verification, and Analysis,
pages 159–170, July 1988.

100. IEEE. IEEE Standard Glossary of Software Engineering Terminology. ANSI/IEEE
Std 610.12-1990, 1996.

101. R. Geist, A. J. Offutt, and F. Harris. Estimation and enhancement of real-time
software reliability through mutation analysis. IEEE Transactions on Computers,
Special Issue on Fault-Tolerant Computing, 41:550–558, May 1992.

102. A. J. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf. An experimental
determination of sufficient mutation operators. ACM Transactions on Software
Engineering Methodology, 5:99–118, April 1996.

103. W. E. Wong, M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. Constrained
mutation in C programs. In In the Proc. of the 8th Brazilian Symposium on Software
Engineering, pages 439–452, October 1994.

104. A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective
mutation. In In the Proc. of the Fifteenth International Conference on Software
Engineering, pages 100–107. IEEE Computer Society Press, May 1993.

105. A. T. Acree. On Mutation. PhD thesis, 1980.
106. T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, 1980.
107. W. E. Wong. On Mutation and Data Flow. PhD thesis, December 1993.
108. M. Sahinoglu and E. H. Spafford. A bayes sequential statistical procedure for

approving software products. In In the Proc. of the IFIP Conference on Approving
Software Products (ASP-90), pages 43–56, September 1990.

109. W. E. Howden. Weak mutation testing and completeness of test sets. IEEE Trans-
actions on Software Engineering, 8:371–379, July 1982.

110. L. J. Morell. Theoretical insights into fault-based testing. In In the Proc. of the
Second Workshop on Software Testing, Verification, and Analysis, pages 45–62.
IEEE Computer Society Press, July 1988.

111. M. R. Woodward and K. Halewood. From weak to strong, dead or alive? An analysis
of some mutation testing issues. In In the Proc. of the Second Workshop on Software
Testing, Verification, and Analysis, pages 152–158. IEEE Computer Society Press,
July 1988.

112. J. R. Horgan and A. P. Mathur. Weak mutation is probably strong mutation.
technical report SERC-TR-83-P, December 1990.

References 211

113. M. R. Girgis and M. R. Woodward. An integrated system for program testing using
weak mutation and data flow analysis. In In the Proc. of the Eighth International
Conference on Software Engineering, pages 313–319. IEEE Computer Society Press,
August 1985.

114. B. Marick. Two experiments in software testing. In technical report UIUCDCS-R-
90-1644, November 1990.

115. B. Marick. The weak mutation hypothesis. In In the Proc. of the Fourth Symposium
on Software Testing, Analysis, and Verification, pages 190–199. IEEE Computer
Society Press, October 1991.

116. A. J. Offutt and S. D. Lee. An empirical evaluation of weak mutation. IEEE
Transactions on Software Engineering, 20:337–344, May 1994.

117. A. J. Offutt and S. D. Lee. How strong is weak mutation? In In the Proc. of the
Fourth Symposium on Software Testing, Analysis, and Verification, pages 200–213.
IEEE Computer Society Press, October 1991.

118. A. P. Mathur and E. W. Krauser. Mutant unification for improved vectorization.
In technical report SERC-TR-14-P, April 1988.

119. E. W. Krauser, A. P. Mathur, and V. Rego. High performance testing on SIMD
machines. In In the Proc. of the Second Workshop on Software Testing, Verification,
and Analysis, pages 171–177. IEEE Computer Society Press, July 1988.

120. A. J. Offutt, R. Pargas, S. V. Fichter, and P. Khambekar. Mutation testing of
software using a mimd computer. In In the Proc. of 1992 International Conference
on Parallel Processing, pages II–257–266, August 1992.

121. B. Choi and A. P. Mathur. High-performance mutation testing. The Journal of
Systems and Software, 20:135–152, February 1993.

122. C. N. Zapf. Medusamothra - a distributed interpreter for the mothra mutation
testing system. In M.S. thesis, August 1993.

123. V. N. Fleyshgakker and S. N. Weiss. Efficient Mutation Analysis: A New Approach.
In In the Proc. of the International Symposium on Software Testing and Analysis
(ISSTA 94), pages 185–195. ACM SIGSOFT, ACM Press, August 1994.

124. R. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis using program
schemata. In In the Proc. of the 1993 International Symposium on Software Testing,
and Analysis, pages 139–148, June 1993.

125. R. A. DeMillo and A. J. Offutt. Experimental results from an automatic test case
generator. ACM Transactions on Software Engineering Methodology, 2:109–127,
April 1993.

126. J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction approach for test data
generation: Design and algorithms. In technical report ISSE-TR-94-110, September
1994.

127. J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction approach to test data
generation. Software-Practice and Experience, 29:167–193, January 1999.

128. B. Korel. Automated software test data generation. IEEE Transactions on Software
Engineering, 16:870–879, August 1990.

129. B. Korel. Dynamic method for software test data generation. The Journal of
Software Testing, Verification, and Reliability, 2:203–213, 1992.

130. L. A. Clarke. A system to generate test data and symbolically execute programs.
IEEE Transactions on Software Engineering, 2:215–222, September 1976.

131. L. A. Clarke and D. J. Richardson. Applications of symbolic evaluation. The Journal
of Systems and Software, 5:15–35, January 1985.

132. R. E. Fairley. An experimental program testing facility. IEEE Transactions on
Software Engineering, SE-1:350–3571, December 1975.

133. T. A. Budd and D. Angluin. Two notions of correctness and their relation to testing.
Acta Informatica, 18:31–45, November 1982.

212 References

134. D. Baldwin and F. Sayward. Heuristics for determining equivalence of program
mutations. In research report 276, 1979.

135. A. Tanaka. Equivalence testing for fortran mutation system using data flow analysis,
master’s thesis. 1981.

136. A. J. Offutt and W. M. Craft. Using compiler optimization techniques to detect
equivalent mutants. The Journal of Software Testing, Verification, and Reliability,
4:131–154, September 1994.

137. A. J. Offutt and J. Pan. Detecting equivalent mutants and the feasible path problem.
In In the Proc. of the 1996 Annual Conference on Computer Assurance (COMPASS
96), pages 224–236. IEEE Computer Society Press, June 1996.

138. A. J. Offutt and J. Pan. Detecting equivalent mutants and the feasible path problem.
The Journal of Software Testing, Verification, and Reliability, 7:165–192, September
1997.

139. R. Hierons, M. Harman, and S. Danicic. Using program slicing to assist in the
detection of equivalent mutants. Software Testing, Verification, and Reliability,
9:233–262, December 1999.

140. G. De Micheli and R. Ernst. Readings in Hardware/Software Co-Design. Morgan
Kaufmann, 2002.

141. J. Buck, S. Ha, E.A. Lee, and D. G. Messerschmitt. Ptolemy: a framework for sim-
ulating and prototyping heterogeneous systems. International Journal in Computer
Simulation, pages 527–543, 2001.

142. F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, et al. Hardware-software co-
design of embedded systems: the POLIS approach. Kluwer Academic Press., 1997.

143. http://www.synopsys.com/products. Technical report, Eaglei, Synopsys Inc.
144. http://www.mentor.com/seamless. Technical report, Seamless CVE, Mentor

Graphics Inc.
145. C. Liem, F. Nacabal, C. Valderrama, P. Paulin, and A. Jerraya. System-on-chip

co-simulation and compilation. IEEE Design and Test of Computers, 14(2):16–25,
1997.

146. C. Valderrama, F. Nacabal, P. Paulin, and A. Jerraya. Automatic VHDL-C Interface
Generation for Distributed Cosimulation: Application to Large Design Examples.
Design Automation for Embedded Systems, 3(2):199–217, 1998.

147. P. Coste, F. Hessel, P. Le Marrec, Z. Sugar, M. Romdhani, R. Suescun, N. Zergainoh,
and A. Jerraya. Multilanguage design of heterogeneous systems. In In the Proc. of
IEEE International Workshop on Hardware-Software Codesign, pages 54–58, 1999.

148. L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino. Sys-
temC cosimulation and emulation of multiprocessor SoC designs. IEEE Computer,
36(4):53–59, 2003.

149. J. Liu, M. Lajolo, and A. Sangiovanni-Vincentelli. Software timing analysis using
HW/SW cosimulation and instruction set simulator. In In the Proc. of the 6th Inter-
national Workshop on Hardware/Software Codesign, pages 65–69. IEEE Computer
Society Washington, DC, USA, 1998.

150. M B Santos, F M Gonalves, I C Teixeira, and J P Teixeira. RTL-based functional
test generation for high defects coverage in digital SoCs. In Proceedings of IEEE
ETW, pages 99–104, 2000.

151. K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey. Communication
architecture tuners: a methodology for the design of high-performance communica-
tion architectures for systems-on-chips. In In the Proc. of the ACM/IEEE Design
Automation Conference, pages 513–518. ACM New York, NY, USA, 2000.

152. F. Fummi, S. Martini, G. Perbellini, and M. Poncino. Native ISS-SystemC Inte-
gration for the Co-Simulation of Multi-Processor SoC. In In the Proc. of IEEE
Conference on Design Automation and Test in Europe, pages 564–569, 2004.

References 213

153. I. Moussa, T. Grellier, and G. Nguyen. Exploring sw performance using soc
transaction-level modelling. In Proceedings of IEEE Design Automation and Test
in Europe (DATE), pages 120–125, 2003.

154. http://www.gnu.org/software. Technical report, GDB.
155. A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tarrodaychik,

and O. Yamamoto. A hardware-software co-simulator for embedded system design
anddebugging. In In the Proc. of IEEE Asian and South Pacific Design Automation
Conference, pages 155–164.

156. S. Yoo and K. Choi. Optimistic Timed HW-SW Cosimulation. In In the Proc. of
Asia-Pacific Conference on Hardware Description Language, pages 39–42, 1997.

157. W. Sung and S. Ha. Optimized timed hardware software cosimulation without roll-
back. In In the Proc. of the IEEE of Design Automation and Test in Europe, pages
945–946. IEEE Computer Society Washington, DC, USA, 1998.

158. D. Kim, C. E. Rhee, Y. Yi, S. Kim, H. Jung, and S. Ha. Virtual synchronization
for fast distributed cosimulation of dataflow task graphs. In In the Proc. of the 15th
International Symposium on System Synthesis, volume 2, pages 174–179, 2002.

159. Y. Yi, D. Kim, and S. Ha. Virtual synchronization technique with OS modeling
for fast and time-accurate cosimulation. In In the Proc. of IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis, pages
1–6, 2003.

160. H. Muhr, R. Holler, and M. Horauer. A Heterogeneous Hardware-Software Co-
Simulation Environment Using User Mode Linux and Clock Suppression. In In the
Proc. of IEEE/ASME International Conference, pages 1–6, 2006.

161. G. Nicolescu, L. Gauthier, and A. Jerraya. Fast timed cosimulation of HW/SW
implementation of embedded multiprocessor SoC communication. In In the Proc.
of IEEE International Workshop on High Level Design Validation and Test, pages
79–82, 2001.

162. M. Bacivarov, S. Yoo, and A. Jerraya. Timed HW-SW cosimulation using native
execution of OS and application SW. In In the Proc. of IEEE High-Level Design
Validation and Test Workshop, 2002, pages 51–56, 2002.

163. S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and A. Jerraya. Building Fast and
Accurate SW Simulation Models Based on Hardware Abstraction Layer and Simu-
lation Environment Abstraction Layer. In In the Proc. of IEEE Design Automation
and Test in Europe, volume 1, pages 550–555. IEEE Computer Society Washington,
DC, USA, 2003.

164. Mark G. Wallace. Constraint programming. In The Handbook of Applied Expert
Systems. CRC Press, 1997.

165. Robert Kowalski. Algorithm = logic + control. In Communications of the ACM,
pages 424–436, 1979.

166. Krzysztof R. Apt and Mark G. Wallace. Constraint Logic Programming using
Eclipse. Cambridge Univeristy Press, 2006.

167. http://www.eclipse-clp.org. Technical report, ECLiPSe.
168. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.
169. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV : a new symbolic

model checker. International Journal on Software Tools for Technology T ransfer
(STTT), 2(4), March 2000.

170. A. Biere, A. Cimatti, E. .M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. of the Fifth International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’99), 1999.

171. F. Copty, L. Fix, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi. Benefits of
Bounded Model Checking at an Industrial Setting. In Proc. of CAV 2001, LNCS,
pages 436–453, 2001.

214 References

172. A. Borälv. A Fully Automated Approach for Proving Safety Properties in Inter-
locking Software Using Automatic Theorem-Proving. In S. Gnesi and D. Latella,
editors, Proc. of the Second International ERCIM FMICS, Pisa, Italy, July 1997.

173. S. Berezin, S. Campos, and E. M. Clarke. Compositional reasoning in model check-
ing. In Proc. COMPOS, 1997.

174. R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Efficient BDD
algorithms for FSM synthesis and verification. In Proc. IEEE/ACM International
Workshop on Logic Synthesis, Lake Tahoe (NV), May 1995.

175. A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the Encoding of
LTL Model Checking into SAT. In Proc. WMCAI 2002, number 2294 in LNCS,
pages 182–195, 2002.

176. E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Evaluating search
heuristics and optimization techniques in propositional satisfiability. In Proc. of
IJCAR 2001, volume 2083 of LNCS, pages 347–363. Springer, 2001.

177. O. Shtrichman. Tuning SAT checkers for bounded model-checking. In Proc. 12th
International Computer Aided Verification Conference (CAV’00), 2000.

178. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In Proc. of the 39th Design Automation Conference, June
2001.

179. The Open Source Organization. http://www.opensource.org.
180. Massimo Bombana and Francesco Bruschi. Systemc-vhdl co-simulation and synthe-

sis in the hw domain. In Proc. of IEEE DATE, pages 106–111, 2003.
181. C. Cote and Z. Zilic. Automated systemc to vhdl translation in hardware/software

codesign. In Proc. of IEEE ICECS, pages 717–720, 2002.
182. Luis Alejandro Cortés, Petru Eles, and Zebo Peng. Verification of embedded systems

using a petri net based representatio n. In Proc. of IEEE ISSS, pages 149–155, 2000.
183. Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault injection tech-

niques and tools. Computer, 30(4):75–82, 1997.
184. Felice Balarin and Roberto Passerone. Specification, synthesis and simulation of

transactor processes. IEEE Trans. on CAD, accepted for future publication.
185. Alexandre Chureau, Yvon Savaria, and El Mostapha Aboulhamid. The role of

model-level transactors and uml in functional prototyping of systems-on-chip: A
software-radio application. In Proc. of IEEE DATE, pages 698–703, 2005.

186. Nicola Bombieri, Franco Fummi, and Graziano Pravadelli. A methodology for ab-
stracting rtl designs into tl descriptions. In Proc. of IEEE MEMOCODE, pages
103–112, 2006.

187. Nicola Bombieri, Franco Fummi, and Graziano Pravadelli. Towards equivalence
checking between tlm and rtl models. In Proc. of IEEE MEMOCODE, pages 113–
122, 2007.

188. F. Fummi, M. Boschini, X. Yu, and E.M. Rudnick. Sequential circuit test generation
using a symbolic/genetic hybrid approach. Journal of Electronic Testing, 17(3-
4):321–330, 2001.

189. U. Uyar and A.Y. Duale. Modeling VHDL specifications as consistent EFSMs. In
Proc. of IEEE MILCOM, pages 740–744, 1997.

190. U. Uyar and A.Y. Duale. Resolving inconsistencies in EFSM-modeled specifications.
In Proc. of IEEE MILCOM, pages 135–139, 1999.

191. D. Gajski, J. Zhu, and R. Domer. Essential issue in codesign. Thecnical report
ICS-97-26, University of California, Irvine, 1997.

192. D. Lee and M. Yannakakis. Online minimization of transition systems. In Proc. of
ACM STOC, pages 264–267, 1992.

193. F. Fummi, C.Marconcini, and G.Pravadelli. Functional verification based on the
EFSM model. In Proc. of IEEE HLDVT, pages 69–74, 2004.

References 215

194. W. H. Kautz. The necessity of closed circuit loops in minimal combinational circuits.
IEEE Trans. Comput., 19(2):162–164, 1970.

195. R. L. Rivest. The necessity of feedback in minimal monotone combinational circuits.
IEEE Trans. Comput., 26(6):606–607, 1977.

196. Marc D. Riedel and Jehoshua Bruck. The synthesis of cyclic combinational circuits.
In Proceedings of the 40th Design Automation Conference, DAC 2003, pages 163–
168, Anaheim, CA, USA, June 2003.

197. John Backes, Brian Fett, and Marc D. Riedel. The analysis of cyclic circuits with
boolean satisfiability. To appear, 2008.

198. High Time for High-Level Test Generation. Panel at IEEE ITC, 1999.
199. A. Fin and F. Fummi. Genetic Algorithms: the Philosopher’s Stone or an Effective

Solution for High-Level TPG? In Proc. of IEEE HLDVT, pages 163–168, 2003.
200. G. Di Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli. EFSM Manipulation

to Increase High-Level ATPG Efficiency. In Proc. of IEEE ISQED, pages 57–62,
2006.

201. A. Chepurov, G. Di Guglielmo, F. Fummi, G. Pravadelli, J. Raik, R. Ubar, and
T. Viilukas. Automatic generation of EFSMs and HLDDs for functional ATPG.
In Proc. of IEEE International Biennal Baltic Electronics Conference (BEC’08),
pages 143–146, October 6-8, 2008.

202. D. Bresolin, G. Di Guglielmo, F. Fummi, G. Pravadelli, and T. Villa. The impact of
EFSM Composition on Functional ATPG. In In the Proc. of 12th IEEE Symposium
on Design and Diagnostics of Electronic Systems (DDECS’09), April 2009.

203. A.L. Courbis and J.F. Santucci. Pseudo-Random Behavioral ATPG. In Proc. of
ACM/IEEE GLSVSLI, pages 192–195, 1995.

204. A. Yamani and E.J. McCluskey. Built-in Reseeding for Serial BIST. In Proc. of
IEEE VTS, pages 63–68, 2003.

205. M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM, 7(3):201–215, 1960.

206. R.M. Stallman and G.J. Sussman. Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer Aided Circuit Analysis. Artificial Intelli-
gence, 9:135–196, 1977.

207. M.K. Iyer, G. Parthasarathy, and K.T. Cheng. SATORI - a Fast Sequential SAT
Engine for Circuits. In Proc. of IEEE ICCAD, pages 320–325, 2003.

208. B. Li, M.S. Hsiao, and S. Sheng. A novel SAT all-solutions solver for efficient
preimage computation. In Proc. of IEEE DATE, pages 272–277, 2004.

209. C. Wang, S.M. Reddy, I. Pomeranz, X. Lin, and J. Rajski. Conflict Driven
Techniques for Improving Deterministic Test Pattern Generation. In Proc. of
ACM/IEEE ICCAD, pages 87–93, 2002.

210. R.M. Hierons, T.-H. Kim, and H. Ural. Expanding an extended finite state machine
to aid testability. In Proc. of IEEE COMPSAC, pages 334–339, 2002.

211. A.Y. Duale and U. Uyar. A method enabling feasible conformance test sequence
generation for EFSM models. IEEE Trans. on Computers, 53(5):614–627, 2004.

212. http://www.graphviz.org. Technical report, DOT Language and Graph Represen-
tation.

213. http://www.boost.org. Technical report, Boost C++ Libraries.
214. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Egineering an

efficient sat solver. In Proceedings of ACM/IEEE Design Automation Conference
(DAC), pages 530–535, 2001.

215. M. Wallace and A. Veron. Two problems-two solutions: one system-ECLIPSE. In
IEE Colloquium on Advanced Software Technologies for Scheduling, pages 1–3, 1994.

216. F. Ferrandi, F. Fummi, and D. Sciuto. Implicit test generation for behavioral vhdl
models. In Proc. of IEEE ITC, pages 436–441, 1998.

216 References

217. I. Ghosh and M. Fujita. Automatic test pattern generation for functional register-
transfer level circuits using assignment decision diagrams. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 20(3):402–415, 2001.

218. F. Corno, G. Cumani, Matteo Sonza Reorda, and G. Squillero. Effective Techniques
for High-Level ATPG. In Proc. of IEEE ATS, pages 225–230, 2001.

219. L. Zhang, I. Ghosh, and M. Hsiao. Efficient Sequential ATPG for Functional RTL
Circuits. In Proc. of IEEE ITC, pages 290–298, 2003.

220. L. Lingappan, S. Ravi, and N.K. Jha. Test generation for non-separable RTL
controller-datapath circuits using a satisfiability based approach. In Proc. of IEEE
ICCD, pages 187–193, 2003.

221. Fei Xin, M. Ciesielski, and I.G Harris. Design validation of behavioral VHDL de-
scriptions for arbitrary fault models. In Proc. of IEEE ETS, pages 156–161, 2005.

222. Q. Wu and M.S. Hsiao. Efficient ATPG for design validation based on partitioned
state exploration histories. In Proc. of IEEE VTS, pages 389–394, 2004.

223. M.K. Ier, G. Parthasarathy, and K.-T. Cheng. Efficient conflict-based learning in
an RTL circuit constraint solver. In Proc. of IEEE DATE, pages 666–671, 2005.

224. S. Padmanabhuni. Extended analysis of intelligent backtracking algorithms for the
maximal constraint satisfaction problem. In Proc. of IEEE CCECE, pages 1710–
1715, 1999.

225. S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
2002.

226. Xijiang Lin, Irith Pomeranz, and Sudhakar M. Reddy. Techniques for improving
the efficiency of sequential circuit test generation. In Proc. of ACM/IEEE ICCAD,
pages 147–151, 1999.

227. G. Di Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli. Improving Gate-
Level ATPG by Traversing Concurrent EFSMs. In Proc. of IEEE VTS, 2006.

228. E. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-
ematik, 1:269–271, 1959.

229. A. Fin and F. Fummi. Genetic algorithms: the philosophers stone or an effective
solution for high-level TPG? In Proc. of IEEE HLDVT, pages 163–168, 2003.

230. G. Di Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli. A Pseudo-
Deterministic Funcional ATPG based on EFSM Traversing. In In Proc. of MTV,
2005.

231. G. Di Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli. Improving high-level
and gate-level testing with fate: a functional atpg traversing unstabilized efsms.
Computers & Digital Techniques, IET, 1:187–196, May 2007.

232. G. Di Guglielmo, F. Fummi, C. Marconcini, and G. Pravadelli. Fate: a functional
atpg to traverse unstabilized efsms. In Proc. of IEEE ETS, 2006.

233. C. Marconcini. A Functional ATPG as a bridge between Functional Verification
and Testing. In Ph.D. thesis, April 2008.

234. Chien-In Henry Chen and Tim H Noh. VHDL behavioral ATPG and fault simu-
lation of digital systems. IEEE Transaction on Aerospace and Electronic Systems,
34(2):428–447, 1998.

235. F. Corno, G. Cumani, M. Sonza Reorda, and G. Squillero. An RT-level fault model
with high gate level correlation. In Proceedings of IEEE International High-level
Design Validation and Test Workshop (HLDVT), pages 3–8, 2000.

236. Fulvio Corno, Paolo Prinetto, and Matteo Sonza Reorda. Testability analysis and
ATPG on behavioral RT-level VHDL. In Proceedings of IEEE ITC, pages 753–759,
1997.

237. F. Ferrandi, F. Fummi, and D. Sciuto. Test generation and testability alternatives
exploration of critical algorithms for embedded applications. IEEE Transactions on
Computers, C-51(2):200–215, 2002.

References 217

238. Olga Goloubeva, G Jervan, Zebo Peng, and Matteo Sonza Reorda. High-level and
hierarchical test sequence generation. In Proceedings of IEEE HLDVT, pages 169–
174, 2002.

239. F Fallah, S Devadas, and K Keutzer. OCCOM-efficient computation of
observability-based code coverage metrics for functional verification. IEEE Trans-
action on Computer-Aided Design of Integrated Circuits and Systems, 20(8):1003–
1015, 2001.

240. M.B. Santos, F.M. Gonalves, I.C. Teixeira, and J.P. Teixeira. Implicit function-
ality and multiple branch coverage (IFMB): a testability metric for RT-level. In
Proceedings of IEEE Internationa Test Conference (ITC), pages 377–385, 2001.

241. F. Fummi, G. Pravadelli, A. Fedeli, U. Rossi, and F. Toto. On the use of a high-level
fault model to check properties incompleteness. In In the Proc. of Formal Methods
and Models for Co-Design, 2003. MEMOCODE’03. Proceedings. First ACM and
IEEE International Conference, pages 145–152, 2003.

242. A. Fedeli, F. Fummi, and G. Pravadelli. Properties Incompleteness Evaluation by
Functional Verification. IEEE Transactions on Computers, pages 528–544, 2007.

243. L. Di Guglielmo, F. Fummi, and G. Pravadelli. Vacuity Analysis by Fault Simula-
tion. In In the Proc. of Formal Methods and Models for Co-Design, 2008. MEM-
OCODE 2008. 6th ACM/IEEE International Conference, pages 27–36, 2008.

244. N. G. Leveson and J. L. Stolzy. Safety Analisys using Petri Nets. IEEE Transactions
on Software Engineering, 13(3):386–397, 1987.

245. J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc.,
1981.

246. B. J. Choi et al. The mothra tool set. In In the Proc. of 22nd Hawai International
Conference on Systems and Software, January 1989.

247. R. S. Pressman. Software Engineering - A Practitioner’s Approach, (3rd edition).
McGraw-Hill, 1992.

248. V. Linnenkugel and M. Miillerburg. Test Data Selection Criteria for (Software)
Integration Testing. In In the Proc. of the First International Conference on Systems
Integration, April 1990.

249. R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help
for the practicing programmer. IEEE Computer, 11:34–41, April 1978.

250. F. Ferrandi, F. Fummi, L. Gerli, and D. Sciuto. Symbolic functional vector gener-
ation for VHDL specifications. In Proc. of IEEE DATE, pages 442–446, 1999.

251. G J Myers. The Art of Software Testing. Wiley - Interscience, 1999.
252. F. Corno, P. Prinetto, and M. Sonza Reorda. Testability analysis and atpg on

behavioral rt-level vhdl. In Proceedings of IEEE International Test Conference
(ITC), pages 753–759, 1997.

253. A. Fin, F. Fummi, and G. Pravadelli. Amleto: A multi-language environment for
functional test generation. In Proceedings of IEEE International Test Conference
(ITC), pages 821–829, 2001.

254. F. Fummi, C. Marconcini, and G. Pravadelli. Logic-level mapping of high-level
faults. INTEGRATION, the VLSI Journal, 38:467–490, 2004.

255. O. Baruch and S. Katz. Partially Interpreted Schemas for CSP Programming.
Science of Computer Programming, 10:1–18, February 1988.

256. Chien-In Henry Chen. Behavioral test generation/fault simulation. Potentials,
IEEE, 22(1):27–32, Feb.-Mar. 2003.

257. M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital systems testing and
testable design. IEEE Press, 1992.

258. G. Pfister. The Yorktown Simulation Engine. In Proc. of 19th ACM/IEEE Design
Automation Conf., 1982.

218 References

259. Y. M. Levendel, P. R. Menon, and S. H. Patel. Parallel fault simulation using
distributed processing. In Bell Syst. Tech. J., volume 62, no. 10, pages 3107–3130,
Dec. 1983.

260. T. Blank. A survey of hardware accelerators used in computer aided design. IEEE
Design & Test Comput., Aug. 1984.

261. S. Seshu. On an Improved Diagnosis Program. IEEE Trans. on Electronic Com-
puters, EC-12(2):76–79, Feb. 1965.

262. E. G. Ulrich and T. G. Baker. Concurrent Simulation of Nearly Identical Digital
Networks. Computer, 7(4):39–44, April 1974.

263. D. B. Armstrong. A deductive method for simulating faults in logic circuits. In
IEEE Trans. Comput., volume C-21, no. 5, pages 464–471, May 1972.

264. H. C. Godoy and R. E. Vogelsberg. Single Pass Error Effect Determination
(SPEED). IBM Technical Disclosure Bulletin, 13:3344–3443, April 1971.

265. P. C. Patton. Multiprocessors: Architectures and applications. Computer, 18(6):29–
40, 1985.

266. E. W. Thompson and S. A. Szygenda. Digital logic simulation in a time-based,
table-driven environment: part 2. parallel fault simulation. In Comput., volume 8,
pages 38–49, Mar. 1975.

267. S. Kyushik. Fault simulation with the parallel valued list algorithm. In VLSI Syst.
Design, pages 36–43, Dec. 1985.

268. P. R. Moorby. Fault simulation using parallel valued lists. In Proc. IEEE Int. Conf.
Computer-Aided Design, pages 101–102, 1983.

269. W. T. Cheng and M. L. Yu. Differential fault simulation - A fast method using
minimal memory. In Proc. Design Automation Conf., pages 424–428, June 1989.

270. T. M. Niermann, W. T. Cheng, and J. H. Patel. PROOFS: A fast memory-efficient
sequential circuit fault simulator. In IEEE Trans. Computer Aided Design, volume
I-1, pages 198–207, Feb. 1992.

271. C. Lpez, T. Riesgo, Y. Torroja, E. de la Torre, and J. Uceda. A method to perform
error simulation in VHDL. Design of Circuits and Integrated Systems Conference,
1998.

272. S. Gosh and T. J. Chakraborty. On Behavior Fault Modeling for Digital Design.
Journal of Electronic Testing: Theory and Applications (JETTA), 2(2):31–42, June
1991.

273. F. Ferrandi, F. Fummi, L. Gerli, , and D. Sciuto. Symbolic functional vector gen-
eration for VHDL specifications. In IEEE DATE, pages 226–446, 1999.

274. F. Ferrandi, G. Ferrara, S.Sciuto, A. Fin, and F. Fummi. Functional test generation
for behaviorally sequential models. In Design, Automation, and Test in Europe,
pages 403–410, 2001.

275. A. Jefferson Offutt and Ronald H. Untch. Mutation 2000: uniting the orthogonal.
Kluwer Academic Publishers, 2001.

276. A. Jefferson Offutt. A practical system for mutation testing: help for the common-
programmer. In International Test Conference, pages 824–830, Oct. 1994.

277. A. Castelnuovo, A. Fedeli, A. Fin, F. Fummi, G. Pravadelli, U. Rossi, F. Sforza,
and F. Toto. A 1000X Speed Up for Properties Completeness Evaluation. In Proc.
of IEEE International High Level Design Validation and Test Workshop (HLDVT),
pages 18–22, 27-29 Octorber 2002.

278. Advanced micro devices. 1978. the am2910, a complete 12-bit microprogram se-
quence controller.

279. Hc11. http://www.gmvhdl.com/hc11core.html.
280. High time for high-level test generation. Panel at IEEE ITC, 1999.
281. A. Fin and F. Fummi. A vhdl error simulator for functional test generation. In

Proceedings of IEEE Design Automation and Test in Europe (DATE), pages 597–
600, 2000.

References 219

282. G. Buonanno, L. Ferrandi, F. Ferrandi, F. Fummi, and D. Sciuto. How an evolving
fault model improves the behavioral test generation. In Proceedings of ACM Great
Lake Symposium on VLSI (GLSVLSI), pages 124–129, 1997.

283. K.T. Cheng and J.Y. Jou. Functional test generation for finite state machines. In
Intl. Test Conference, pages 162–168, 1990.

284. F. Fummi, M. Loghi, G. Perbellini, and M. Poncino. SystemC co-simulation for core-
based embedded systems. Design Automation for Embedded Systems, 11(2):141–166,
2007.

285. Vertigo - European Project. http://www.vertigo-project.eu.
286. STMicroelectronics. http://www.st.com.
287. G. Braun et al. A universal technique for fast and flexible instruction-set architec-

ture simulation. IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, 23(12):1625–1639, December 2004.

288. M. Monton, A. Portero, M. Moreno, B. Martinez, and J. Carrabina. Mixed SW/Sys-
temC SoC Emulation Framework. In ISIE 2007: International Symposium on In-
dustrial Electronics, pages 2338–2341, June 2007.

289. http://fabrice.bellard.free.fr/qemu. Technical report, QEMU Emulator.
290. IEEE Std 1666 - 2005 IEEE Standard SystemC Language Reference Manual. In

IEEE Std 1666-2005.
291. F. Fummi, G. Perbellini, M. Loghi, and M. Poncino. ISS-centric modular HW/SW

co-simulation. In In the Proc. of the 16th ACM Great Lakes Symposium on VLSI (
GLSVLSI ’06), pages 31–36, April 2006.

292. A. Rubini and J. Corbet. Linux Device Drivers, 2nd Edition. O’Reilly, June 2001.

	Introduction
	Problem formulation
	Thesis Overview

	Background
	Embedded Systems: Modeling
	VHDL
	Verilog
	SystemC
	Implicit Modeling

	Embedded Systems: Validation
	Static Verification
	Dynamic Verification
	Test Generation
	Fault models
	Fault Injection

	Mutation Analysis
	The Mutation Analysis Process
	Using Mutation Analysis to Detect Faults
	Practical use of Mutation testing

	Co-simulation
	Co-design scenario
	Classification of co-simulation methodologies

	Constraint solving
	ECLiPSe: a Constraint Logic Programming System
	NuSMV: a Model Checking System

	Motivation and Goals
	Defining a model to represent the DUV
	Defining a functional deterministic ATPG engine
	Quantifying the effectiveness of generated test sequences
	Defining an efficient simulation engine

	HDL Manipulation Infrastructure
	Introduction
	HIFSuite Overview
	HIF Core-Language and APIs
	HIF Basic Elements
	System Description by using HIF
	HIF Application Programming Interfaces

	Conversion Tools
	HDL2HIF
	HIF2HDL
	Supported HDL Constructs

	Concluding remarks

	Methodology: Computational model
	Introduction
	The EFSM model
	Classification of EFSM Transitions
	Reference ATPG
	ATPG Efficiency
	Input-dependent HTT transitions
	Register-dependent HTT transitions

	Avoiding Input-dependent HTT transitions
	Generation of the Reference EFSM
	Generation of the Largest EFSM
	Generation of the Smallest EFSM
	Removal of Timing Discrepancies

	Avoiding Register-dependent HTT transitions
	Modeling system events
	EFSM composition
	Serial Composition
	Parallel Composition
	Feedback Composition

	The HLDD model
	From EFSMs to HLDDs
	Experimental Results
	EFSM Traversing
	Fault Coverage
	EFSM and HLDD generation

	Published contributions

	Methodology: Automatic Test Pattern Generation
	ATPG architecture
	Introduction
	Functional ATPG Framework
	Multi-Process Scheduling
	Experimental Results

	Deterministic EFSM-based engine
	Introduction
	The FATE ATPG Engine
	Experimental Results

	EFSM composition vs EFSM scheduling
	Experimental Results

	Combined use of HLDD and EFSM
	The HLDD&EFSM ATPG Framework
	The HLDD-based Engine
	The EFSM-based Engine
	Experimental Results

	Published contributions

	Methodology: Functional fault model and testbench quality
	The Bit Coverage Fault Model
	Bit-coverage Fault Injection

	The Mutation-based Fault Model
	Mutation Analysis using Program Schemata
	Mutation operators for HDL descriptions

	Methodology: Fault simulation
	Introduction
	Open issues
	The functional fault model
	Functional fault parallelization
	The parallel simulation engine
	The simulation kernel and the simulation language
	The flipping bit problem

	Optimizations
	Optimized inputs management
	Mux computation optimization
	Splitting the netlist logic cones
	Optimizing the flops computations
	Dealing with the compiler
	The four value logic
	Function inlining

	Experimental results

	Application to Embedded Systems
	Vertigo reference design platform
	Mixing modeled hardware devices and applications
	Co-simulation architecture
	Co-simulation methodology
	Multi-instance co-simulation

	Automatic Test Pattern Generation and Co-simulation

	Conclusions
	Published Contributions
	Journal papers
	International Conference
	PhD Forums

	References

