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Abstract

This thesis addresses the long-term goal of full (supervised) autonomy in surgery,
characterized by dynamic environmental (anatomical) conditions, unpredictable
workflow of execution and workspace constraints. The scope is to reach auton-
omy at the level of sub-tasks of a surgical procedure, i.e. repetitive, yet tedious
operations (e.g., dexterous manipulation of small objects in a constrained en-
vironment, as needle and wire for suturing). This will help reducing time of
execution, hospital costs and fatigue of surgeons during the whole procedure,
while further improving the recovery time for the patients. A novel framework
for autonomous surgical task execution is presented in the first part of this thesis,
based on answer set programming (ASP), a logic programming paradigm, for
task planning (i.e., coordination of elementary actions and motions). Logic pro-
gramming allows to directly encode surgical task knowledge, representing plan

reasoning methodology rather than a set of pre-defined plans. This solution in-
troduces several key advantages, as reliable human-like interpretable plan gener-
ation, real-time monitoring of the environment and the workflow for ready adap-
tation and failure recovery. Moreover, an extended review of logic programming
for robotics is presented, motivating the choice of ASP for surgery and providing
an useful guide for robotic designers. In the second part of the thesis, a novel
framework based on inductive logic programming (ILP) is presented for surgical
task knowledge learning and refinement. ILP guarantees fast learning from very
few examples, a common drawback of surgery. Also, a novel action identifica-
tion algorithm is proposed based on automatic environmental feature extraction
from videos, dealing for the first time with small and noisy datasets collecting
different workflows of executions under environmental variations. This allows
to define a systematic methodology for unsupervised ILP. All the results in this
thesis are validated on a non-standard version of the benchmark training ring
transfer task for surgeons, which mimics some of the challenges of real surgery,
e.g. constrained bimanual motion in small space.
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Chapter 1

Introduction

1.1 Motivation

In the last decades, the use of robots in the operating room has provided help to
surgeons in performing minimally invasive surgery, improving the precision of
gestures and the recovery time for patients [209, 53, 320]. At present, surgeons
tele-operate slave manipulators acting on the patient using a master console. One
frontier of research in surgical robotics [231, 41] is the development of a cog-
nitive robotic system able to understand the scene and autonomously execute (a
part of) an operation, emulating human reasoning and requiring gradually less
monitoring from experts [125]. Levels of autonomy for surgical robotics, and
their legal and ethical implications, have been analyzed in [336]. In particu-
lar, increasing the level of autonomy could further improve the quality of an
intervention, in terms of safety and patient recovery time. Moreover, it could
optimize the use of the operating room, solving issues such as surgeon fatigue
and reducing hospital costs. So far, most of the research in surgery (especially
surgical reasoning) has focused on the interpretation of sensors to guide simple
operations, e.g. knot-tying [49] and drilling [54].

This thesis faces the problem of reaching level 2 of autonomy as described in
[336]. It consists in the automation of repetitive, yet non-trivial and tedious
sub-tasks during surgery (e.g., suturing, tissue removal to expose underlying
anatomies). Level 2 of autonomy requires continuous supervision of an expert
surgeon, who shall approve the operation of the system and may take control in
case of failure or emergency. This guarantees reliability and safety of the au-
tonomous system. The artificial intelligence community has widely investigated
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FIGURE 1.1: The functions of a deliberative robot. This thesis
focuses on the task planning function of a deliberative robot.

challenges towards autonomous surgical robotics, including real-time situation
awareness for monitoring and adaptation of the surgical workflow, interpretable
workflow generation for reliability and safety, dexterous and adaptable motion
trajectory generation even in limited workspaces. These capabilities are com-
mon to the more general class of deliberative robots. Deliberation is defined as
the ability to make decisions which are motivated by reasoning on the available

resources, i.e. the capabilities of the robot, the actual description of the envi-

ronment and the given mission [139]. In the last 20 years, the requirements of
a deliberative robotic system have been investigated [109, 139, 269, 213]. De-
liberative robots must exhibit six fundamental capabilities, implemented in ad
hoc functional modules: planning, acting, monitoring, observing, goal reasoning
and learning. Figure 1.1 shows a scheme of the deliberative functions and their
integration in a deliberative robot. Planning is defined as the ability to devise
a strategy to fulfill a mission. The planning module considers the resources of
the robot and information from the sensors, provided by the observing module,
to generate a feasible plan. Since the planning module combines robot and en-
vironmental information and aids in the determination of the robot behaviour in
the environment, it is a key requirement for the deliberative robots. Depending
on the complexity of the mission, the strategy can be either a motion trajectory
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FIGURE 1.2: Standard granularity levels of surgical processes, as
described in [178].

to be directly executed by the acting module (motion planning), or a sequence
of elementary operations to be translated into low-level control commands (task

planning). In some applications, the goal of the mission may be defined as a
set of concurrent objectives. This is the case, for instance, of a domestic robot
with different objectives in different rooms. In this occurrency, the goal reason-

ing module is in charge of scheduling objectives according to suitable priority or
feasibility criteria (e.g., one objective). Moreover, in complex scenarios where
interaction with the environment and/or with humans or other robots is involved,
a monitoring module is needed to supervise the planning-acting-observing loop
and guarantee the overall correctness of the execution, triggering re-planning if
necessary. Finally, sometimes the specific strategy to complete a mission may
not be known at the design stage, hence a (online) learning capability is required
to discover the best strategy in real time and re-plan. This is particularly use-
ful in surgery, where the environment is unknown or only partially known and
the available knowledge about the mission must be obtained/incremented during
execution.

This thesis focuses on the problem of task planning for deliberative robots in
general, and specifically for surgical robots. The implementation of the planner
depends on the description of the task. In surgery, a task can be described at
different granularity levels, presented in [178] and shown in Figure 1.2. Granu-
larity represents the level of detail in the description. Starting from the very high
level, a full surgical procedure (e.g., prostatectomy) can be split into a sequence
of main phases or steps (e.g., prostate exposure, prostate removal and final clo-
sure). A more fine-grained description could focus on activities or actions, i.e.
single motion trajectories (surgemes) having semantic information regarding the
operating arm of the surgeon, the used instrument and the target anatomy (e.g.,
cut adipose tissue with left hand using scissors). In this thesis, the surgical task
represents a single step of a whole procedure, i.e. a sequence of actions, each
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one represented as a motion trajectory (or pair of bimanual trajectories) in the
robot’s workspace. Starting from a well-defined grammar of actions involved
in the step, the main scope of this research is to develop a task planner which
provides the (best) sequence of actions reaching the goal of the step. The task
planner reasons on a formal description of task knowledge, in terms of causes
and consequences of actions, constraints and the goal. In this thesis, first the task
knowledge is assumed to be available as a prior. However, this is not realistic for
the surgical context, and complex robotic tasks in general, where the workflow of
execution depends on multiple environmental variables (e.g., anatomy of the pa-
tient), hence cannot be determined in advance. Then, this thesis also shows how
to refine and learn task knowledge from few example executions of the surgical
step. The performance of the task planner is validated on the da Vinci Research
Kit (dVRK), a research-oriented version of the standard surgical da Vinci R© robot
from Intuitive Surgical, equipped with two robotic arms with mounted surgical
tools on them. Real execution requires the implementation of motion planning
and control. For the scope of this thesis, motion planning is based on learning
from human demonstration. The surgemes for each action are learned from few
training executions, recording poses (3D positions and orientations) of robotic
tool tips. During autonomous execution, the robotic tools then execute trajecto-
ries with similar 3D shape as the human ones, and similar orientation along the
way, given starting and ending poses for the current task instance. Learning from
demonstration allows to replicate human dexterity, which is a fundamental skill
of surgeons and guarantees good outcome for the patient.

In the next section, main solutions to the problem of task planning for de-
liberative robots are briefly presented. This will lead the way to the intended
contribution of this thesis, and related implementative choices.

1.2 Task planning for deliberative robots

Inspired from the definitions by [109], a robotic system is generally defined as
a set of robots with a common task, which can be achieved through a set of ac-

tions, i.e. elementary operations which can be performed by the robots in the

environment. For the scope of this thesis, the robotic systems is composed of the
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two arms of the dVRK. The resources of the robotic system are the robots with
their possible actions, as well as relevant objects in the scenario (e.g., instru-
ments which can be used in the task, or obstacles). The task planning problem

is then defined by the goal, the resources, the description of the environment and
some user-prescribed specifications. The environment is defined through rele-
vant state variables related to specific environmental features (e.g., position of
objects and spatio-temporal relations between them). Specifications define pre-

conditions of actions, i.e. the set of conditions which must be verified before
executing the actions; post-conditions or effects of actions, i.e. conditions which
hold after actions are executed; execution constraints, i.e. sets of conditions
which cannot hold at the same time. Conditions involved in the specifications
may be conditions on actions (e.g., an action must occur after another one) or
on environmental state variables (e.g., an action can be performed only if the
environment is in a specific state). The output of the task planner is a plan, i.e.
an ordered sequence of actions to be executed to accomplish the goal of the task,

satisfying the task specifications.
The task planning problem can be described with a number of formalisms,

presented e.g. in [109, 107]. Different taxonomies of task planners have been
proposed. In [109], a classification is proposed in domain-dependent and domain-
independent task planning. An alternative classification is proposed in [139], dis-
tinguishing between deterministic and non-deterministic (or probabilistic) task
planners. These two categorizations are presented and briefly discussed next.

1.2.1 Domain-dependent vs. domain-independent

Domain-independent planning [329] is interesting to the robotic community be-
cause it is expected to solve the task planning problem in different environments
or operational scenarios, starting from a very high-level generic description of
the domain. For instance, in a complex robotic task involving transport of ob-
jects to pre-defined locations, the domain-independent planner is useful to define
a general plan to reach the objective for all objects (e.g., modeling the task as
a generic navigation problem). However, grasping and manipulation of single
objects before moving them to targets depends on their specific properties and
is thus more efficiently managed by a domain-dependent planner [74], which
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is appropriately designed for the current application. While domain-dependent
planning has more practical implementation than domain-independent, it lacks
in generality, so it is not suitable on its own for complex heterogeneous robotic
tasks. For this reason, in [109] configurable task planning is proposed to com-
bine high-level domain-independent task planning with domain-dependent sub-
task planning. An explanatory example of this approach can be found in [296],
where the full mission is split into a sequence of simpler tasks. While the global
strategy is planned through domain-independent hierarchical task planning, a
specific domain-dependent planner is in charge of the single tasks. The method
is validated successfully on benchmark planning problems, including the famous
block-world example.

This categorization of task planners is very coarse, since no detail is provided
about the formal characterization of the planner used to describe the features of
the environment and the robot.

1.2.2 Probabilistic vs. deterministic

Non-deterministic (or probabilistic) task planners are usually based on Markov
decision processes and Bayesian models. Stochastic models can capture uncer-
tainity in the environment and sensors, and allow to perform Bayesian inference
to output the plan which will most probably satisfy the goal of the task [163, 308,
195]. Probabilistic planners offer natural integration with the acting and observ-
ing modules shown in Figure 1.1 because of their data-driven nature, hence they
guarantee ready adaptation to changes in the environment and re-planning. How-
ever, they do not generally provide enough expressive support to the definition
of complex task constraints, e.g. temporal and semantic relations between ob-
jects and robots. Moreover, they are typically based on offline/online statistical
learning to catch and refine the probabilistic map between environmental vari-
ables and robotic actions. This comes at the cost of the interpretability of the
planning process. Interpretability is defined as the easy understanding of the

robotic actions and their causes, as observed from a human supervisor. It is an
important property of autonomous systems in safety-critic applications involving
human-robot interaction as surgery [92], and has been introduced as a fundamen-
tal requirement in regulations for high-risk artificial intelligence systems [184].
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In fact, the decision-making process of a stochastic planner is strongly driven by
what is sensed from the environment and their consequently learned probability
mapping to possible actions; however, there is no guarantee that statistical out-
liers or other sources of error are prevented from affecting the correctness of the
final plan.

On the contrary, deterministic planners rely on a more formal description of
the scenario, in terms of relevant user-defined variables (e.g., environmental and
temporal variables, or actions) to reason on. A popular example is temporal plan-
ning [95, 96], where variables are used to represent time intervals and generate a
plan which satisfies temporal constraints on the sequence of operations towards
the goal (e.g., for scheduling robots in industry).

High expressive power to represent the task planning specifications and re-
sources is guaranteed by logic formalism, encoding task knowledge in terms of
logic variables and statements. In particular, it is possible to store concepts, e.g.
entities in the robotic domain and the environment, with properties and mutual
relations, in an ontology knowledge base [267].

The expressive capabilities of some logic-based planners are further increased
by the open-world assumption, i.e. a consequence can be deduced irrespective of
whether or not the relative causes are known to be true. In other words, assume
that a robot shall accomplish the standard manipulation task of moving colored
cubes on a shelf. The goal of the task can be represented with a single logic
statement as if a colored cube is found, then it must be placed on the shelf, as-
suming that a set of known possible colors is provided (e.g., red, blue and green).
Under the closed-world assumption, if only the red and green cubes are found,
the robot will only complete the task for them, ignoring the blue one. On the
contrary, when the open-world assumption holds, the robot will not consider the
task as successfully completed, until the blue cube is either found (e.g., with
further exploration) or declared as absent from a human.

Under the open-world assumption, description of the robotic domain and use-
ful resources for planning are typically stored as logic variables and statements
in an ontology [267], i.e. a high-level knowledge base. A description logic [13]
then provides operators (e.g., first-order-logic operators or standard quantifiers
as ∃, ∀ [297]), allowing to reason on logic variables and deduce new ones from
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known ones. Description logic and ontologies offer high expressivity, allowing
to reason on sub-classes, properties and more complex relations between enti-
ties of the knowledge base. This is particularly useful for complex scenarios as
autonomous surgery [239, 110, 114], human-robot interaction [188, 36] and in-
dustrial manipulation [68], involving a large number of variables and hierarchical
relations and properties built on them.

However, as evidenced by [321, 241], the improved expressivity and the
open-world assumption significantly increase the computational burden, which
is a major drawback in robotic applications with real-time demands, as surgery
requiring, e.g., prompt re-planning in case an emergency occurs. A more com-
putationally tractable approach, chosen for the scope of this thesis, is logic pro-

gramming [200]. A logic program defines entities of the task domain and logi-
cal relations representing specifications. Logic programming does not offer the
same expressive power of ontologies and description logics (e.g., support for
quantifiers and complex properties of entities). However, this does not represent
a significant limitation for the aim of this research, as it will be clarified in the
following. Moreover, it will be shown that, while the task description is com-
pletely implemented in a single logic program, still several logic programming
implementations support the open-world assumption, allowing integration with
external ontologies when needed. Finally, logic programming is more suited
for robotic task planning, since it can support revision of former deductions and
optimal reasoning to choose among different deductions (these aspects will be
clarified in the following of this thesis).

1.3 Thesis contribution and outline

This thesis contributes to the ambitious goal of reaching surgical autonomy, and
to the more general goal of enhancing deliberation in robotic applications. In
particular, the main focus is on reaching level 2 of autonomy. The former Sec-
tion has specified that logic programming is chosen as the most appropriate so-
lution for this purpose, guaranteeing interpretability (hence more reliability) and
enough expressivity.
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The first goal of this thesis is to provide an extended review (missing in ex-
isting literature) of state-of-the-art logic programming formalisms for task plan-
ning in robotic applications, in order to identify the most appropriate solution.
In particular, a review focused on robotic applications over the last 20 years is
proposed, in order to guarantee that analyzed logic programming formalisms
represent the state of the art. Differently from standard categorizations proposed
in Section 1.2, a more suitable categorization based on expressivity is consid-
ered. The expressivity is representative of the complexity of concepts and re-
lations that can be described within each logic formalism, hence it determines
the application to surgery. However, complex expressivity usually increases the
computational effort, which may represent a limitation for robotic tasks, espe-
cially when safety-critic scenarios like surgery are considered, requiring prompt
reaction to anomalies and failures. Comparison between different formalisms is
presented and discussed on the basis of benefits and drawbacks of differently ex-
pressive logics, as well other useful features for the robotic community, including
support for online re-planning and open-world reasoning.

Results of the review show that Answer Set Programming (ASP) is the most
appropriate candidate for the surgical scenario, since it supports knowledge re-
vision for re-planning, and can encode temporal relations (e.g., arbitrary delays)
between entities of the robotic domain, safety and optimization constraints, with
real-time computational requirements. Hence, a framework for autonomous sur-
gical task execution is presented in this thesis, based on ASP for task planning
and DMPs for motion planning. The framework relies on the continuous moni-
toring of the surgical robotic scenario through sensors (camera and kinematics).
The framework addresses some crucial issues of existing autonomous systems
for robotic surgery, including interpretable behavior for better reliability and
safety, and online adaptation to anomalies and failures. Interpretability is also
guaranteed by a semantic interpretation of raw information from sensors, which
allows integration with logic reasoning at task level. The utility and novelty of
the framework is remarked by the publications in [114, 115].

One challenge of autonomous robotic surgery is the unpredictability of the
anatomical environment and its behavior intra-operatively, depending on the spe-
cific patient. The task knowledge encoded in the logic planner only represents
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standard description of the task and the environment, but does not cover all pos-
sible task instances. Hence, the second part of this thesis focuses on the problem
of learning surgical task knowledge through inductive logic programming (ILP)
under the ASP syntax, as described in the publications in [218, 219]. ILP allows
to learn logic specifications from a very limited number of example executions
of a task, solving one fundamental issue of other state-of-the-art data-driven ma-
chine learning methods as Markov models, i.e. the lack of extensive surgical
datasets for robust model learning. Moreover, task knowledge learned through
ILP and added to the ASP program for task planning shows to reduce the com-
plexity of the original specifications, shortening the time for plan computation.
The contribution of the proposed ILP approach is relevant also to the generality
of the robotic community, since for the first time ILP is applied to the challeng-
ing task of learning specifications for a robotic task involving multiple actions
and agents (arms of dVRK), and temporal relations expressed in the paradigm of
event calculus.

The ILP approach presented in this thesis is supervised, i.e. example execu-
tions are manually annotated by experts and labels describing actions and envi-
ronmental features are provided. This is infeasible for complex surgical proce-
dures, usually lasting very long time. Hence, the final part of this thesis presents
an unsupervised approach to ILP. Specifically, a novel unsupervised action iden-
tification algorithm is presented as described in [217], which outperforms the
performance of state-of-the-art methods even on challenging and small datasets,
exploiting semantic environmental features.

The experiments for validating the contributions of this thesis are performed
on a benchmark training task for surgeons, the ring transfer from Fundamen-
tals of Laparoscopic Surgery (FLS) [66], consisting in placing rings on same-
colored pegs and requiring coordination of multiple actions depending on dy-
namic environmental conditions. While this task replicates several challenges of
real surgery, it excludes others which are covered by other FLS exercises. How-
ever, the next chapters will clarify that the generality and the applicability of the
proposed methodologies in this thesis are preserved.

The remainder of the thesis is organized as follows. First, Chapter 2 de-
scribes the ring transfer task and the robotic setup with dVRK robot for the
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autonomous execution. This chapter is useful to clarify the challenges of the
considered benchmark task, in order to highlight the differences with other train-
ing tasks from FLS and motivate the choice of ring transfer. The benchmark
training task is then used to validate the choice of ASP among other logic pro-
gramming paradigms, in the review presented in Chapter 3. Chapter 4 describes
the ASP formalism and solving strategies, in order to introduce the reader to the
description of the framework for autonomous surgical task execution in Chapter
5. After presenting and validating the autonomous framework in different exper-
imental conditions, the problem of learning new ASP knowledge from examples
is investigate in Chapters 6 (supervised ILP) and 7 (unsupervised ILP). Finally,
Chapter 8 summarizes the results of this thesis and proposes future extensions.
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Chapter 2

The setup for ring transfer task
with da Vinci Research Kit

2.1 Introduction

The benchmark surgical training ring transfer task from Fundamentals of La-
paroscopic Surgery (FLS) [66] is considered to validate the contributions of this
thesis. The task is executed with the research version of the established surgical
da Vinci R© robot, the da Vinci Research Kit (dVRK)1.

The scope of this chapter is to describe the ring transfer, detailing the modi-
fications made to the standard version of FLS to highlight the capabilities of the
autonomous framework presented in Chapter 5. Also the full setup, including
the dVRK robotic platform and the functions of sensors (the vision system), is
presented to clarify design choices in the next chapters. A final section discusses
a comparison between the ring transfer and other tasKs in FLS. This evidences
the challenges of the considered task, justifying its choice as a benchmark for
this thesis, and is useful to clarify the limitations of the presented framework,
and possible directions for future research in Chapter 8.

2.2 The dVRK

As the original da Vinci R© system, dVRK consists of a patient side and a remote
control side. On the remote control side, a console for an expert surgeon is

1https://github.com/jhu-dvrk/sawIntuitiveResearchKit

https://github.com/jhu-dvrk/sawIntuitiveResearchKit
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FIGURE 2.1: The patient side of the dVRK, with the PSMs (lat-
eral) and the ECM (center).

mounted. Through the console, the surgeon can tele-operate the instruments on
the patient side.

A picture of the patient side of the dVRK is shown in Figure 2.1. It consists
of two cable-driven robotic arms with 6 degrees of freedom (DOFs), denotes
as Patient-Side Manipulators (PSMs), and one Endoscopic Camera Manipulator
(ECM) with 6 DOFs.

The PSMs may be equipped with different surgical laparoscopic tools, sim-
ilar to the ones used in standard manual surgery. For the scope of this thesis,
two large needle drivers, typically employed for needle manipulation in sutur-
ing tasks, are used. Each instrument has a gripper whose opening / closure is
commanded separately.

The ECM mounts the surgical stereo camera, and allows for camera motion
during the intervention (if requested by the surgeon). In this thesis, the ECM is
assumed to be fixed.

The dVRK also offers APIs to control the pose and the joints of the patient-
side instruments.
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FIGURE 2.2: The setup for the ring transfer task. The red dashed
line defines reachability regions for the two arms.

2.3 The ring transfer task

The setup for the bimanual ring transfer task with dVRK is shown in Figure 2.2.
The task consists in placing colored rings (4 rings with colors red, green, blue
and yellow) on the same-colored pegs. In standard task description from FLS,
each ring is initially placed on a grey peg, and it must be transferred between
arms of dVRK before placing on the corresponding peg. The standard task def-
inition hence only requires the execution of a pre-defined sequence of actions
(moving to a ring, grasping it, transferring to the other arm and placing on the
peg) without significant variations in the workflow, except for the failure con-
dition that a ring may fall during the motion of a PSM. In this thesis, a more
flexible task description is considered, to increase the variability and highlight
the versatility of the framework for autonomous execution.

The first modification consists in defining reachability regions for the PSMs,
i.e. areas of the peg base which can be reached by the robotic arms. Introducing
reachability regions guarantees that the robotic arms do not collide with each
other during the execution of the task. In Figure 2.2, they are denoted by a red
dashed line. If a ring is in the same reachability region as the corresponding peg
(e.g., the red ring in Figure 2.2), a single arm (PSM1) can grasp and place it
on the peg; otherwise (e.g, the blue ring) transfer between the arms (PSM2 to
PSM1) is needed.
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Moreover, colored pegs may be occupied by other rings, so they must be
freed before placing another ring on them. This operation may require the tem-
porary placement of a ring on a grey peg, which is an unconventional operation
for task completion (validation of the framework in Chapter 5 will consider a
similar scenario).

In addition, rings may be placed on a peg or not at the beginning, requiring
extraction or not (respectively) before moving them.

Finally, the scenario for the ring transfer task is assumed to be dynamic, i.e.
all the environmental conditions may change during the execution. In this way,
also the condition that a ring is added to the scene after the beginning of the task
can be resolved with re-planning at task level. Furthermore, positions of rings
may change over time, triggering re-planning at motion level.

Even if ring transfer is not a proper surgical task, it is widely used as a train-
ing exercise for surgeons [240], since it presents several challenges in common
with real surgery, and therefore it represents a necessary first step before address-
ing more realistic surgical tasks. In fact, PSMs must move in a surgical-scale en-
vironment, avoiding obstacles (e.g., parts of the anatomy), grasping and position-
ing small objects with precision and dexterity (like needle grasping in suturing)
and adapting to any variation in the scenario. Moreover, object manipulation
in a constrained environment is essential for most surgical sub-tasks, from su-
turing (bimanual coordination in needle passing and knot tying) to debridement
(localization of small anatomies, e.g. tumors, to be grasped and removed).

In order to further increase the relevance of the benchmark task for the sur-
gical scenario, criteria of optimality in the plan computation are introduced. In
particular, economy of motion (i.e., the distance covered by PSMs during the
task) is maximized, specifying that the rings shall be picked and placed on pegs,
sorted according to their distance with respect to PSMs. In this way, the ring
which is closest to any of the PSMs will be picked up first. Plan optimality is
typical of real surgery, where often multiple strategies to accomplish the inter-
vention exist, and the choice of the best solution depends both on the patient’s
anatomy and the expertise of the surgeon.

It is important and fair to remark that the ring transfer does not obviously
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cover all challenges of real surgery, for which novice surgeons are usually eval-
uated with other exercises from FLS, as suturing, precision cutting and ligation.
All other tasks in FLS involve the interaction with soft tissues, hence require
adequate low-level control strategies (force control) for proper autonomous ex-
ecution. Currently, force feedback is not implemented on the dVRK, and the
estimation of forces from joint actuations and the dynamical model of the robot
is not sufficiently accurate, due to the complexity of the cable-driven mechanics.
For this reason, other tasks from FLS have not been considered as benchmark
for the methodologies proposed in this thesis. However, next chapters (in par-
ticular Chapter 5) will show that the autonomous framework, and mostly the
logic-based task-level learning and reasoning approaches, presented in this work
can be generalized to more complex and challenging tasks.

2.4 The vision system

In order to execute the task autonomously, the robotic system must be equipped
with sensors to deal with the dynamic scenario. Though the endoscopic camera
could be directly used, the localization accuracy typically suffers from the small
baseline between the stereo cameras. For this reason, in the experiments in this
thesis a Realsense D435 RGBD camera2 is mounted with a proper adapter on the
fixed ECM, as shown in Figure 2.2. The chosen camera has 105 mm minimal
depth range of view.

Before the task execution begins, the camera and the PSMs must be cali-
brated, in order to define a common reference frame (from now on, referred to
as world) for localization and motion control. Then, an algorithm for real-time
object recognition is executed, to identify and localize rings and pegs.

2.4.1 Calibration procedure

The calibration of PSMs and the camera with respect to a common reference
frame world is realized as described in [276]. This approach guarantees to reach
an average localization accuracy of objects in the scene of 1.6 mm, compatible

2https://www.intelrealsense.com/depth-camera-d435/

https://www.intelrealsense.com/depth-camera-d435/
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FIGURE 2.3: The reference frames in the transform tree after the
calibration procedure. The orange transformations are known,

whereas the black transformations are to be estimated.

with measured intrinsic kinematic accuracy of dVRK in standard repeatability
tests (multiple positioning of end effectors on known points in the workspace),
which is affected by the inaccuracy of the cable-driven actuation [126].

The goal of calibration is to build the transform tree depicted in Figure 2.3.
Frames denoted with base are part of the kinematic description of the PSMs and
the ECM. Base frames represent fixed frames which correspond to the remote
center of motion of the robotic arms during the execution. In fact, in surgery, la-
paroscopic instruments are typically introduced in the body of the patient through
pre-defined entry points, constraining the instruments to pivot at them.

The aim of the calibration procedure is twofold. First, the rigid transfor-
mations Tw

? between world and the base frame of the arms, assuming ? ∈
{ecmb, psm1b, psm2b}, are computed. Second, the transformation Tcam

ecm be-
tween the camera reference frame and the ECM reference frame is obtained.

A custom calibration board is used, shown in Figure 2.4 (left), with an ArUco
marker in the center of a circumference of 50 mm radius, with several reference
dots. The ECM is equipped with a 3D-printed adapter, shown in Figure 2.4
(right). The adapter has a smaller tip than the ECM to guarantee precise posi-
tioning on the dots on the board.

The procedure starts by positioning the calibration board in the workspace of
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z

FIGURE 2.4: The calibration setup with the adapter for ECM
(right) and the Aruco marker, with the axes of the common refer-
ence frame for all components of the robotic system, as computed

after calibration (left).

the robot. A set of reference points P is chosen such that each point p ∈ P is
reachable by the three arms and visible from the camera. The points in P must
be symmetric with respect to the center of the board to compute the origin of the
common reference frame; at least three points are needed to estimate the plane
coefficients. The best fitting plane is characterized by the centroid of the point
set P, c, and the normal vector n. Their optimal estimations are the solution to
the optimization problem

{ĉ, n̂} = arg min
c,|n|2=1

n

∑
i=1

((pi − c)Tn)2 (2.1)

As in [100] the centroid is estimated by

ĉ =
1
n

n

∑
i=1

pi. (2.2)

The normal vector n is obtained by factorizing the distance matrix A with Sin-
gular Value Decomposition (SVD)

A = USVT =
[
p1 − ĉ, . . . pn − ĉ

]
∈ R3×n (2.3)
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and taking the third column of the matrix U =
[
u1 u2 u3

]
, n̂ = u3. To

generate a common reference frame for all the tools three algorithmic steps are
implemented:

1. Arm calibration

2. Camera calibration

3. Hand-eye calibration

Arm calibration

In order to find the transformation of the arms base frame with respect to the
common reference frame, the end effector poses of the arms (PSMs and ECM
with adapter) are recorded on each point in the set P. In order to obtain the ECM
effective pose, the known rigid transformation between the adapter and the ECM
is removed. On this set, the best fitting plane is estimated using 2.1. The set
P is then augmented by adding a point above the calibration board acquired by
moving the arm’s end effector. This last point is used to define the desired plane
normal direction

nd =
pn+1 − c
|pn+1 − c|2

where pn+1 is the last point in the ordered set P, c is the centroid of P and
| ∗ |2 is the vector norm. For each arm, the homogeneous transformation Tw

? of
the common reference with respect to the arm base frame is defined using the
direction versors

u = sign(n · nd)n

l = u× p1 − c
|p1 − c|2

f = l× u
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and the centroid c
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Camera calibration

In order to find the transformation Tw
cam for the RGB-D camera, the center of the

ArUco marker on the board with respect to the camera frame is first identified.
Then, the pose is aligned on the point cloud generated from the depth map ac-
quired by the RGB-D camera. The marker pose and its known radius are used to
generate the pose of every dot in the set P in the marker reference frame, as well
as the point above the calibration board.

Once the pose set P is obtained, the best fitting plane is computed using 2.1,
and the homogeneous transformation Tw

cam is found between the common refer-
ence frame to the camera base frame by adapting the previous approach used for
the arms.

Hand-eye calibration

The hand-eye calibration problem is formulated using the homogeneous trans-
formation matrices:

AX = XB

where A and B are known homogeneous matrices representing the frames of the
base of the robot and the camera, respectively. The unknown transformation X
is between the robot coordinate frame and the camera coordinate frame. Given
Tw

cam, X can be computed as the relative homogeneous transformation between
the end effector of the ECM and the RGB-D base frame:

Tcam
ecm = Tcam

w (Tecm
w )−1.
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Algorithm 1 Detection Algorithm

1: Input: Point cloud PCin(t) in real time
2: Output: Point clouds of rings, PCr, and pegs, PCp
3: Initialize: PCr = [], PCp = []
4: for t = 1 : ∞ do
5: Subsample PCin(t) to PCsub(t)
6: for each color do
7: Color Segmentation of PCsub(t)
8: Euclidean clustering
9: Update PCr ← RANSAC

10: if t == 1 then
11: Update PCp
12: end if
13: end for
14: end for

2.4.2 Object recognition

Thanks to the calibration procedure, the poses of the robotic arms as read from
the built-in encoders of the dVRK can be easily transformed in the world frame,
and related to the poses of the point cloud returned by the camera. From the point
cloud, relevant objects in the ring transfer scenario must be identified using an
appropriate Detection Algorithm 1. The algorithm is based on standard methods
from the well-established Point Cloud Library3.

The point cloud is subsampled in order to guarantee real-time performances.
The base and the pegs are assumed to be static during the whole execution, and
they are identified only at the beginning of the task. The poses of all rings are
retrieved at each time step.

The identification of pegs and rings is performed in two steps. First, color
segmentation allows to identify same-colored points. Then, Euclidean clustering
allows to separate the clouds of ring and peg for each color. Finally, Random
Sample Consensus (RANSAC) is used to fit a torus shape on both clusters, and
the best fitting cluster is identified as the ring, while the other as the peg.

The output of Algorithm 1 is the point cloud of rings and pegs.

3https://pointclouds.org/

https://pointclouds.org/
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2.5 Conclusion

This chapter has described the ring transfer task considered in this thesis, and
the setup (dVRK + RGBD camera) used for experiments. The task is a standard
training exercise for novice surgeons from FLS, and it represents the most es-
tablished benchmark for robotic surgery. For this reason, it is chosen to validate
the contributions of this thesis. In fact, the ring transfer involves several chal-
lenges of real surgery with dVRK, and da Vinci R© system in general, including
dexterous manipulation in small constrained environments, bimanual manipula-
tion and cooperation. These challenges are common, e.g., to needle grasping or
knot tying during suturing, or debridement and removal of anatomical parts as
tumors. Furthermore, While not all challenges of real surgery are involved in
the ring transfer task (e.g., soft tissue interaction, covered by other FLS tasks),
the next chapters (especially Chapter 5) will clarify that this does not affect the
generality of the methodologies proposed in this thesis.
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Chapter 3

Logic task planning for deliberative
robots

3.1 Introduction

This chapter reviews the state of the art in logic programming paradigms for
robotic task planning. In order to clarify the concepts, examples from the do-
main of the ring transfer task will be proposed along with the presentation of
different paradigms, in order to better motivate the final choice of the most suit-
able planner.

Before starting the survey, a formalization of (part of) the ring transfer task
follows to introduce standard nomenclature and definitions.

3.2 Formalization of the problem

The ring transfer task can be formalized using an action language [83], en-
coding task entities and specifications as preconditions, effects of actions and
constraints, as well as the goal. One of the most popular action languages for
robotics is the Planning Domain Definition Language (PDDL) [165].

In PDDL, the ring transfer task can be represented as follows1:

(define(domain ring transfer)

(:types ring, peg, arm)

1The formal description of the ring transfer task is kept simple and essential for the scope of
this chapter. In Chapter 5, a more detailed formalization will be provided.
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(:functions free ?p - peg;

at ?a, ?r - arm, ring);

on ?r, ?p - ring, peg)

reachable ?a, ?p - arm, peg)

reachable ?a, ?r - arm, ring)

(:action move

parameters: (?a - arm; ?r - ring)

precondition: (reachable ?a, ?r)

effect: (at ?a, ?r))

(:action move

parameters: (?a - arm; ?p - peg)

precondition: (reachable ?a, ?p)

effect: (on ?r, ?p))

(:action transfer

precondition: (at ?a, ?r))

(constraints: (and (transfer, reachable ?a ?r,

reachable ?a ?p))

(:goal on ?r, ?p))

Domain entities (types) with their properties (functions) and actions (move)
are involved in the definition of task specifications. Starting from this high-level
representation, a logic programming language encodes the task knowledge using
a sorted signature D , with symbols (terms) which can be arranged hierarchically
to form atoms, i.e. predicates of terms representing attributes of the domain.
Terms may be variables or constants. A term which is constant is ground, and
atoms are ground when terms in them are all ground. After grounding, atoms
become Boolean variables. Atoms are either fluents or statics, depending on
whether they depend on time or not, respectively. As clarified in the next sec-
tions, dependency on time can be made explicit through the use of a tempo-
ral variable, depending on the specific logic programming framework. Fluents
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typically represent actions or environmental attributes. For instance, in the do-
main of ring transfer arm (with constant value, e.g, psm1, psm2) ring and
peg (with constant values identifying rings and pegs of specific colors) are stat-
ics, while functions and actions shall be defined as fluents. In the following
of this chapter, A, R, P will be used as shortcomings for the variable terms
arm, ring, peg, respectively. Logic programming languages also introduce
specific operators which allow to write the specifications, i.e. preconditions and
effects of actions, and executability constraints. For instance, the precondition to
transfer action can be expressed with the logic implication operator, at(A,
R) → transfer. Operators define the expressivity of a logic language and,
hence, of a logic planner, and constrain the specifications which can be defined
(e.g., specific languages can support temporal operators, other than logic ones).

The plan is computed using a language-specific solver. The solver grounds
atoms according to external information (provided, e.g., by sensors). In this
way, the logic program is translated to a set of propositional logic formulas
(i.e., all grounded atoms are Booleans). Then, the solver uses logic deduc-
tion to return the plan from the specifications, which now represent logic im-
plications between the Booleans of actions and domain entities. For exam-
ple, in the ring transfer domain the solver could receive the information that
the red and green rings are present in the scene, and the red ring is already
on the red peg. Hence, the grounding process would return the instances of
ring(red,green), peg(red,green,blue,yellow), on(ring(red) ,

peg(red)), reachable(psm1, ring(red,green)),reachable(psm1,

peg(red,green)),reachable(psm2, peg(blue,yellow)) and free(

peg(green)), with assignments for the generic variables. This will lead to
compute a plan as move(psm1,ring(green)), move(psm1,peg(green)).

In this chapter, a main categorization of logic planners based on their ex-
pressivity is proposed, because it allows to highlight their advantages when ap-
plied to the description of different robotic domains. Moreover, as the expressiv-
ity increases, the computational complexity of solving the logic program rises.
Hence, evaluating logic planners according to their expressivity allows to iden-
tify a tradeoff for real-time safety-critic applications as surgery. Three main
categories of expressivity are considered: planners based on standard logic, i.e.
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classical Boolean logic with operators as conjunction, disjunction, implication
and negation; planners based on temporal logic, supporting specific operators
to define temporal relations between atoms; and planners based on probabilis-

tic logic to account for uncertainty in logic deduction. Other than expressivity,
also other important features of logic planners will be analyzed and discussed,
including software implementation and support for open-world planning and on-
line re-planning.

3.3 Standard logic planning

The terminology standard logic refers to logic programming frameworks based
on standard Boolean logic, where specifications are expressed using operators as
negation, conjunction, disjunction and implication. In order to represent the tem-
poral sequence of actions and fluents, an explicit time variable t must be defined.
Hence, with reference to the ring transfer domain, fluents have an additional ar-
gument t (e.g., on(R, P, t)). Standard logic planners can be grouped in two
main categories, Prolog-based and languages based on answer set programming,
which differ in the solving strategy and the computational performance. Also
other implementations have been proposed, though they are often chosen only
for specific applications. A brief mention to them is provided in the end of this
Section.

3.3.1 Prolog-based planners

One of the first examples of standard logic programming languages for plan-
ning is Prolog, introduced in [318]. Specifically, Prolog is a language for non-

monotonic logic programming, i.e. the underlying logic reasoning (and knowl-
edge) is non-monotonic [216]. To understand non-monotonicity, consider a
generic task knowledge K expressed as a set of entities and specifications, and
a Boolean assertion A induced by K, i.e. K |= A. The knowledge is said to
be monotonic if the addition of a new set S of specifications or entities does not
affect the truth of the entailment, i.e. K ∪ S |= A. Otherwise, the knowledge
is said to be non-monotonic. Non-monotonicity of knowledge has allowed to
solve the famous qualification problem in artificial intelligence, moving from
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the concept of circumscription of human reasoning [215], and it has led to the
development of several logic frameworks for decision making of expert systems,
e.g. deductive databases [77], abduction theory [5] and stable model semantics
[70]. In a robotic task non-monotonicity is needed when the environment is not
completely known or dynamic. Considering the ring transfer task, rings may be
introduced in the scene (e.g., by a human) during task execution. As a conse-
quence, the solver must continuously update the plan, as new rings are found
(hence, new reachable fluents are grounded).

The syntax of Prolog extends standard logic formalism with negation as fail-

ure (NAF). To show the difference between NAF and classical logic negation,
consider a generic Boolean variable p. In order to state ¬p in classic monotonic
logic, it is necessary to prove that the negation of p holds; on the contrary, to
prove not(p) (NAF syntax in Prolog) it is only required that p does not hold.
Hence, NAF introduces non-monotonicity in the task knowledge representation,
and it also encodes the closed-world assumption. NAF is used in combination
with fluents, since their value can be updated at run time. For instance, in the
ring transfer task the goal can be expressed as the condition that the all and only

reachable rings must be eventually placed on pegs, as⊥← reachable(A, R,

t), reachable(A, P, t), not(on(R, P, t)). The NAF syntax is used
to specify that it is impossible that a reachable ring is not on the corresponding
peg (hence, a new plan must be devised until this condition stops holding).

Moreover, starting from Prolog III [52] and up to the latest version Prolog
IV [242], Prolog has further extended the standard logic syntax with structures
like lists and trees to represent a richer hierarchy between Boolean variables,
and is able to manage constraints on real variables which are useful for robotic
applications involving continuous environmental and kinematic variables (e.g.,
positions of objects).

These features have increased the appeal of Prolog in many challenging task
planning scenarios for deliberative robots, and prompted the development of
several Prolog-based programming languages. Relevant are the many Prolog-
based implementations of the Golog action language [190], such as in [141]
for multi-robot hierarchical task planning in the context of RoboEarth project
[323]; [161], where an useful integration of the Golog dialect Readylog with
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the Robot Operating System (ROS) [164] is proposed through C++ bindings
(Golog++ [212]), with an application to the Pepper service robot; [111], where
INTRGOLOG is presented to implement task interruption and resumption in re-
action to anomalous events; [286], where Readylog is used for task planning
in domestic scenario with Caesar robot; [91], where TEAMGOLOG is used for
multi-robot coordination in a search-and-rescue application under partial observ-
ability. Among main implementations of Prolog, also SWI-Prolog [327] shall be
mentioned, which implements constructs for optimal query answer and plan gen-
eration under the paradigm of preference reasoning [34] and has been used, e.g.,
in the Tartarus framework for the integration and coordination of multiple robots
in cyber-physical systems [290]; [236], where Fuzzy Prolog is used to deal with
missing information in real-time robotic soccer; [142], where multi-robot coordi-
nation for domestic activities is implemented in Prolog; [335], where an efficient
software integration between qualitative Prolog calculus and quantitative C++
processing is implemented for robotic assistance to elderly and disabled people;
[263], which proposes SitLog, a Prolog-based planner for service robotic tasks in
domestic scenario, in the context of RoboCup@Home international competition;
[245, 88] for robotic assembly in industry.

In spite of the success of Prolog in many robotic scenarios, a major draw-
back comes from the way the task knowledge is represented, and then solved for
plan computation. As detailed in [242], Prolog arranges symbols of the sorted
signature in a tree structure, following the term-atom hierarchy. For instance,
with reference to the ring transfer domain, free(P, t) is at the root, with P

and t variables at the bottom. Operators (Boolean and arithmetic ones for re-
als) further expand the tree structure. For instance, free(P, t) is a leaf for
move(A, P, t) since free(P, t) → move(A, P, t). Given such a tree
structure, a solver for Prolog is able to respond to queries from the user imple-
menting a backtracking algorithm. Starting from the grounded leaves of the tree
structure (according to the initial grounding of variables provided by the user),
the knowledge tree is searched until all atoms corresponding to the input query
are grounded. Moreover, last explored branches in the tree are saved in a stack,
so as to retrieve the root when a branch returns no solution and to restart the
search process. More details on the algorithm can be found in [242] and related
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references.
This solving procedure is exponentially complex as the task description be-

comes more complex, i.e. with more variables and a deeper tree structure, which
is the case, e.g., in multi-robot scenarios with heterogeneous environment, or
in surgery, where complex anatomies must be described and the procedure is
usually not short (more actions, more conditions to be evaluated, hence more
demanding tree exploration). Moreover the tree search requires the prior stratifi-
cation of the program in order to guarantee that solving terminates. Stratification
guarantees that a (propositional) logic program can be partioned in incremental
subsets of clauses P1 ∪ ...∪ Pn, such that:

• if a predicate p appears as positive in Pi, then it is defined in
⋃

j≤i Pj;

• if a predicate p appears as negative in Pi, then it is defined in
⋃

j<i Pj.

Since Prolog-based programs represent knowledge in a hierarchical tree struc-
ture, this subset composition guarantees that the tree search gets never stuck in
a loop between predicates defined at different levels of the hierarchy. However,
not all logic programs can be stratified [75]. Attempts have been made since
the early years of Prolog to reduce the complexity of the solving algorithm, e.g.
with intelligent backtracking based on the generator/consumer paradigm [171] or
with parallel AND-tree verification in [260]. More recently, in [339] an approach
based on linear model reduction has been presented.

However, in the last 20 years research has investigated other logic paradigms
relying on standard logic, as the prominent answer set programming described
next, which do not need prior stratification for solving.

3.3.2 Planners based on the answer set semantics

A non-monotonic logic programming language alternative to Prolog is Answer

set programming (ASP). Introduced in [211], ASP was first proposed in [191] to
solve the planning problem for autonomous agents. ASP is based on the stable-

model semantics [108]. In order to understand what a stable model (also defined
as answer set in [191]) for a logic program is, consider a classical (i.e. NAF-free)
propositional logic formula F depending on a set X of Boolean variables. The
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reduct of F to X, represented as FX, is the formula resulting from the substitution
of all variables appearing with negation with the false⊥. We then define a stable

model (or answer set) of F as a minimal model satisfying FX, namely a set Y ⊆ X
with no proper subsets satisfying FX. For instance, let F be:

(q→ p) ∧ (¬r → q) ∧ (p→ s)

Y = {s, p, q} ⊂ X = {s, p, q, r} is an answer set for F, since it satisfies FX :
(q→ p) ∧ (¬⊥ → q) ∧ (p→ s) and no proper subset of Y does. If F includes
NAF, Y is an answer set if and only if it is also a stable model for the original
formula when NAF variables are removed.

Generally, stable models are not unique, and they are found using satisfiabil-
ity checking (SAT). A more detailed description of some strategies for SAT solv-
ing will be provided in the next chapter. The basic idea is that specifications are
explored and new grounded atoms are inferred, keeping track of violated logic
conditions to speed up the exploration. Differently from SLDNF, SAT solving
does not require prior stratification of the logic program [193], hence it has been
proved to be more efficient [155], while still being exponentially complex. How-
ever, SAT solving has applications in a variety of fields of computer science. For
this reason, starting from the popular MiniSAT [300], a lot of research has been
devoted to improve the efficiency of existing SAT solvers and develop parallel
solvers to address the issue of complexity (see [210] for recent advances).

ASP syntax is very similar to Prolog, with differences depending on the spe-
cific modeling and solving tool. Starting from the first solvers Smodels [305] and
DLV [78], up to the latest extensions as DLV2 [2], ASP syntax allows to define
aggregates as l{Atom : Condition}u, namely sets of atoms satisfying spe-
cific conditions with bounded cardinality between l and u. In order to show the
utility of this construct in the task planning problem, consider again the ring
transfer domain. Specifying the aggregate {move(A, P, t) : free(P,

t)} asks the solver to generate all possible actions for all possible free pegs
in the workspace; similarly, the specification 0{move(A, P, t): free(P,

t)}1 imposes the generation of answer sets containing at most one action for
each time step. In this way, it is possible to generate multiple plans at once.
Differently from Prolog systems, ASP systems are not based on queries; instead,
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solvers return the full answer set, i.e. all grounded atoms representing actions
and the environment2. This increases the interpretability of the robotic system,
since a full description of the domain is returned.

Though a multitude of applications of ASP can be found in planning for au-
tonomous agents in artificial intelligence and other fields of scientific research
involving reasoning on knowledge (see [82] for a recent review), the applica-
tions in robotics are still fewer than Prolog-based systems, which have been well
established for a significantly longer time. This is also due to the development of
research for efficient SAT solving algorithms, which is significantly advancing
only in recent years.

Currently, the most popular implementation for ASP, with applications in the
robotic scenario, is Clingo [106], inspired from the DLV system, which from
the latest release (Clingo 5) implements constraints on reals and multi-shot ASP
solving for more efficient parallel computation. Clingo also supports useful opti-
mization statements for optimal plan generation. An optimization statement acts
as a weak constraint on the answer sets generated by the ASP solver. In other
words, answer sets must guarantee the satisfaction of standard hard constraints
defined in the task specifications, but additionally shall preferrably satisfy the
weak constraints from optimization. With reference to the example ring transfer
task, assume to minimize the economy of motion, hence to grasp rings which
are closer to any of the PSMs first. This can be easily expressed introducing a
new fluent in the domain description, distance(A, R, X, t), defining the
distance between an arm and a ring as X3. Then, it is possible to declare an opti-
mization statement #minimize{X: move(A, R, t) : distance(A, R,

X, t)}, which minimizes the value of X. It is also possible to define multiple
optimization statements with priorities, in order to penalize some optimization
scores with respect to others.

Relevant applications of Clingo include [262], where its variant Asprilo [105]
for multi-robot logistics and warehouse automation, is exploited; [251], where

2Most ASP solvers allow to specify the grounded atoms of interest, so that for the task plan-
ning problem only action atoms, i.e. the plan, are output.

3It is only possible to use integers as numerical constants in ASP syntax. Hence, first all
distances between rings and arms are computed; then, an increasing integer from 1 to 8 (2 PSMs,
4 rings) is assigned as a placeholder for real distance in fluents.



34 Chapter 3. Logic task planning for deliberative robots

Clingo system is integrated with the ALICA language for teamworking in do-
mestic and general-purpose environment [252]; [58] for general-purpose service
robotics; [205], which proposes a task planning framework for domestic service
robots receiving information and goal description in natural language from hu-
mans, at the RoboCup@Home challenge; [115], where an integrated framework
for interpretable surgical task-motion planning is proposed; [11], which shows
the ROSoClingo package integrating Clingo in ROS. A recent application based
on the DLV system is [325], addressing the problem of mechanical assembly
sequence in industry.

Several other implementations of ASP have been proposed in [313], where
an Answer Set-based Conditional Planner (ASCP) is presented with applications
also to robotic examples; [47], where ASP is implemented on the OK-KeJia ser-
vice robot prototype for planning and decision-making based on multiple sources
of information in the context of human-robot interaction; [18], proving the ad-
vantages of using ASP for task planning and failure analysis and explaination in
human-robot interaction; [143] for the domestic service scenario; [303], which
combines ASP with Markov decision processes in a domestic scenario; [26] for
dual arm manipulation; [89] proposes a review of recent applications of ASP to
industry, while [84] surveys recent applications in various robotic fields.

3.3.3 Other non-monotonic planners

Prolog- and ASP-based systems are the most prominent solutions to the task
planning problem in robotics. Their main advantage lies in the non-monotonic
representation of task knowledge, which is essential for robotic applications.
Moreover, they are general-purpose languages, i.e. they can be adapted to di-
verse applications in robotics and artificial intelligence.

More application-specific solutions exist, which are optimized to address
challenges of different scenarios. An example is Constraint-Handling Rules
(CHR) [97], which improves performance of the solving process simplifying
task-specific constraints online. An example of this approach is implemented in
Fluent Executor (FLUX) [310], which has been used, e.g., for the automation of
an office robot, hence in an application involving human-robot interaction [333].
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Analogous application-specific approaches rely on a generic description of
the task in an action language (e.g., PDDL), and implement an ad hoc formu-
lation for the specific use case. An important example of this class of planners
is ROSPlan [42], a framework combining PDDL-based task planning, motion
planning, sensing and open-world planning through communication provided by
the well-established Robot Operating System (ROS) [164]. Basing on ROS in-
frastructure offers a considerable implementative advantage for application with
most robotic systems. ROSPlan has been applied in several scenarios, such as
[220] for multi-robot navigation; [280] which integrates ROSPlan with Petri nets
with an application involving human-robot interaction; [86], which tackles the
anchoring problem, that is matching abstract symbols from high-level knowledge
to perceptions and executed actions, for providing automated code generation of
ROS nodes.

Other examples of custom implementations derived from PDDL are based on
action graphs [129]; [119] for a PDDL-based planner applied to social robotics;
[228] for coordination of unnamed ground and aerial vehicles; [235], where an
integrated framework is tested on a robotic manipulator, a surveillance robot and
a rover for exploration; [208], where a PDDL-based task planner for mobile
robots in the ROS framework is proposed; SHOP [243] for a state-of-the-art
implementation of hierarchical task network (HTN) [85], a popular and efficient
formalism for task planning with sub-goals.

It is important here to highlight that task-specific approaches derived from
generic PDDL descriptions of the task are not the only choice, and other cus-
tom implementations based, e.g., on ASP- and Prolog-like syntax are possible
and can be adapted to the specific needs of the use case. For instance, in [72]
AnsProlog, an implementation of Prolog in the answer set semantics which is
the base for the original ASP solver “Smodels”, is used to implement HTN,
proving comparable efficiency with respect to SHOP (a more extended compar-
ison is available in [298]). Moreover, recently PDDL- and ASP-based planners
have been compared [145]. The authors compare Clingo as the state-of-the-art
implementation of ASP against the two most prominent FastDownward PDDL-
based planners FDSS-1 [131] and LAMA-2011 [275], in different experimental
scenarios including robot navigation. The comparison shows that PDDL-based
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systems are generally more efficient when the required plan for the task is com-
posed of a long sequence of actions. However, the computational performance of
ASP-based systems are better for shorter plans, and they scale significantly bet-
ter when the size of the domain description (i.e., the number of entities, actions
and specifications) increases.

When very complex robotic domains are considered, planners described so
far may suffer from computational inefficiency to keep track of all entities of
the domain. A solution is offered by logic programming languages supporting
the open-world assumption, integrating external knowledge bases to be queried
when needed during the plan execution. The knowledge base encodes a de-
tailed description of the scenario, while the logic program only encodes task
specifications and queries the knowledge base for grounding of them. The most
popular example of this approach is the CRAM framework [20] for advanced
robotic manipulation, and its main backbone Knowrob [309] providing exter-
nal knowledge base for general service robotic tasks. Knowledge is queried
through SWI-Prolog, and this approach has been used in many applications,
e.g. [337], where an outdoor search-and-rescue robotic task is fulfilled, perform-
ing geometric reasoning and semantic modeling of the environment; [55] for
navigation multi-objective tasks; [27] for incomplete assembly task in industry;
[118] for task planning in orthopaedic surgery, integrating orthopaedic-specific
knowledge; [253] for the safety-critical scenario of mine-countermeasures mis-
sions for autonomous underwater vehicles, addressing the challenge of recovery
from hardware failure and changes in priority levels. Another implementation,
based on the answer set semantics, is a recent extension of DLV, DLVHEX [79],
which provides specific constructs to query external knowledge bases. While not
providing the same expressive power as description logics, the query-based ap-
proach integrating logic programming and knowledge bases is usually more ef-
ficient and preserves the non-monotonic assumption, which is essential for most
real robotic applications.
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3.4 Temporal logic planning

Standard logic planners offer the expressivity to describe many task planning
problems in robotics, with operators describing causal relations between atoms.
However, in several robotic scenarios additional expressivity is required to de-
scribe temporal relations between tasks, actions and environmental conditions.
As an example, consider again the ring transfer domain. The user may easily de-
fine the final goal using the unary temporal operator eventually (♦), as ♦on(R,
P). Notice that the concept of time is encoded in the temporal logic operator,
hence the user does not need to define the explicit temporal variable t as for
standard logic planners (e.g., in ASP the same goal would be defined as :- not

on(R, P, t), t > 0).
This section presents task planners for robotics which rely on the formal-

ism from temporal logic, mainly linear temporal logic (LTL) [266], assuming a
linear sequence of events, rather than multiple realizations as in more complex
(and computationally inconvenient) non-linear temporal logic (e.g., CTL [81]).
Specifically, an interpretation of LTL is considered over finite traces (LTL f ), as
proposed e.g. in [28, 98, 328]. Formulas from LTL f are interpreted on a finite
time horizon. This is a reasonable assumption for robotic tasks, which typically
involve a limited sequence of actions to be performed. The choice to focus on
LTL is justified by two reasons. First, LTL f has been proved to be as expressive
as first-order logic [69]. LTL’s extension LDL f [61] including regular expres-
sions from propositional dynamic logic [94] has been proved to be as expressive
as monadic second order logic for finite automata [311]. The problem of synthe-
sis for LDL f formulas (i.e., the assignment of truth values to variables so that the
given formulas hold) has been proved to be equivalent to the problem of condi-
tional planning under full observability assumption, and 2EXPTIME-complete
[60]. Hence, it is possible to encode a generic task planning problem from high-
level action languages (e.g. PDDL) into LTL f /LDL f formulas, which are then
solved through satisfiability checking. For simplicity, the subscript f through the
rest of this Section, hence LTL will stand for LTL f .

Other than eventually, relevant temporal operators are here recalled to show
the expressivity of the underlying logic. Unary operators are next # to define
temporal sequences and always � to define conditions which hold during the
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whole execution; binary operators include until U and release R. Given two
Boolean predicates a,b, aUb specifies that a must hold at least until b becomes
true, while aRb asks that b holds until a becomes true (in this sense, a releases

b). Temporal operators do not necessarily act on atoms, but also on specifica-
tions. For instance, in the ring transfer task a specification may be to continue
moving to a ring until a new ring is in the scene and not placed on its peg. This
can be encoded in LTL as reachable(A, R)R¬on(R, P)→ move(A, R).

A relevant tool for LTL in the robotic community is LTLMoP [93], to imple-
ment temporal task specifications in the ROS framework, with application e.g.
to human-robot interaction. LTLMoP has been used e.g. for multi-target naviga-
tion [170]; task planning in a grocery store with an Aldebaran Nao robot [147];
multi-robot cooperative task planning [159, 158]; search-and-rescue mission in
partially known environment with a Pioneer 3-DX robot [281]; task planning for
modular robots [146]; multi-task planning for a patrol robot [199]; reactive task
planning based on game theory [288]. Also relevant is the application of LTL-
MoP to the problem of explanation of unsynthetizable plans for robotics [270],
which is useful to enhance the interpretability of the robotic system.

LTLMoP implements satisfiability checking to solve the task planning prob-
lem from temporal specifications. As evidenced in [168] and in Section 3.3.2,
one limitation of this approach is the state explosion problem, which is wors-
ened by the introduction of the temporal dimension in the planning problem and
hence the higher number of states and conditions to be verified in the solving
process. This becomes even more crucial when implementing LTL plans on real
robots, typically with hybrid control (connecting discrete-time and continuous-
time control) so that the lower-level motion behavior matches the task-level spec-
ifications. In this scenario, LTL specifications must also account for the finer
granularity of the real environment, thus leading to the infeasibility of analyzing
all future scenarios. In order to cope with the computational demand, several
solutions have been proposed.

For instance, in [175] the concept of quantification of satisfiability has been
introduced, in order to guarantee the satisfaction of main LTL constraints while
neglecting less important ones. This solution is applied, e.g., in [314], where
maximal satisfaction of LTL task specifications for a Nao robot able to grasp,
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drop a ball and walk with failure conditions is guaranteed.
Another widely used approach is the receding time horizon [331], which re-

lies on the reasonable approximation that in most real robotic applications, the
dynamic nature of the environment does not allow to devise a plan which de-
velops long ahead in the future. Hence, a good design choice is to verify LTL
formulas with a short time horizon, and to refine the resulting plan on the fly
during the execution, according to the current state. In this way, only most prob-
able future traces are analyzed, and the state explosion is significantly mitigated.
A tool which implements the receding time horizon approach, differently from
LTLMoP, is TuLiP [332]. Though it has been mostly applied to the provably-
correct construction of hybrid controllers for integrated task-level (discrete) and
motion planning (continuous) problems, worth mentioning are the applications
in [197], where a robot surveillance task is planned through TuLiP, while local
reactivity as in [30] and refinement is guaranteed through µ-calculus, a modal
logic which can be used to express temporal formulas [33]; and [340] for whole-
body biped locomotion in unstructured environment.

The two above solutions are not applicable to the scope of this thesis, though.
In fact, quantifying relevant constraints to be considered in the solving process
to neglect others is a design choice. The surgical scenario is often very complex,
with a high number of safety constraints for the patient. Hence, the choice of
relevant specifications is not easy, and may be dangerous in such a safety-critical
scenario. As for limiting the maximum time horizon, it is possible for simple
training tasks as, e.g., the ring transfer, consisting of a simplified domain. How-
ever, real surgeries often last for long time, and it would not be possible to gain
enough efficiency because the time horizon would be exceedingly large.

Other LTL-based paradigms for robotic task planning exist, which have the
same issues as the above mentioned most popular ones, though. They find mostly
application in multi-robot systems coordination [162, 330], e.g. [173] coordi-
nating single-robot tasks represented as Petri nets; [123], with dynamic leader
selection under communication constraints; [122] with mutual distance con-
straints; [167] for search-and-rescue and coverage scenarios; [130] for manip-
ulation tasks; [287] for time optimality under the ROS framework; [120], where
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Signal Temporal Logic (STL) [73], a temporal logic devised for motion plan-
ning, is combined with standard LTL to deal with event-based task planning in a
multi-robot domain. It is also important to mention other applications, including
[334] where dynamic planning in a robotic fire-fighting scenario is investigated;
[51] where the construction of behavioral trees from LTL specifications is used
for simulated task planning of a mobile robot in adversarial environment; [16]
for autonomous flexible manufacturing with experimental evaluation on a Gantry
robot in Siemens NX Mechatronics Concept Designer simulator; [127] for ware-
house robotics; [121] for robot navigation, integrated with lower-level model-
ckecking-based motion planning through hybrid control; [40], where LTL over
finite and infinite traces specifications derived from PDDL encoding are solved
through translation to non-deterministic automata; [48], where LTL is used to
design a medical robot tasked with roles of patient reception and triage.

As a final remark, there exist extensions of the syntax of standard logic pro-
gramming to support temporal operators, which are then translated into standard
logic formalism with the explicitation of the time variable by the solver. Ex-
amples of Prolog extensions can be found in [1], while recently temporal ex-
tensions to the ASP syntax telingo [38] and tasplan [37] have been proposed,
based on Clingo solver. These extensions are based on temporal equilibrium
logic [3], which integrates LTL operators into equilibrium logic [259], the logi-
cal characterization of stable models. Although no relevant applications of these
paradigms are known to the author, temporal extensions of ASP and Prolog may
well find a wide range of applications in the future, also due to the recent success
of ASP solvers as Clingo. Moreover they introduce non-monotonicity in the task
knowledge representation, while standard LTL is generally monotonic (though
non-monotonic temporal logic has been introduced, e.g. in [19]).

3.5 Probabilistic logic planning

The logic planners presented in the previous sections allow to describe task plan-
ning problems with complex constraints, involving temporal and spatial con-
straints. Specifications can be checked at runtime, allowing for plan revision
thanks to non-monotonic logic programming as in Prolog and ASP. However, an
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important challenge for deliberative robots interacting with unknown environ-
ment is the quality of the perception. This requires a real-time planning system
which not only accounts for the real-time information from sensors to update
the environmental model, but also considers uncertainty of the sensed model and
generates a sequence of most probable actions to be refined as new evidence is
acquired. In this section, logic programming languages which enrich their se-
mantics with concepts from probability theory are analyzed, in order to express
specifications with a degree of uncertainty. Considered planners merge the stan-
dard and temporal logic syntax with the one of probabilistic logic presented in
[246] such as the distribution semantics (DS) [282] and extensions (e.g. [206,
207]).

The syntax of probabilistic logic programs is enriched with p-annotated atoms
and rules. Given µ ⊆ [0, 1], a p-annotated Boolean a:µ is a Boolean variable
which is true with probability in µ. Similarly, in the formalism of logic pro-
gramming it is possible to define p-atoms which can be grounded within some
probability threshold. For instance, the location of an object ob may be known
as X with accuracy between 80 − 85%, thus the p-atom location(ob, X,

t):[0.8, 0.85] can be defined. A p-rule is a rule containing p-annotated atoms.
In order to understand how this syntax can be useful in a robotic scenario, con-
sider the ring transfer task, and assume that the pose of a ring is only known
with a probability between 60% and 70% due to noise in the point cloud from
the RGBD camera. This affects the probability of the grounded fluents, e.g.,
reachable(A, R, t). It must be then defined a p-rule move(A, R, t)←
reachable(A, R, t):[0.6, 0.7]. move atom is not annotated, but it inherits
the same probability range as the p-atom pre-condition reachable. If multiple
pre-conditions must hold for an atom to be grounded, the annotations of all of
them concur at defining its probability range.

This further complicates the solving process for probabilistic logic programs,
which now consists not only in grounding atoms according to the specifications,
but also checking the overlap of annotations and computing probability ranges
for grounded atoms accordingly. Moreover, differently from the deterministic
case, in probabilistic logic programming atoms cannot be grounded as false and
ignored, unless the corresponding annotation vanishes or reduces to {0}. Hence,
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an explosion problem similar to that of temporal logic can occur.
Several solutions have been proposed to face the computational issues related

to probabilistic logic programming. For instance, it is possible to restrict the so-
lution of the logic program to the deduction of tight logic consequences. Consid-
ering a set of (propositional logic) clauses (resulting from grounding of p-rules)
P with annotation µ (i.e., all clauses inP have annotation µ), a clause [H|B]:µ1

is said to be a tight logic consequence of P if supµ = maxµ1, in f µ = minµ1.
Intuitively, a clause is a tight logic consequence of a set of clauses if it can be de-
duced from all their possible realizations. [206] shows that the deduction of tight
logic consequences can be reduced to solving two linear programs. However,
the problem can still be NP, depending on the number of possible realizations.
Hence, the author proposes an algorithm to further mitigate the complexity of
the problem when probabilistic clauses are separable from deterministic ones.

Another solution to the computational complexity of solving probabilistic
logic programs is the use of sampling methods from stochastic systems, e.g.
Monte Carlo. This is used e.g. in Problog [160], a popular probabilistic exten-
sion to Prolog which allows to define a weight assigning discrete probabilities to
atoms and specifications. Problog and its variants have been applied in several
robotic task planning scenarios, e.g. for opening doors [224] and object ma-
nipulation [226, 306, 12]. An alternative approach to Problog is the framework
of distributional clauses (DC) [124], which extends Problog allowing to define
continuous probability distributions over rules and atoms. DC has been used for
robotic manipulation and grasping [225, 248, 227].

Both proposed solutions are insipired from the quantification of relevant con-
straints already proposed for LTL, since they induce a selection of relevant and
discarded specifications. Hence, as already explained in the former section, they
would not represent an appropriate solution for the surgical domain.

In spite of the computational issues which still make it inapplicable to most
real-time robotic domains, probabilistic logic programming is promising to fill
the gap between deterministic formal logic and the intrinsic uncertainty deriving
from the planning-acting-sensing loop of deliberative robots.

Recent research is in fact focusing on integrating query-based planners with
probabilistic knowledge in open-world domains, which can be updated as new
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evidenced is acquired (similarly, e.g., to what is done with the CRAM framework
in standard logic). A relevant example is proposed in [140], where the ProbCog
system allows to query and reason on a Bayesian logic network (BLN) derived
from the probabilistic logic of multi-entity Bayesian networks (MEBN) [179] in
a domestic scenario with a B21 service robot. Basically, a MEBN is a knowl-
edge representation formalism which connects fragments of Bayesian networks
through statements in first-order logic. This framework has been used, e.g., in
[21] for complex task decomposition and planning with a robot for home chore;
manipulation [22, 249]; cognitive underwater vehicles [214].

A similar approach is presented in [250] for domestic tasks, using a Markov
logic network (MLN) [273] instead of a BLN. MLNs are based on probabilistic
weighted logic statements. In [222] task planning for manipulation and naviga-
tion scenarios is implemented querying a MLN with the STRIPS-based Metric-
FF planner [133]; in [198] a robot for chemical experiment automation is pro-
posed querying probabilistic action cores (PRACs) [249] based on MLNs. A
mention is also deserved by LPMLN [187, 186] to reason on MLNs using the
stable model semantics under the action language BC+ [14] for transition sys-
tems, though the actual application in robotic scenarios is still part of ongoing
and under review research.

It is also important to highlight that research effort has been recently made
towards the extension of the answer set semantics with probability theory. The
main example is P-log [17] which is based on weighted specifications as Problog,
used e.g. in the LCORPP framework for sequential robot planning [9]. In this
way, in the next future it may be possible to exploit recent advances in SAT solv-
ing strategies to overcome the computational limitations of probabilistic logic.

At the current state of the art, an efficient solution of combining formal logics
with probability theory is merging standard logic programming with Markov
models in hierarchical task and motion planning, as e.g. in [303] for domestic
robotic systems based on ASP and Markov decision processes.
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3.6 Discussion

Based on the state of the art in logic task planning for robotics presented in the
former sections, a number of considerations should be made before choosing the
right planner for the specific use case.

First, the expressivity of the logic planner is important directly related to
the field of application. Several applications of logic planning in robotics have
been identified in this chapter, including domestic/service scenarios, navigation,
industry, search & rescue, human-robot interaction, multi-robot coordination,
surveillance and manipulation tasks. Most of these applications are covered by
standard logic planners, which allow to specify conditional laws, constraints and
optimization statements for optimal plan generation. The state-of-the-art Prolog-
based planner, SWI-Prolog [327], can cope with different data types, including
real variables, supporting the designer in the definition of proper specifications
for real robots dealing with continuous data from sensors. ASP-based planners
are still limited in this sense, though Clingo [106] allows to define arithmetic
constraints.

Temporal planners shall be preferred for applications requiring provably-
correct plans and safety guarantees, e.g. obstacle avoidance in navigation, multi-
robot coordination and human-robot interaction, since they allow to express con-
ditions from system theory as invariance and reachability of sets (e.g., for def-
inition of system stability). For this reason, temporal planners usually combine
task planning with control specification at the lower level of planning and help
define hybrid controllers for the robotic application (e.g., TuLiP toolbox [331]).

Probabilistic planners represent a valid choice when integration with sensors
is crucial to operate in an uncertain environment, e.g. in manipulation tasks and
navigation. Distributional Clauses (DC) [124] also allows to represent contin-
uous probability distributions, better representing the flow of information from
sensors.

However, another important requirement for robotic scenarios is efficiency.
The computational complexity of plan generation depends on the complexity of
the task planning problem and the solving algorithm of the chosen planner. Stan-
dard logic planners are able to solve problems involving complex environment
description and non-trivial autonomous capability (multiple actions on multiple



3.6. Discussion 45

resources). Prolog-based planners suffer from the definition of loops in the logic
program, hence they require prior stratification which represents an added com-
plexity for the robotic designer and is not always possible.

On the contrary, more recent ASP-based planners overcome this limitation
relying on SAT solving of logic programs. Moreover, (stochastic) SAT solving
has been proved to be more efficient (while still NP-complete) and scalable than
classical approaches as SLDNF of Prolog and first-order deduction on a number
of benchmark problems [155]. The recent push in research on efficient and par-
allel SAT solvers is rapidly prompting the popularity of ASP-based planners in
complex robotic scenarios.

Temporal planners as LTLMoP [93], even if based on linear temporal logic,
suffer from the state explosion problem, which rises especially when long time
horizons are needed for task completion. Techniques have been developed to
overcome this limitation, e.g. assuming a receding time horizon in the state-of-
the-art tool TuLiP.

Current probabilistic planners are not able to cope with very complex sce-
narios because of a similar state explosion problem. In fact, the distribution se-
mantics is defined over sets of possible models, i.e. models from standard logic
with an associated probability distribution. Hence, most applications involve
manipulation tasks and simple (multi-robot) navigation scenarios.

Software implementation is an important factor in the choice of the task plan-
ner too, since it enhances the integration with external modules in charge of the
other deliberative functions (e.g., sensing and motion planning). Standard logic
planners are well established in the robotic community, hence they offer inte-
gration with the standard ROS framework for robotic research. ROSPlan [42] is
a particularly versatile frameworks, since it does not require any specific logic
formalism for task specifications, but generic PDDL interpretations.

The only temporal planner providing integration with ROS is LTLMoP [93],
while ProbCog [140] was born as a probabilistic extension to the CRAM project
[20], hence it offers built-in ROS interface. However, relevant frameworks as
TuLiP and Problog [160] have Python and Java libraries, hence they can be easily
integrated in the ROS framework and similars.

Support for open-world planning is an interesting feature for complex robotic
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applications, where external knowledge bases may provide useful information
about resources of the robotic system. SWI-Prolog is part of the well established
CRAM project for open-world planning, but also novel ASP-based DLVHEX
[79] offers easy integration with external knowledge bases, though applications
to robotics are not known at the writing of this survey.

Among probabilistic planners, ProbCog is the natural statistical extension to
the CRAM project, though the scalability to very complex scenarios remains an
issue.

Finally, plan revision is a key ability for online robotic task planners, since it
allows to cope with dynamic conditions which occur in many robotic scenarios.
Prolog- and ASP-based planners rely on the formalism of non-monotonic logic,
hence they inherently support online plan adaptation, as multi-shot solving with
Clingo.

Also several probabilistic planners allow plan revision, since they are usually
stochastic extensions of Prolog-based planners. Most temporal planners do not
offer this feature, because they are based on monotonic versions of LTL. This
is partly due to the different scope of temporal planners, which are intended to
generate correct-by-constructions plans.

A summary of the results of the analysis of the state of the art in logic task
planning for robotics is presented in Table 3.1. Examples of different logic pro-
gramming paradigms referred to the ring transfer task lead to the conclusion that
standard logic programming offers adequate expressivity to represent the con-
sidered task knowledge. Moreover, it provides several desired guarantees for
safety-critical surgical scenario, as good real-time computational performance
which is not usually reachable with temporal and probabilistic logic, and non-
monotonicity of knowledge representation and reasoning, which is essential for
dynamic scenarios as surgery.

Specifically, ASP paradigm is chosen for the purpose of this thesis, since it
is rapidly becoming more and more popular in the research community, thanks
to the fast development of efficient SAT solvers. Furthermore, ASP supports
optimal plan generation and returns a full description of the scenario in terms of
grounded terms, hence guaranteeing more interpretability and thus safety.
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It is also important to recall that recent extensions of ASP supporting tem-
poral logics and integration with stochastic motion-level models have been pro-
posed, which can be exploited when considering more complex surgical tasks in
the future.

3.7 Conclusion

This chapter has reviewed and discussed state of the art over the last 20 years in
logic task planning for deliberative robots. Different features of planners have
been compared, including expressivity, computational efficiency, re-planning ca-
pabilities and software support. Analysis has been performed considering the
ring transfer task which represents the case study of this thesis. In this way, a
proper evaluation of the best choice of planner for the surgical context has been
carried out. ASP has been chosen as the logic programming paradigm for the
scope of this thesis, and for surgery in general, because of its main advantages
with respect to, e.g., temporal and probabilistic planners, or even its well estab-
lished standard logic-based competitor Prolog. Among all benefits, high com-
putational efficiency, strong expressive power and active research on the ASP
paradigm have mainly determined the final choice discussed in the former sec-
tion.
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Chapter 4

Answer set programming:
formalism and solution methods

This chapter defines the syntax and semantics of answer set programming (ASP),
introducing standard nomenclature which will be useful through the rest of this
thesis. The reference for the contents of this chapter is the formalism of the
grounder/solver Clingo, which provides useful syntax to define the robotic task
planning problem and integrate task planning with the sensing module of the con-
ceptual architecture of a deliberative robotic system. Specifically, Clingo v. 5.31

is used, since it offers the possibility to structure the task encoding conveniently
for iterative temporal solving. Clingo also introduces additional constructs with
respect to the standard ASP formalism described in [39], e.g. optimization state-
ments (needed for the ring transfer scenario, and the surgical scenario in general
to reason about preferences and real-time convenience depending on the envi-
ronment / anatomy) and support for external atoms, needed for integration with
sensors. Finally, the ASP solving process is described, to clarify how the task
planning problem will be solved using answer sets in the remainder of this thesis,
and highlight some advantages of Clingo in terms of efficiency.

1https://github.com/potassco/guide/releases/tag/v2.1.0

https://github.com/potassco/guide/releases/tag/v2.1.0
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4.1 Syntax and semantics of ASP programs

4.1.1 Standard constructs and axioms

As defined in Chapter 3 for a generic logic programming paradigm, ASP syntax
is based on a sorted signature D , defining terms which can appear in a program.
A term in ASP syntax is either:

• a constant, either an integer or a string starting with a lower-case letter and
containing letters, digits or the underscore symbol _;

• a variable, represented by a string starting with a upper-case letter. Values
can be explicitly assigned to variables with the notation Var(value), be-
ing Var the name of the variable and value a constant. Alternatively, it
is possible to compactly specify a set of possible values for a variable. For
instance, consider Var as a string variable which can have three possible
strings as values, say s1, s2, s3. Var(s1), Var(s2), Var(s3) is
equivalent to Var(s1;s2;s3). In case Var is an integer variable with
possible values in an interval, say from 1 to 4, Var(1..4) is shorthand
forthe explicit definition of possible values of Var;

• an arithmetic term, either with the unary operator "-" or as obtained from
two terms combined with a binary arithmetic operator in {+,−,×, /};

• a functional term, or predicate, f(t1, ... tn), where each ti is a term.
The arity of a predicate is the number of terms in it. Notice that predicates
introduce a hierarchy in the sorted signature (function terms depending on
other terms).

An atom in ASP is defined as a predicate with any arity (also 0, which reduces
to a simple term). A literal is either:

• an atom a or its classical logical negation ¬a, denoted as -a2;

• a NAF-literal, i.e. an atom with negation as failure (NAF) not a;

2Typically, classical negation is not used in ASP programs, since it can be easily expressed
with integrity constraints, which will be introduced in few lines.
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• a comparison literal, i.e. two terms combined with a comparison operator
in {<,>,≤,≥,==, ! =};

• an aggregate literal l #agg{e1=w1; ...; en=wn} u, where each ei is
an aggregate element in the form t1, ... tj : l1, ... lk, with
ti terms subject to conditions represented by li literals (possibly with
NAF). wi are weights associated to each aggregate element, while l, u

are the bounds of the aggregate. agg is the name of the aggregate. In
general, an aggregate defines an operation over a multiset of weighted lit-
erals. Clingo supports different aggregates; in this thesis, sum and count

are used. sum returns all terms ti subject to their conditions and such that
the sum of their weights is between l an u. count is equivalent to sum

with unitary weights for all aggregate elements, hence it simply imposes
a constraint on the arity of the returned set of terms. Notice that #count
can be omitted in the syntax of Clingo.

It is possible to define axioms (or rules) over the signature, with the following
syntax:

h1 ∨ . . . ∨ hn : − b1, . . . , bm.

where : − denotes logical implication←, hi are literals forming the head of the
axiom, and bi are literals forming the body of the axiom. The intuitive meaning
of an axiom is that all literals in the body must hold ("," is shorthand forlogical
conjunction) for the literals in the head to be valid. In this thesis, an axiom is
either:

• a fact, i.e. an axiom with empty body, meaning that the head always holds.

• a normal axiom with only one literal in the head3. Notice that also aggre-
gate literals can appear in the axiom;

3A generic axiom with literals in logical disjunction can be easily replaced by a set of normal
axioms, one for each head literal and with the same body of the original axiom.
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• an integrity constraint with no literals in the head. This is equivalent to the
statement

⊥ : − b1, . . . , bm.

meaning that body literals cannot hold contemporarily, otherwise leading
to logical inconsistency4.

Axioms in Clingo must be safe, i.e. all variables in the head of rules (or con-
ditions) must also appear in the corresponding body, in a non-NAF literal. The
reason for this will be clarified in Section 4.2.1.

4.1.2 Optimal answer sets

ASP allows to define weak constraints which express ordering between possible
answer sets, according to the well established framework of preference reasoning
and planning with non-monotonic logic [34]. A weak constraint has the form:

:∼ b1, . . . , bm.[w@l, t1, . . . , tn]

where w is denoted as weight, l as priority level, bi are literals and ti are terms.
[w@l, t1, . . . , tn] is denoted as the tail of the weak constraint. The weight
defines the penalty assigned to answer sets containing bi, while the priority level
ranks different weak constraints. For better clarity, consider the following very
simple ASP program:

0{p(1); p(2); p(3)}.

:∼ p(X).[1@1]

The first line specifies that any of p(1..3) can be returned as an answer set
of the program, even the empty answer set (notice that the lower bound of the
aggregate is 0, and no upper bound nor conditions on the literals are specified).
However, the second line assigns a weight of 1 to each answer set containing any

4In this thesis, integrity constraints will be denoted as executability constraints, since they are
used to specify constraints on the execution of task actions.
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of p(1..3). Hence, the optimal answer set is the empty set, while any other
answer set is sub-optimal with weight 1. Consider now a similar ASP program,
but replace the weak constraint with:

:∼ p(X).[1@1, X]

In this case, a term in the tail of the weak constraint is specified. This new
statement assigns weight 1 for all atoms p(1..3) in the answer set. Hence,
though the optimal answer set is still empty, other answer sets are not equally
sub-optimal (for instance, {p(1)} has penalty 1, while {p(1), p(3)} has
penalty 2).

Clingo offers useful specific optimization statements which can be used in
place of weak constraints, for clearer and more explicit syntax. In particular, it
is possible to define optimization statements in the form:

#opt{e1=w1@p1; ...; en=wn@pn}.

where ei are elements in the form t1, ... tj : l1, ... lk, i.e. terms
subject to conditions similarly to aggregate elements; wi are the weights for
penalties; and li determine priority levels. opt is the name of the optimization
statement, which can be either maximize or minimize. The meaning of the
optimization statement is easy to understand: the answer set shall maximize (or
minimize) the sum of the weights assigned to each element, favoring elements
with higher priority.

4.1.3 Structure of an ASP program

As of version 5.3, Clingo allows to structure an ASP program into functional
parts:

#base.

%Statements

#step(t).

%Statements
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#check(t).

%Statements

This structure is intended for iterative computation of answer sets, as originally
introduced with the iterative version of Clingo, iClingo [104]. Hence, it is par-
ticularly useful for the task planning problem in robotics, where the plan is com-
posed of actions at consecutive discrete timesteps, and the pre-conditions and ef-
fects of each action shall be evaluated at each timestep to account for the dynamic
nature of the scenario. t is an in-built integer variable of Clingo, which is itera-
tively increased during solving. The base part contains ASP statements which
are evaluated by Clingo only at the beginning of the solving process (t=0). Typ-
ical assertions in this part of the program are definitions of variables, constants
and facts. An useful syntax of Clingo is the definition of #external variables,
i.e. variables which can be set from other programs (e.g., sensory modules).
Typically, external variables are specified with the syntax #external term

: L1, ..., Ln, i.e. terms subject to conditions represented by literals.
On the contrary, step and check parts are evaluated iteratively, with in-

creasing value of t. Specifically, check contains a time-dependent definition of
the terminating condition for the ASP program, which is usually identified as the
goal in case the encoding represents the description of a robotic task. The check
part is evaluated first, at each timestep (after base for t=0). If the terminating
condition is not satisfied, then the step part is evaluated. It contains transition
axioms, i.e. rules which define how variables in the ASP programs interact and
change in time. This is where the specifications of the task planning problem lie
in the ASP program. All atoms appearing in check and step parts of the pro-
gram are fluents of the domain of the logic program, as of the generic description
provided in the introduction to Chapter 3. For this reason, in the following of this
thesis atoms depending from t may be referred to as fluents for simplicity.

In Section 3.3, an answer set has been defined as the minimal set of logic
variables satisfying the reduct of a logical program. However, usually not all
variables are of interest for the purpose of the user. Hence, Clingo allows to
define meta-statements as #show and #hide to specify which terms shall be
included or hidden in the answer set returned to the user (e.g., #show t/ar),
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where ar denotes the arity of t.

4.2 Computation of answer sets

This section describes the two main steps involved in the computation of answer
sets, given an ASP encoding in the form presented above: grounding and solving.
Grounding transforms an ASP encoding in a propositional logic program. The
stable model of the propositional ground program is then computed by the ASP
solver. Clingo combines the grounding and solving capabilities. This section is
not meant to be exhaustive, but to explain how plan generation is performed for
a robotic task in the following of this thesis, and to evidence some advantages of
Clingo with respect to other solvers. A deeper insight in the topic is available in
[154].

Before describing the grounding/solving process, it is necessary to introduce
the preliminary notions of Herbrand universe for an ASP program and substitu-
tion function for a set of variables.

Definition 1 (Herbrand universe and base). Consider an ASP program P. The

Herbrand universe HP,u is defined as the set of all possible terms which can be

constructed from constants and values in P. The Herbrand baseHP,b is the set of

all atoms which can be constructed from predicates in P, having terms in HP,u

as arguments.

Definition 2 (Global substitution). Consider an ASP program P, containing a set

of variables V. A substitution θ : V 7→ HP,u is a function assigning variables

with constant terms and values. A global substitution for an axiom A in P,

denoted as θ(A) : VA 7→ HP,b, is the application of a substitution function to

all variables VA appearing in A. In case aggregates are present in the axiom,

only variables which appear also outside of the aggregate are substituted.

4.2.1 Grounding

It is now possible to define the first step of ASP solving, which is grounding.

Definition 3 (Grounding of axioms). Consider an axiom A in an ASP program

P. If A is free of aggregates, the ground instance of A is the axiom A′ = θ(A),
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such that no unassigned variables are in A. If A contains aggregates, grounding

is performed in two steps:

• computing the set G = {A′ = θ(A)};

• substituting each aggregate literal #agg{e1; ...; en} in G with the

ground instance defined as #agg{e1; ...; en}= {θ(ei)|i ∈ [1, .., n]}.

For better clarity, consider a simple ASP program with Hp,u = {1, 2} and
containing the axiom A:

p(X) :- q(X,Y), #sum{Z,X: q(X,Z)} < Y.

There exist four possible global substitutions for A, with all possible combina-
tions of values in Hp,u assigned to the non-aggregate variables X,Y. For each
global substitution, Z can be grounded with any of the two values in Hp,u. For
instance, assuming the substitutions X 7→ 1, Y 7→ 2, the grounded instance of the
aggregate rule is as follows:

p(1) :- q(1,2), #sum{1,1: q(1,1); 2,1: q(1,2)} < Y.

It is straightforward to define a ground program P as the program obtained from
grounding of all axioms in P. Notice that, in general, the grounding of an ASP
program is EXPTIME-hard [154]. This is why many grounders (as the one of
Clingo) require that axioms are safe, so that each variable in the head has a
range bounded by the specifications in the body, and the grounding is faster.
The computational burden is typically reduced by modern ASP grounders using
optimization algorithms which aim at restricting the number of axioms to be
grounded, identifying the relevant ones [7, 261], and optimizing the order of
evaluation of atoms in axioms according to a dependency graph between them
(for instance, if a rule R1 has a predicate p in the head, and a second rule R2 has
p in the body, then R1 should be evaluated first to reduce the size of the final
ground program, while preserving the final answer sets of the ASP program).
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4.2.2 Solving

With grounding, the ASP program is translated to a propositional logic program,
i.e. all variables have been replaced by constant values and atoms represent
Boolean variables, while axioms standard logical implications. As explained in
Section 3.3, the goal of an ASP solver is then to compute the stable models,
i.e. the minimal set of Booleans which satisfies the ground program. This is
done using efficient strategies of Conflict Driven Constraint Learning (CDCL),
pioneered in the area of satisfiability testing (SAT) [29]. CDCL is based on
the identification of nogoods, which are intuitively invalid partial assignments
of Boolean variables5. Nogoods can be already present implicitly in the ground
program, e.g. completion and loop nogoods [102], or they can be generated dur-
ing the solving process. The basic strategy of CDCL is sketched in Algorithm 2.
Completion and loop nogoods of the ground program PG (∆C(PG) and ∆L(PG),
respectively) are stored and used to constrain the logic program originated from
grounding. Then theory propagation, i.e. partial assignments of logic variables,
is performed, storing any found nogood δ in a set ∆T of theory nogoods. The
assignment of variables is iterated until all variables are assigned, or a (solvable)
conflict with any of the stored nogoods in ∆C(PG) ∪ ∆L(PG) ∪ ∆T is found.
In the latter case, backjumping is performed: assigned variables are unassigned
until the conflict is unit (only variables in the nogood are assigned), then the pro-
cedure continues. If all variables can be assigned without any conflict, the set of
assigned variables is the stable model for the propositional logic program, hence
the corresponding answer set is returned.

The following example clarifies how loop and completion nogoods, implicit
in a ground program, can be found. Consider the ground ASP program (contain-
ing only normal axioms for simplicity):

a :- not b.

b :- not a.

x :- a, not c; x :- y.

5Notice that from now on, only Boolean variables are considered in this chapter, with ref-
erence to ASP solving, hence assignments are not related to the substitution of variables in the
grounding process.
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Algorithm 2 Basic CDCL
1: Input: Ground program PG (in propositional logic form)
2: Output: Final set of assigned Booleans AS(PG) (answer set)
3: Initialize: Compute ∆C(PG) and ∆L(PG); AS(PG) = ∅
4: while True do
5: if no conflict c then
6: if all variables assigned in AS(PG) then
7: return AS(PG)
8: else
9: Theory Propagation and variables assigned in AS(PG)

10: Update ∆T with new δ
11: end if
12: else
13: if c cannot be resolved then
14: return UNSAT %Not satisfiable
15: else
16: while c is not unit do
17: Backjumping and variables removed from AS(PG)
18: end while
19: end if
20: end if
21: end while

y :- x, b.

This is translated to the following propositional logic program PG:

a← ¬b (4.1)

b← ¬a

x ← a ∧ ¬c ∨ y; y← x ∧ b

where the two rules with x in the head have been translated to a single logical
implication. Notice that NAF has been translated to classical logic negation, ac-
cording to the underlying principle of non-monotonic reasoning and ASP that
only provable theories are admitted, i.e. unknown logic variable cannot be as-
sumed to hold true [192]. Not all models of the logic program are valid for
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ASP: for instance, variable c is not supported (implied) by any rule, thus it can-
not appear in a stable model. Hence, c6 is defined as a completion nogood for
the program. Similarly, b can be unsupported if ¬a holds. Completion nogoods
are eliminated from final models turning simple implications into logical equiv-
alences [50]:

a↔ ¬b

b↔ ¬a

x ↔ a ∧ ¬c ∨ y

y↔ x ∧ b

c↔ ⊥

Notice the last equivalence to directly add c into ∆C(PG). This new logic pro-
gram has obviously fewer models than the original one in (4.1). Specifically,
the three possible models are {b}, {b, x, y} and {a, x}. However, the program
still contains loop nogoods, i.e. nogoods generated from loops of implications.
In the example program, a loop between x and y exists. As shown in [196], it
is possible to exclude loop nogoods adding a support rule which contains the
loop variables in the head, and does not contain any positive variable in the body
which corresponds to a loop variable. For the proposed example, such a support
rule is the following:

(x ∨ y)→ a ∧ ¬c (4.2)

which excludes the model {b, x, y} from the possible models. (4.1) and (4.2)
characterize stable models of PG. While the size of rules generated to exclude
completion nogoods is linear in the size of PG, the size of rules generated to
exclude loop nogoods may be exponential [194]. For this reason, the solving
system of Clingo does not generate the rules at the beginning of the solving
process, but it detects loop violations while executing Algorithm 2 exploiting
efficient techniques of unfounded set detection [189, 103]. Moreover, Clingo

6This is shorthand for c = True, as well as ¬c is shorthand for c = False.
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further speeds up the solving process exploiting parallel theory propagation: dif-
ferent propagators are designed to propagate different rules and assign different
variables, and only interested propagators are invoked when variables are unas-
signed during backjumping. Finally, as of Clingo 5 propagators are lazy, i.e. they
do not test all rules for checking violation of nogoods in the assignments; when
all variables are assigned (Line 6 of Algorithm 2), propagators are invoked for a
final check of validity [149].
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Chapter 5

A logic-based framework for
surgical task autonomy

5.1 Introduction

This chapter presents a novel modular framework for autonomous execution of
surgical tasks. As explained in Chapter 1, a proper framework must address
challenging issues typical of advanced autonomous robotic systems, including
real-time situation awareness for monitoring and adaptation of the workflow, in-
terpretable plan generation for safety, dexterous trajectory generation and adapta-
tion even in a small workspace. Previous chapters have evidenced the suitability
of ASP as a logic programming paradigm to meet the aforementioned require-
ments. Hence, the framework proposed in Section 5.2 combines an ASP-based
task planner with adaptive motion planning and control. The high- and low-level
modules are tightly connected with sensors, which provide a semantic interpreta-
tion of the robotic scenario and guarantee real-time situation awareness to guide
the workflow of execution. The performance of ASP-based task planning (in
simulation) and the full framework (with dVRK) are validated in Section 5.3 on
the ring transfer.

5.2 The framework

A scheme of the proposed framework for autonomous surgical task execution
is shown in Figure 5.1. The exchange of information between its modules and
the real system (robot + sensors) is shown. The flow of information towards an



62 Chapter 5. A logic-based framework for surgical task autonomy

FIGURE 5.1: The proposed framework for surgical task auton-
omy. Functional modules of the framework are highlighted in
red, while arrows show the stream of information between mod-

ules, the real system and an external human observer.

external human observer is also represented. The human can read the semantic
conditions identified by sensors and the plan scheduled for execution at runtime,
monitoring the correctness of the overall system. The framework consists of
three main functional modules.

A task reasoner takes action-level decisions based on an ASP description of
the task. In particular, it analyzes environmental conditions (expressed in terms
of logic atoms) and generates a plan, i.e. a sequence of elementary actions to be
executed to reach the final goal.

Actions in the plan are commanded sequentially to the low-level (motion)

control module. As mentioned in Chapter 1, the main objective of this thesis is to
preserve the safety and efficiency guaranteed by expert surgeons. For this reason,
the motion control module stores learned motion trajectories for each elementary
action in the task, and is able to generalize (based on imitation learning) learned
trajectories from humans to the contingent situation of the task (i.e., the initial
and target pose). In other words, the goal of the low-level control module is to
replicate the shape of expert gestures, and only adapt shape to specific targets
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identified by sensors. As an example, consider the case of moving with a PSM
to the red ring first, and to the yellow ring then. The motion trajectory, including
the shape in Cartesian space and the orientation adaptation while moving, should
be similar for both actions, though the targets are different given the different
locations of the two rings on the peg base. In this way, the dexterity of gestures
of surgeons is preserved also in the autonomous framework, guaranteeing proper
manipulation and, in general, interaction with the anatomical environment.

The connection between motion control and task reasoning is guaranteed
by a situation awareness (SA) module. It combines information coming from
sensors (kinematics of dVRK and RGBD camera) in real time, and computes
logic atoms describing the environment and the task situation. This information
is communicated to the task reasoner for planning and re-planning, and to the
motion control module in case anomalies or failure conditions occur, requiring
stop of the execution.

The following sections describe the single modules in detail.

Task reasoning module

The ASP encoding of the ring transfer task is structured following the architec-
ture shown in Section 4.1.3. The base part of the program defines the statics
relevant to the task: object, with values in {ring, peg}; color, with values
in {red, blue, green, yellow, grey}; and arm, with values in {psm1,
psm2}. From now on, the shortcomes O, C, A will be used to refer to the
aforementioned statics, respectively.

This part of the program also contains definitions of external atoms, which
describe the environmental features computed from the SA module that con-
cur in the decision of the workflow of execution in real time. These atoms are
reachable(A,O,C) to encode the concept of reachability regions for the two
PSMs; at(A,O,C) and at(A,center), describing the location of a robotic
arm with respect to rings and pegs, and with respect to the center of the base
(meeting point to transfer the ring between the PSMs); in_hand(A,ring,C),
to describe that a ring is held by an arm; closed_gripper(A) representing the
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gripper status of an arm; and on(ring,C1,peg, C2)1 indicating that a ring is
placed on a peg.

The step(t) part of the program contains the specifications of the task.
First, the possible elementary actions for the PSMs are defined, based on the
task description presented in Chapter 2:

• move(A,O,C) to move an arm to either a ring or a peg with color C;

• move(A,center,C) to move an arm to the center of peg base while hold-
ing a ring with color C;

• extract(A,ring,C) to extract a ring with color C from a peg;

• grasp(A,ring,C) to grasp a ring with color C;

• release(A) to open the gripper.

The definition of actions follows, when possible, the standard of SPMs [178]. In
fact, each action represents an elementary robotic operation which can be directly
executed as a single motion trajectory (or, for gripper actions, joint actuation).
Moreover, the syntax of action includes the identifier of the agent performing
the action (one of the PSMs), the semantic target of the action (for instance, for
move actions, either the ring or the peg) and a relevant property for the specific
action (for this task, the color of the ring or the peg, recalling the instrument
used by the surgeon in action definitions of real surgery). The only exception to
this syntax is release action, which is not necessarily associated to a specific
semantic target (for instance, at the beginning of the task the gripper may be
closed, hence it must be open to start the execution and grasp a ring).

Each action is subject to pre-conditions and executability constraints. Pre-
conditions for actions of the ring transfer task are defined as follows:

0 {move(A, O, C, t) : reachable(A, O, C, t); (5.1)

move(A, center, C, t) : in_hand(A, ring, C, t);

extract(A, ring, C, t) : in_hand(A, ring, C, t);

1C1, C2 represent two possibly different color variables. From now on, this will be the
syntax to represent different variables of the same type.
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grasp(A, ring, C, t) : at(A, ring, C, t);

release(A, t) : in_hand(A, ring, _, t) } 1.

The temporal variable is the same both for pre-conditions and actions, meaning
that an action can start as soon as the corresponding necessary environmental flu-
ents hold. The semantics of pre-conditions in 5.1 is clear; the aggregate structure
(a set of atoms with lower l and upper u bounds on the cardinality, l { } u, see
Chapter 4) specifies that at most u=1 action (among the ones which are possible
if the corresponding pre-condition holds) per time is allowed, hence the execu-
tion of the task is sequential. The sequential execution is one possible paradigm
for the execution of the ring transfer task, forcing that only one PSM moves per
time, except for transfer with move(A,center,C). In fact, this action will be
translated, at the motion level, into two trajectories, one per arm (arms must meet
at the center eventually).

Since dVRK has two PSMs, parallel execution is also considered in this
thesis, i.e. arms can move and operate on different rings contemporarily, hence
finding a satisfiable plan within a possibly shorter time horizon. This can be
easily implemented in ASP modifying the aggregate rule in 5.1 as follows:

0 {move(A, O, C, t) : reachable(A, O, C, t); (5.2)

move(A, center, C, t) : in_hand(A, ring, C, t);

extract(A, ring, C, t) : in_hand(A, ring, C, t);

grasp(A, ring, C, t) : at(A, ring, C, t);

release(A, t) : in_hand(A, ring, _, t) } 1 :- arm(A).

The meaning is that one action per arm can be returned at each timestep. As
a consequence, move(A,center,C) action now translates to the single motion
of the arm which is holding ring C towards the center (another action move(A1,
ring,C) will be commanded at the same time step for the other PSM).

Executability constraints of the ring transfer task specify forbidden actions
under specific environmental conditions. They are:

:- move(A1, peg, _, t), in_hand(A1, ring, C, t),
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in_hand(A2, ring, C, t), A1 != A2. (5.3a)

:- move(A, center, C, t), in_hand(A, ring, C, t),

on(ring, C, peg, _, t). (5.3b)

:-move(A, peg, _, t), in_hand(A, ring, C, t),

on(ring, C, peg, _, t). (5.3c)

:- move(A, ring, _, t), closed_gripper(A, t). (5.3d)

:-move(A, peg, C, t), on(ring, _, peg, C, t). (5.3e)

Axiom 5.3a guarantees that no arm moves if they are both holding the same
ring (during transfer), to avoid rupture of the ring; axioms 5.3b-c prevent the
motion of a ring which is placed on a peg (extraction is needed first); axiom 5.3d
forbids movement of an arm to a ring if the gripper is closed (grasping would
be impossible); and axiom 5.3e specifies that it is not possible to move to an
occupied peg (only one ring may be placed on a same peg).

The step part of the ASP program finally includes effects of actions on the
environmental fluents:

in_hand(A, ring, C, t) :- grasp(A, ring, C, t-1). (5.4)

in_hand(A, ring, C, t) :- in_hand(A, ring, C, t-1),

not release(A, t-1).

closed_gripper(A, t) :- grasp(A, ring, _, t-1).

closed_gripper(A, t) :- closed_gripper(A, t-1),

not release(A, t-1).

on(ring, C1, peg, C2, t) :- in_hand(A, ring, C1, t-1),

at(A, peg, C2, t-1), release(A, t-1).

on(ring, C1, peg, C2, t) :- on(ring, C1, peg, C2,t-1),

not extract(_, ring, C1, t-1).

at(A, ring, C, t) :- move(A, ring, C, t-1).

at(A, peg, C, t) :- move(A, peg, C, t-1).

at(A, center, t) :- move(A, center, _, t-1).
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Notice that the head of axioms (effects) have a different time step than atoms in
the bodies (causes). In fact, e.g., the gripper is closed right after the grasping ac-
tions is concluded. The above axioms hold for parallel execution. For sequential
execution, the following axiom must be included:

at(A, ring, C,t) :- move(A1, center, C,t-1), arm(A), A!=A1.

(5.5)

In this way, the program considers that move(A,center,C) actually involves
the motion of both arms to the center for transfer, hence the PSM which does not
carry the ring reaches it at the end of the action.

Axioms 5.4 express that fluents in_hand(A,ring,C), closed_grip-

per(A), on(ring,C1,peg, C2) keep holding until specific conditions or
actions occur (e.g., closed_gripper(A) stops holding when release(A) is
executed). Defining the persistence of these fluents is strictly needed to guar-
antee that a plan for the ring transfer can be computed. In fact, e.g., in_-
hand(A,ring,C) must hold until the ring is placed on a peg, otherwise it is
not possible to execute, e.g., move(A,center,C) nor extract(A,ring,C)
from axioms 5.1. A more complete ASP encoding should include also the persis-
tence conditions for at(A,O,C) and at(A,center) atoms. Intuitively, these
atoms represent locations of PSMs, hence they stop holding only when arms
move. Hence, it is sufficient to include the following axioms in the program:

at(A, O, C, t) :- at(A, O, C, t-1), (5.6)

not move(A, O, C, t-1), not move(A, center, t-1).

at(A, center, t) :- at(A, center, t-1),

not move(A, O, C, t-1), not move(A, center, C, t-1).

Finally, the check(t) part of the program contains the definition of the goal of
the ring transfer task:

:- reachable(_, ring, C, t), reachable(_, peg, C, t),



68 Chapter 5. A logic-based framework for surgical task autonomy

not on(ring, C, peg, C, t).

which specifies that the plan computation must continue until there is at least one
visible ring (i.e., reachable by any arm) not placed on the corresponding peg.

The ASP program ends with the specification of relevant atoms in the an-
swer set. These atoms are the ones that are needed for the proper working of the
framework. Relevant atoms are the ones representing actions, since they must be
communicated to the low-level control module for execution. Hence the follow-
ing declarations are specified, with syntax described in Chapter 4:

#show move/4.

#show extract/4.

#show release/2.

#show grasp/4.

Situation Awareness (SA) module

This module is in charge of the semantic interpretation of data from sensors,
to ground external atoms in the ASP planner, provide target poses to the low-
level control module (for move actions) and recognize failure conditions during
the execution. Moreover, the high-level description of the environment in real-
time can be easily read from human supervisors and enhances explainability and
safety of the framework.

The input to the SA module are the kinematic information from dVRK,
namely position pA, orientation oA (quaternion) and gripper angle jA of PSM A

(for both PSMs); and the point clouds of rings and pegs returned by Detection
Algorithm 1.

Point clouds of rings and pegs are used to compute poses (position + orienta-
tion) of rings, pegs, and the center of the peg base (in the commond world frame,
see Figure 2.4 left for axis convention). In particular, for peg C with point cloud
PC = PCpc, the position is chosen as ppc = {x̄PC, ȳPC, max(zPC)}, being ·̄
the average of coordinates. The orientation of pegs is not relevant for the task,
since they are assumed to be fixed and normal to the peg base. As a consequence,



5.2. The framework 69

when move(A,peg,C) is commanded, the goal pose has the position of the peg,
and the orientation of the arm2 is only constrained to be normal to the peg base.

Given the point cloud PCrc of ring C, the position of the ring is considered
as the position of its center, and it is computed as the average of 3D coordinates
in PCrc. This position is used to compute environmental fluents (e.g., relative
position of rings and pegs). It is also important to compute the grasping pose for
each ring, which will be the target for move(A,ring,C). The grasping position
is computed in order to maximize the distance from pegs (hence reducing the
probability of collision), as arg maxr∈PCrc

√
∑p∈X ‖r− p‖2

2, being X the set
of positions of pegs. As for the orientation of grasping, it is chosen such that the
arm arrives at the grasping position normal with respect to the ring. The normal
to the ring is the same of a plane fit on the points in PCrc. Moreover, the rotation
of the gripper around the z-axis of the world is prescribed such that the gripper
opens in a plane orthogonal to x− y plane of world frame, and containing both
the center and grasping point of the ring. In this way, the PSM grasps the ring
with an orientation which is radial with respect to the ring itself.

Finally, the pose of the center of the base is needed to define reachability
regions and the meeting point for transfer. The position of the center is identi-
fied as the average position of pegs, and it is chosen as the target position for
move(A,center,C) (in case of sequential execution, this action involves two
motion trajectories, hence also the grasping target on ring C is specified). The
orientation of A is just constrained to be normal to the peg base.

The SA algorithm uses the aforementioned quantities (together with kine-
matic information from dVRK) to compute (external) environmental fluents for
the ring transfer task. Table 5.1 collects the useful geometric variables for con-
venience. The following relations are used to compute external fluents from
geometric quantities.

at(A,ring,C)← ||pA − prc||2 < rr ∧ jA >
π

8
3 (5.7)

at(A,peg,C)← ||pA − ppc||2 < rr ∧ zpc < zpos,A

in_hand(A,ring,C)← ||pA − prc||2 < rr ∧ jA <
π

8
2From now on, when referring to position and orientation of an arm, the end effector of the

arm will be implicitely taken into account.
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TABLE 5.1: Geometric quantities for fluent computation.

Name Description

prc = {xrc, yrc, zrc} position of the center of ring with color C
ppc = {xpc, ypc, zpc} position of the tip of peg with color C
pb = {xb, yb, zb} position of the center of the peg base
pA = {xpos,A, ypos,A, zpos,A} position of the tip of arm A

jA opening angle of the gripper of arm A

rr ring radius

on(ring,C1,peg,C2)← ||prc1 − ppc2||2 < rr ∧ zrc1 < zpc2

reachable(Ax,O,C)← argminA|yoc − ypos,A| = Ax

closed_gripper(A)← jA <
π

8
at(A,center)← ||{xpos,A, ypos,A} − {xb, yb}||2 < rr

Another important function of the SA module is the real-time check of fail-
ure and anomalies during the task execution. Different failure conditions are
identified for (move) actions:

• for action move(A,ring,C), failure is detected when reachable(A,

ring,C) does not hold anymore, meaning that the ring has been removed
from the scene or it has been moved to a non-reachable region for arm A;

• for action move(A,peg,C), failure is detected either when on(ring,C1,
peg,C) holds (a ring has been placed on the target peg) or ||pA−prc||2 >

2 · rr (the ring has fallen);

• for action move(A,center,C), failure is detected when ||pA− prc||2 >

2 · rr

In case failure is identified, the low-level control module is notified, current DMP
stops and an updated grounding of external atoms is sent to the task reasoner to
compute a new plan.

The functions of SA module are summarized in Algorithm 3.

3The limit value to consider the gripper as closed is chosen empirically.
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Algorithm 3 SA Algorithm
1: Input: Robot kinematics K, geometry from vision V, current action
2: Output: DMP target g, set of external atoms EA
3: Initialize: EA = ∅, fail = False
4: while not fail do
5: if action = null %No plan available then
6: EA = compute_ext(K, V)
7: else
8: g = compute_goal(action, V)
9: fail = fail_check(action, K, V)

10: if fail then
11: Stop motion
12: EA = compute_ext(K, V)
13: end if
14: end if
15: end while

Low-level control module

The low-level control module receives actions by the task reasoner, and com-
mands the motion of PSMs accordingly. Actions of the gripper and extract

(A,ring,C) are simple actions, which require opening/closing of the gripper
joint of PSMs and upward motion normal to the peg base, respectively. move

actions vary depending on the initial / target pose, and the presence of obstalces
(pegs). For this reason, the low-level control module must guarantee adaptability
to the current scenario, while preserving the dexterity of usual motions by sur-
geons or expert operators of dVRK. To this aim, Dynamic Movement Primitives
(DMPs) for move actions are implemented. DMPs are a framework for trajec-
tory learning. They are based upon an Ordinary Differential Equation (ODE)
of spring-mass-damper type with a forcing term. This framework has numerous
advantages that make it well suited for robotic applications. First, any trajec-
tory can be learned and subsequently executed while changing starting and goal
poses. Second, the executed trajectory will always converge to the goal, main-
taining a similar shape to the learned trajectory. Third, the learned trajectory
can be executed at different speed simply by changing a single parameter. Fi-
nally, DMPs have been proven to be flexible enough to being extended in mul-
tiple ways: for instance, the formulation can be modified to deal with periodic
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movements [136, 316], to learn sensory experience [258, 257]. An exhaustive
description of the framework is out of the scope of this thesis, hence here only
key concepts are presented for completeness. A more detailed description of the
topic can be found in [254, 132, 256, 113] and the original formulation proposed
by [137, 136, 284, 138].

For each move action, a DMP for Cartesian motion and a DMP for orien-
tation space are implemented (for move(A,center,C), two DMPs for each
metric space are needed in case of sequential execution, one per arm). In the
following, DMPs for Cartesian space are described for simplicity. A very similar
formulation is used for quaternion space, as presented in [315, 283].

DMPs for Cartesian trajectories consist of the following system of ordinary
differential equations:{

τv̇ = K(g− x)−Dv−K(g− x0)s + Kf(s) + fobs (5.8a)

τẋ = v (5.8b)

Vectors x, v ∈ Rd are, respectively, the position and velocity of the system; and
x0, g ∈ Rd are, respectively, the starting and goal positions. Matrices K, D ∈
Rd×d

+ are, respectively, the elastic and damping terms of the system. Both are
diagonal matrices, K = diag(K1, K2, . . . , Kd), D = diag(D1, D2, . . . , Dd), and
satisfy the critical dumping relation Di = 2

√
Ki, so that the un-perturbed system,

i.e. when f ≡ 0, converges as fast as possible to the unique equilibrium (x, v) =
(g, 0). Scalar τ ∈ R+ is a temporal scaling factor which can be used to make
the execution of the trajectory faster or slower. Function f : R → Rd is the
forcing (also called perturbation) term. Scalar s ∈ (0, 1] is a re-parametrization
of time t ∈ [0, T] governed by the so called canonical system

τṡ = −αs, (5.9)

where α ∈ R+ and the initial state is s(0) = 1.
The forcing term f(s) = [ f1(s), f2(s), . . . , fd(s)]ᵀ is written in term of basis
functions. Each component fp(s), p = 1, 2, . . . , d has then the form

f(s) = ∑N
i=0 ωωωi ψi(s)

∑N
i=0 ψi(s)

s, (5.10)
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where pωi ∈ R is called weigth, and ψi(s) is a Gaussian Radial Basis (GRB)
function defined as

ψi(s) = exp
(
−hi(s− ci)

2
)

, (5.11)

with centers ci defined as

ci = exp
(
−α i

T
N

)
, i = 0, 1, . . . , N, (5.12)

and widths defined as

hi =
1

(ci+1 − ci)
2 , i = 0, 1, . . . , N − 1,

hN = hN−1.
(5.13)

During the learning phase, a desired trajectory x̃(t) and its velocity ṽ(t) are
recorded. Then, from (5.8a), the desired forcing term f̃(s(t)) is computed (af-
ter fixing matrices K and D). Finally, the weights pωi, i = 0, 1, . . . , N, p =

1, 2, . . . , d that best approximate the desired forcing term f̃ using formulation
(5.10) are computed. Notice that weights can be learned in closed-form solution,
since the fitting problem is linear in the parameters (assuming basis functions are
pre-computed). Hence, it is theoretically possible to learn weights only from one
example trajectory. In the ring transfer task, weights for each move action are
saved as prior (both for position and orientation trajectories), to be used in the
real execution phase.

During the execution phase, starting and goal positions x0, g are set (as com-
puted from the situation awareness module of the framework), and the forcing
term f is computed using (5.10) with learned weights. Solving the dynamical
system (5.8) will give a trajectory of similar shape to the learned one, that starts
from x0 and converges to g.

For effective motion planning of the PSMs of the dVRK robot, also obstacle
avoidance with DMPs must be implemented. In the ring transfer scenario, ob-
stacles are represented by pegs. Obstacle avoidance is implemented in Cartesian
space with the framework proposed in [116, 117]. First, a potential function for



74 Chapter 5. A logic-based framework for surgical task autonomy

each obstacle is defined:

US(x) =
A exp (−η C(x))

C(x)
, (5.14)

where A, η ∈ R+ are gain parameters. Functional C : Rd → R is an isopoten-

tial function that vanishes on the surface of the obstacle. In R3 it is defined as:

C(x) =

((
x1

f1(x)

)2n
+

(
x2

f2(x)

)2n
) 2m

2n

+

(
x3

f3(x)

)2m
− 1. (5.15)

that vanishes on the surface of a generalized ellipsoid. Notice that any function
C can be used as an isopotential function, as long as the following is satisfied:

• the boundary of the obstacle is the zero-level set of the isopotential;

• the value of C increases when the distance from the obstacle increases;

The choice of the specific formulation in (5.15) originates from the work on
superquadric potential functions presented in [322], and it guarantees proofs of
convergence and maximization of the available workspace for the robotic agent.
In fact, by tuning parameters m, n and functions f1, f2, f3 it is possible to model
obstacles of any shape (their boundary will be the zero-level set of (5.15)). For
the ring transfer task, pegs can be modeled as simple cylinders, hence parameters
in (5.15) are set as n = m = 1, p = 2 and f1, f2, f3 are constant functions with
value representing the dimensions of pegs. Starting from the potential formula-
tion in (5.14), a repulsive forcing term which guarantees obstacle avoidance is
added to the dynamic system (5.8)a as:

φ(x, v) = φ(x) = −∇xUS(x)
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5.3 Experiments

5.3.1 Task planner validation

Validation of the ASP-based task planner is first performed, evaluating the plan
computation time and the length of the generated plan in a number of repre-
sentative scenarios for the ring transfer. These measures quantify the real-time
performances of the task planner. Experiments are executed on a PC using 2.6
GHz Intel Core i7-6700HQ processor, mounting 4 cores and 8 threads, and 16
GB RAM.

1000 scenarios are generated (in simulation for convenience, to avoid bur-
dening the robotic system and sensors) considering all possible combinations of
four rings on the peg base, with the constraint that rings are placed on a peg at the
beginning. In this way, all actions are included in the dataset of executions for
proper validation of all axioms, and multiple workflows of execution are required
to solve the task planning problem (e.g., moving to grey pegs, transfer between
arms, single-arm execution). A maximum allowed time for plan computation by
Clingo is set to 200 s. Three different ASP encodings of the ring transfer task
are compared based on these metrics:

• Encoding 1: standard task description, obtained combining axioms 5.1-
5.3-5.4;

• Encoding 2: task description with durative environmental atoms (i.e., all
environmental fluents keep holding until specific events occur, e.g. a par-
ticular action is executed), obtained combining axioms 5.1-5.3-5.4-5.6;

• Encoding 3: task description with optimization based on distances be-
tween rings and PSMs. Specifically, the goal of this encoding is to com-
pute a plan which places rings on pegs ranging them from the closest to
the farthest (to any of the dVRK arms). This can be implemented in ASP
and Clingo exploiting preference reasoning and optimization axioms as ex-
plained in Section 4.1.2. First, an external atom distance(A,ring,C,

Value) is added to the base part of the program, with Value as a vari-
able representing the distance between an arm and a colored ring. Then, in
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FIGURE 5.2: Comparison between different ASP encodings for
the ring transfer task in the sequential execution for clusters of

plans with the same length for Encoding 2 (horizontal axis).

the step(t) an optimization axiom is introduced as follows:

#minimize{X: move(A, ring, C, t), distance(A, ring, C, X)}.

(5.16)

The optimization axiom is added to the encoding represented by axioms
5.1-5.3-5.4.

The three encodings capture different challenges of the ring transfer task, as pre-
sented in Chapter 2. In particular, Encoding 1 just describes task knowledge of
the novel ring transfer definition considered in this thesis. Encoding 2 introduces
the complexity of more temporal relations between atoms, which is relevant es-
pecially for the surgical domain with long lasting execution workflow and com-
plex anatomies subject to continuous modification through interaction (effects
of surgical actions). Finally, Encoding 3 captures the complexity of optimal /
preference reasoning, linked to the ability of surgeons to take the best choice
depending on the patient and the anatomical contingencies. All of the three en-
codings are evaluated for both sequential and parallel executions. Figures 5.2
and 5.3 show the results for sequential and parallel execution, respectively. Plots
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FIGURE 5.3: Comparison between different ASP encodings for
the ring transfer task in the parallel execution for clusters of plans

with the same length for Encoding 2 (horizontal axis).

are generated in the following way. First, collected executions from Encoding 2
(generating longer plans) are sorted according to increasing plan size, measured
as the number of actions in the plan. In this way several clusters of plans of the
same size from Encoding 2 are generated. For each cluster, plans from Encod-
ings 1 and 3 are evaluated, matching plans with the same environmental fluents
as Encoding 2; then, mean and standard deviation of the plan length (top of Fig-
ures 5.2-5.3) and the planning time (bottom of Figures 5.2-5.3) are computed
for each cluster and encoding. Horizontal axes of Figures 5.2 and 5.3 report the
clusters of plans as explained above.

On average, all encodings generate plans of similar length for sequential exe-
cution, while in the parallel execution plans generated by Encoding 2 are slightly
longer, especially for final clusters corresponding to more complex environments
(e.g., colored pegs occupied or more transfers needed), but still comparable.

As for the plan computation time, longer plans require higher times, due to
the increased complexity of the environmental fluent representation. Notice that
the first cluster (6 executions) for Encoding 2 in the sequential execution gener-
ates plans with null size, meaning that Clingo is not able to find a feasible plan
within the maximum allowed time. The corresponding environmental fluents
represent challenging scenarios. This cluster is represented with a planning time
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FIGURE 5.4: Comparison between planning times for Encodings
1 and 3 in sequential execution.

of 600 s4 in the lower plot, which justifies the apparent initial decrease in the
computational time.

Encoding 2 for the sequential execution takes significantly longer time for
plan computation in most scenarios, with peaks above 100 s on average which
limit the application in real time, especially for a critical scenario as surgery.
This is probably due to the increased complexity in grounding (more atoms and
axioms to be grounded), hence solving. Figure 5.4 highlights the time results
with Encodings 1 and 3 for sequential execution. Encoding 1 generates plans
in very fast times even for challenging scenarios (approximately 5 s for longest
plans).

Encoding 3 with optimization requires longer computational times, but still
acceptable for real tasks. Also in this case, the apparent initial decrease in the
planning time is due to the first cluster, which corresponds to challenging envi-
ronmental conditions where Encoding 2 fails.

The comparison between planning times of different encodings holds also for
the parallel execution, though in this case the computation is significantly faster,
with Encodings 1 and 3 able to generate plans in at most 2 s, and Encoding 1 in

4This value is chosen because it is higher than the maximum planning time for Encoding 2,
so as not to impact on the meaning of the plot while guaranteeing better clarity.
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FIGURE 5.5: a) The set of Cartesian trajectories for the
move(A,ring,C) gesture, for both PSMs; b) trajectories af-
ter roto-dilatation, to start at the origin, x0 = 0 and end at the
vector of ones, g = 1 for batch learning. The learned DMP is

shown in red dashed line.

at most 10 seconds on average.

5.3.2 Framework validation

The validation of the overall framework presented in Section 5.2 is now per-
formed with the real robotic setup. The dVRK is used to control the surgical
robot. The DMPs for move actions are learned from multiple human executions
using the approach presented in [113]. Three users with different dexterity per-
form five trials each of the task in tele-operation. The initial positions of rings
and pegs and the order of the rings (red, green, blue, yellow) are the same for
all executions. Rings are always transferred between the arms. This generates
120 executions of the move(A, ring, C) gesture (at the beginning and during
transfer for each ring), 60 executions of the move(A, peg, C) and move(A,

center, C) gestures. The learning process averages over all human trajecto-
ries. Figure 5.5 shows the learned Cartesian DMP for the move(A, ring, C)

gesture as an example. The framework implements Encodings 1 and 3 in the
task planning module, because of the higher computational efficiency for real-
time purposes shown in former section. Three different scenarios are evaluated,
shown in Figures 5.6-5.7-5.8. The scenarios are designed such that they rep-
resent unconventional situations in the ring transfer task, in order to prove the
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versatility of ASP planning.
In scenario 5.6 the red ring is placed on a grey peg and must be extracted,

while the blue ring requires transfer. In spite of the calibration accuracy, the
small size of the setup and light conditions still originate vision errors. In this
scenario, the ASP reasoner is also able to re-plan when the transfer of the blue
ring fails. Moreover, Encoding 3 is exploited to perform optimization and take
the closest ring (red) first.

In scenario 5.7, colored pegs are occupied, hence a ring must be temporarily
placed on a grey peg. This scenario highlights the difference between a standard
sequential planner or finite state machine and ASP: the logic program does not
specify all possible workflows of execution, instead it describes the constraints
of the task and the environment. Hence, though placing a ring on a grey peg is
not a standard operation, it is still recognized by the ASP program (Encoding 1)
as the best solution to reach the final goal. Moreover, in this scenario the SA
module identifies the green ring as already placed, hence the reasoner ignores it.

Finally, in scenario 5.8 the parallel execution of the two arms with Encoding
1 is shown.

Table 5.2 shows the task planning times for the tested scenarios and re-
planning. The results confirm the real-time capabilities of the ASP module
proved in the former Section. The planning time reduces as the number of rings
in the scene is lower (smaller grounding and shorter plan). Optimization in En-
coding 3 increases the planning time, though it is still acceptable for real-time
computation.
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(A) (B) (C) (D)

(E) (F) (G)

FIGURE 5.6: Real robotic scenario with failed transfer and re-
planning (F).

(A) (B) (C) (D)

(E) (F) (G)

FIGURE 5.7: Real robotic scenario with occupied colored pegs.

TABLE 5.2: Planning time from the ASP module in the real
robotic scenarios.

Scenario Encoding Planning time [s]

Figure 5.6 (re-planning) 3 0.42 (0.05)
Figure 5.7 1 0.13
Figure 5.8 (re-planning) 1 0.11 (0.05)
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(A) (B) (C)

(D) (E) (F)

FIGURE 5.8: Real robotic scenario with parallel execution and a
ring appearing in the scene, triggering re-planning (D).

5.4 Discussion

The proposed framework for autonomous surgical task execution addresses a
number of issues in the surgical scenario.

First, adaptation to different environmental conditions (including failure con-
ditions) is guaranteed both at task level with ASP, and at motion level with
DMPs. This is important for most surgical operations, from standard suturing
performed on wounds with different shape and with different anatomical sur-
rounding and constraints, to complex operations as tumor removal from different
organs.

Moreover, the framework exhibits interpretable, hence more reliable behav-
ior, thanks to the high expressivity of task logic at ASP level, and the continu-
ous monitoring of relevant environmental variables from sensors, with situation
awareness module.

The ring transfer task used for validation allows to demonstrate that the pro-
posed framework can efficiently control the operation of a surgical robot as
dVRK in constrained dexterous manipulation tasks in small environment, thanks
to the use of DMPs to replicate the manual capabilities of expert surgeons, one
key skill towards efficient and safe surgery.
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An important feature for an autonomous surgical system is also the real-time
performance. The use of logics may slow down the reasoning process in complex
scenarios, where task description involves a significant computational burden for
grounding. This holds also for efficient ASP paradigm, as explained in Chapter
4.

In order to investigate this aspect, 1000 scenarios of the ring transfer task
have been tested in simulation, evaluating the solving performance of state-of-
the-art ASP solver Clingo when considering ASP encodings of increasing com-
plexity. Performance is evaluated using a computer with standard commercial
hardware specifications.

When considering standard ASP description and optimization (Encodings 1
and 3), the solving time is below 10 s even for very complex scenarios, including
occupied pegs (hence requiring multiple extractions) and transfers. However,
when temporal persistence of environmental fluents is assumed in Encoding 2
(i.e., all fluents hold until specific events or actions occur), the grounding pro-
cess requires more time (more than 100 s). Considering temporal persistence of
environmental fluents is realistic in robotic scenarios in general, and is very im-
portant even for the specific ring transfer task, since several fluents must hold in
order to guarantee proper workflow of execution (e.g., status of gripper). This
becomes even more crucial for more complex and realistic surgical tasks, where
anatomical conditions must be stored and considered during the whole (possibly
long) procedure.

It is important to compare the real-time (task) planning capabilities of the
framework with the performance of a surgeon / user of dVRK, in order to further
assess the benefits of autonomy. Some preliminary tests in this direction have
been performed.

In particular, the ring transfer task in standard environmental conditions and
in the same situation as Figures 5.6-5.8 (including failure conditions) is executed
by a human operator with experience in using the dVRK robot and its remote
control console, though not a certified surgeon. The setup is prepared while
the human operator is not observing, and recording of the kinematic readings
from dVRK and ROS topics is started as soon as the user is ready sitting at
the console. Then, the human planning time is considered as the initial delay
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between the beginning of the recording and the actual significant variation of
any of the kinematic readings. The ASP solver of the autonomous framework
appears able to generate plans faster than human in unconventional conditions
(0.13 s vs. 1.56 s for Figure 5.7, 0.11 s vs. 0.83 s for Figure 5.8) and when
failures occur (0.05 s vs. 0.37 s for failed grasp in Figure 5.6, 0.05 s vs. 0.33 s
for new ring introduced in Figure 5.8), while the human performance is better in
standard environmental conditions (1.36 s vs. 0.90 s). This is reasonable, since a
human operator usually trains on the standard version of the ring transfer task.

Though more tests need to be performed to validate the real-time capabilities
of the reasoning system, including a more rigorous evaluation of the planning
time of a human, preliminary results are encouraging.

5.5 Conclusion

Combining task-level ASP and motion-level DMPs, integrated with situation
awareness for sensor interpretation, has allowed to develop a framework which
addresses important issues towards surgical task autonomy, and successfully
solves the benchmark task of ring transfer.

Two main issues remain to be addressed. First, task knowledge is usually
not priorly known, hence it must be acquired from experience and example ex-
ecutions from experts. In fact, the same surgical task is executed differently
depending on the anatomy of the patient and his needs.

Secondly, computational efficiency of ASP planning must be improved to
cope with temporal specifications, e.g. on persistence of fluents.

In the next chapter, these two problems will be addressed with inductive logic
programming.
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Chapter 6

Inductive learning of surgical task
knowledge

6.1 Introduction

An important limitation of the framework presented in Chapter 5 is that it as-
sumes comprehensive knowledge of the domain and the task in terms of domain
attributes (e.g., object properties) and axioms governing domain dynamics (e.g.,
constraints, and action pre-conditions and effects). In practical robotics domains,
especially in surgical scenarios, this is not feasible. In fact, the peculiarity of
each patient’s anatomy and the high number of anomalies which can occur dur-
ing an intervention introduce high variability in the surgical workflow. Hence,
it is not reliable to develop an autonomous surgical system which operates only
on the basis of prior knowledge encoded by a human designer, or automatically
extracted from textbooks of standard surgery (following the popular approach of
text mining in artificial intelligence [229, 144, 24]).

This chapter is focused on the problem of learning previously unknown task-
level knowledge from observations of real surgical task executions. The surgical
context presents two major challenges to this purpose. First, usually very few
records of executions are available for real surgeries, because of the task com-
plexity, duration and privacy issues for the patients and the hospitals. Secondly,
iterative learning is needed to refine existing knowledge as new observations are
acquired, in order to develop a surgical system which is able to improve after
every instance of a task. The proposed solution to the learning problem is based
on inductive logic programming (ILP), a framework founded on logic induction
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from examples expressed in a specific logic programming paradigm. The ILP
approach presented in this chapter is applied to the three ASP encodings for the
ring transfer task presented in Chapter 5. This chapter is organized as follows:
Section 6.2 reviews the state of the art in surgical process learning, as well as
general methods for knowledge acquisition and refinement from the artificial
intelligence community; Section 6.3 briefly describes the general formalism of
ILP, and specifies the ILP task under the AS semantics; Section 6.4 presents an
alternative yet equivalent formulation for the ASP encoding proposed in Chapter
5, based on the temporal logic paradigm of event calculus, which is needed to
solve the ILP problem more efficiently. Experiments which validate the learning
framework on the ring transfer task are then presented, proving the advantages of
the ILP framework and its feasibility even for more realistic surgical scenarios.

6.2 Related work

Learning a surgical process model (SPM) requires to choose the level of gran-
ularity at which the task will be analyzed, according to the standard definition
proposed in [178] and shown in Figure 1.2. Learning an SPM for motions is chal-
lenging since surgical gestures present high variability [244]. Hence, statistical
methods such as Markov models and Gaussian mixture models (GMMs) [204,
307, 178] are typically used to infer a motion-level SPM. With the increasing use
of deep neural networks, GMMs have been combined with deep reinforcement
learning to transfer learned motions to different surgical tools [46]. Although
deep learning provides a small improvement in accuracy over traditional learn-
ing methods, it is computationally expensive to tune the network parameters [71,
87]. A further limitation of deep networks and related methods is that they need
many (labeled) examples to build a good SPM. This chapter focuses on learn-
ing SPMs at a coarser granularity, i.e. at the level of relations between activities
(or actions) that constitute a surgical step or phase. An action is an elementary
motion associated with semantics specifying, e.g., the arm and the surgical tool
at use. The sequence of actions is affected by the variations in the anatomical
conditions. Bayesian networks (BNs) represent the state of the art for learn-
ing SPMs at this granularity [31, 44]. Recurrent (deep) neural networks have



6.2. Related work 87

also been explored, exhibiting improvement in the accuracy at the expense of
increased computational effort for training [65]. A hidden Markov model is used
to model a ring transfer exercise involving cooperation between a human and a
robot [25]. However, though the authors consider a simplified version of the task,
80 labeled human executions are required as a training set for learning, making
scalability to more complex tasks a challenging problem. Another major limi-
tation of statistical methods is that they generate black-box models that do not
provide any guarantees in terms of correctness and soundness, affecting the reli-
ability of the surgical system. On the contrary, logic-based formalisms for rep-
resenting and reasoning with domain knowledge inherently provide correctness
guarantees [244], and they make the underlying reasoning easier to understand.
However, such logic-based formalisms for the ring transfer task have required
comprehensive domain knowledge to be encoded a priori [115, 134], which is
rather difficult to do in more complex surgical scenarios.

There is an established literature in AI on methods for learning domain knowl-
edge. Examples include the incremental revision of a first-order logic represen-
tation of action operators [112], the expansion of the theory of actions to re-
vise or inductively learn ASP system descriptions [15], and the combination of
non-monotonic logical reasoning, inductive learning, and relational reinforce-
ment learning to incrementally acquire previously unknown actions and their
pre-conditions and effects [302]. Previously unknown state constraints have also
been learned using decision tree induction in a framework that combines ASP-
based non-monotonic logical reasoning with deep learning for scene understand-
ing [230]. All these approaches may be viewed as instances of interactive task
learning, a general framework for acquiring domain knowledge using labeled ex-
amples or reinforcement signals obtained from domain observations, demonstra-
tions, or human instructions [176]. Learning unknown domain axioms represent-
ing action-level knowledge is performed in this thesis using ILP, first developed
in [233]. The choice rises from the requirements expressed at the beginning of
this chapter. First, ILP supports learning from labeled examples and incremental
learning from a given background knowledge. For this reason it has been used
by an international research community in different domains, e.g., to identify
cognitive stress and distraction in a driver [221]; for event recognition in city
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transport [151]; and to learn logic programs in robotics [56]. ILP has also been
successfully applied to the learning of programs based on the paradigm of event
calculus, firstly in [232]. Defining event calculus specifications is a non-trivial
task, which has limited the application of this temporal logic formalism [232].
Hence, research has been devoted to the automatic learning of event calculus
definitions, e.g. with incremental and scalable approaches [6, 153]. Moreover,
ILP has been used to learn in non-monotonic logic programs [183] and proba-
bilistic logic programs [63]. In complex application domains such as surgical
robotics, learning with probabilistic logics is computationally challenging [246],
but non-monotonic logical reasoning is still necessary. The approach presented
in this chapter builds on ILASP, an implementation of ILP under the AS seman-
tics [180]. Unlike another popular implementation called Inspire [289], ILASP
has fewer hyper-parameters and supports learning from a batch of examples,
which significantly speeds up the learning process. A drawback of ILASP is that
it does not natively support automatic predicate invention, which helps grouping
logic variables and generating shorter rules, while Inspire does. However, here
presented experiments show that this limitation can be partially overcome by us-
ing an iterative version of the algorithm of ILASP. In [180], ILASP has been
shown to be more general than XHAIL [271], a state-of-the-art tool for inductive
learning of event calculus-based axioms, and its competitor ILED [152]. More-
over, it guarantees the optimality of the set of axioms in terms of minimal length
(see Section 6.3 for details).

6.3 The ILP problem under the AS semantics

6.3.1 Task definition

Several formulations of ILP tasks have been proposed and investigated by the
research community, including learning from satisfiability [62], learning from
entailment [234, 272] and learning from interpretations [64]. All ILP tasks define
some background knowledge B expressed in a logic formalismF , a search space

SM of possible axioms to be learned in the syntax of F , and a set of examples

E expressed in the syntax of F . The goal of any ILP task is to find a subset of
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the search space, H ⊆ SM, such that H ∪ B supports the evidence contained in
the examples. The ILP problem under the AS semantics is a specific instance
of learning from entailment. The learning from entailment task is defined as
follows:

Definition 4 (Learning from entailment). Consider a set of examples E = 〈E+,
E−〉, where E+ is a subset of positive examples and E− is a subset of negative
examples. The task of learning from entailment is defined as the tuple T =

〈B, SM, E〉. The goal of T is to find H ⊆ SM such that:

B ∪ H |= E+

B ∪ H ∪ E− |= ⊥

The above definition introduces the definitions of positive and negative examples.
Intuitively, a positive example must be covered by B ∪ H, i.e. positive examples
must be entailed from the knowledge encoded in the logic program. On the
contrary, negative examples typically represent undesired observations and task
situations which must not be covered by the final knowledge. The above generic
definition is specialized to the AS semantics expressing B and SM in the ASP
language as presented in Chapter 4, and considering examples which are partial

interpretations.

Definition 5 (Partial interpretation). Let P be an ASP program. Any set of ground

atoms that can be generated from axioms in P is an interpretation of P. Given

an interpretation I of P, a pair of subsets of ground atoms e = 〈einc, eexc〉 is

said to be a partial interpretation extended by interpretation I if einc ⊆ I and

eexc ∩ I = ∅.

In other words, a positive example is a partial interpretation of an ASP pro-
gram specifying atoms which may appear in an answer set of the program (einc),
and atoms which cannot appear (eexc). Conversely, a negative example is a par-
tial interpretation of an ASP program specifying atoms which do not appear in
an answer set of the program (einc), and atoms which shall appear (eexc).

Given these definitions of examples, two different variants of the ILP task are
defined under the AS semantics: brave induction and cautious induction tasks,
first formalized in [278].
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Definition 6 (Brave induction task). Let T = 〈B, SM, E〉, H, and E = 〈E+, E−〉
be as defined for learning from entailment under the AS semantics. Let A be an

answer set of the ASP program defined by H ∪ B. T is said to define a brave
induction task if the goal set H of hypotheses must satisfy:

∃A s.t. B ∪ H |= A : A ∩ E− = ∅ ∧ E+ ⊆ A

Definition 7 (Cautious induction task). Let T = 〈B, SM, E〉, H, and E =

〈E+, E−〉 be as defined for learning from entailment under the AS semantics.

Let A be an answer set of ASP program defined by H ∪ B. T is said to define a

cautious induction task if the goal set H of hypotheses must satisfy:

∀A s.t. B ∪ H |= A : A ∩ E− = ∅ ∧ E+ ⊆ A

In other words, the hypotheses H selected by a brave induction task must entail at

least one answer set that satisfies the examples, and the H returned by a cautious
induction task must entail only answer sets that satisfy the examples. For any
set of examples, hypotheses returned by a cautious induction task are stricter
than those returned by a brave induction task since it must satisfy additional
constraints.

As stated at the beginning of this chapter, example executions (which gener-
ate observed answer sets in E+) of surgical tasks present only few possible occur-
rencies, hence the ILP task must be able to generate an hypothesis which covers
positive examples, but does not exclude different (unavailable at the moment)
workflows. At the same time, a surgical task involves a number of constraints
which must be safely guaranteed for the overall reliability of the surgical sys-
tem. The objective is to provide these constraints in terms of negative examples,
hence negative examples must be excluded from any answer set of the learned
ASP program. For this reason, the framework for ILP under the AS seman-
tics adopted in this chapter is founded on the state-of-the-art tool ILASP [180],
based on Clingo syntax, which combines brave induction for positive examples
with cautious induction for negative examples as follows:

Definition 8 (ILASP task). Let T = 〈B, SM, E〉, H, and E = 〈E+, E−〉 be

defined as for learning from entailment under the AS semantics. Let A be an
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answer set from the ASP program defined by H ∪ B. The goal of the ILASP task

is to find H such that:

∀e ∈ E+ ∃A s.t. B ∪ H |= A : e ⊆ A
∀e ∈ E− @A s.t. B ∪ H |= A : e ⊆ A

ILASP implements a number of algorithms for solving the ILP task. It is out
of the scope of this chapter to describe the full details of ILASP algorithms,
which can be found in [180]. However, a short intuitive description of the main
algorithm, ILASP2, is here presented to illustrate the main advantages of the
tool and justify its choice for the purposes of this thesis. ILASP2 represents the
ILP task as a meta-level ASP program to be solved with standard ASP solvers
as Clingo. The meta-level program contains axioms which represent the back-
ground knowledge B, and its answer sets are the axioms in the final hypothesis
H. The search space SM is represented as a set of constraints on the final answer
sets. Examples are added to the meta-level ASP program using reification, i.e.
they are converted to constraints which limit the set of feasible hypotheses in the
search space. ILASP2 iteratively solves the ASP program collecting all violat-
ing reasons, i.e. hypotheses which do not satisfy examples. The solving process
stops as soon as an answer set (H for the ILP task) is found including none of
the violating reasons. Notice ILASP offers the advantage to find not only a sup-
porting hypothesis for the examples, but the shortest one. In fact, the search in
SM is performed starting from the axioms with minimal length. The length of an
axiom is defined as follows:

Definition 9 (Length of an axiom). Let A be an axiom in an ASP program. The

length of A, |A|, is defined as the number of atoms that appear in its body and

head. For an aggregate rule, i.e. an axiom with an aggregate l {a1; a2; . . . ; an} u
in the head, the length of the head is defined as ∑u

i=l i · n.

The length of an hypothesis is directly defined as the sum of the length of the
axioms composing it. In this chapter, a more efficient variant of ILASP2 algo-
rithm is used, ILASP2i [181]. ILASP2i is an incremental version of ILASP2,
meaning that it does not consider all examples as constraints in the meta-level
ASP program. On the contrary, the algorithm first finds H to satisfy the first
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example. Then, at each iteration only examples which are not supported by H
are reified. In this way, the meta-level ASP program is not burdened by a high
number of constraints corresponding to all examples, hence ILASP2i is compu-
tationally more efficient when many examples are provided. Another important
advantage of ILASP is that it allows to define the search space SM with compact
syntax, using mode bias that specifies the atoms that can occur in the body and
head of axioms. For the ring transfer task, only atoms identifying actions and
fluents can be part of the heads of candidate rules; the body of axioms can have
both actions and domain attributes.

In the rest of this chapter, a more specific ILP task than the one defined in
Definition 8 is considered, which is learning from context-dependent examples

[182]. The difference is that examples are not only observed or unwanted partial
interpretations, but they also include the context C, i.e. the specific constraints
/ atoms which hold for the example. In this way, examples become context-

dependent partial interpretations (CDPI), defined as tuples 〈e, C〉, and the task
in Definition 8 is re-formulated as follows:

Definition 10 (ILASP task with CDPIs). Let T = 〈B, SM, E〉, H, and E =

〈E+, E−〉 be defined as for learning from entailment under the AS semantics,

with E as CDPIs. Let AS(K) define the answer sets of an ASP program K. The

goal of the ILASP task with CDPIs is to find H such that:

∀e ∈ 〈E+, C〉 ∃A ∈ AS(B ∪ H ∪ C) s.t. B ∪ H ∪ C |= A : e ⊆ A
∀e ∈ 〈E−, C〉 @A ∈ AS(B ∪ H ∪ C) s.t. B ∪ H ∪ C |= A : e ⊆ A

Using CDPIs allows to relate different plans of the task to different contex-
tual environmental conditions, hence capturing the variability of the workflow
without defining a shared background knowledge which is logically consistent
with all examples.

6.3.2 Complexity and generality

[183] has extensively studied the computational complexity and the generality
of ILP frameworks under the AS semantics. In this section, results which are
relevant to the specific task of Definition 10 of interest in this thesis are reported.
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The computational complexity is evaluated for two problems: verification

and satisfiability.

Definition 11 (Verification and satisfiability problems). Let T = 〈B, SM, E〉 be

a generic ILP task, e.g. as the one defined in Definition 4. Verification is the

problem of deciding whether hypothesis H is a solution of T. Satisfiability is the

problem of deciding whether at least such hypothesis exists.

The following result holds (demonstration can be found in [183]):

Theorem 1. The complexity of the verification problem for the ILP tasks in Def-

initions 8-10 is DP-complete. The complexity of the satisfiability problems for

the ILP tasks in Definitions 8-10 is Σp
2 -complete.

Notice that these results are originated from the results for the cautious induc-
tion task described above, which intuitively is more complex than brave induc-
tion task, since ILP tasks in Definitions 8-10 use cautious induction on negative
examples. In fact, [183] proves that the cautious induction task can be polyno-
mially reduced to the ILP tasks in Definitions 8-10.

The generality of an ILP framework is a measure of the possible axioms
which can be learned, given a sufficient number and variety of examples. The
generality of an ILP framework is then affected by the definition of the search
space SM (e.g., through mode bias). For this reason, the generality of an ILP
task shall be evaluated assuming no restriction on SM, i.e. SM = AF , where
AF is the set of all possible axioms in the syntax of the specific logic formalism
F underlying the ILP task (in this case, ASP). Hence, from now on the generic
ILP task T of previous definitions is denoted as T = 〈B, E〉, meaning that
SM = AF . An important definition for studying generality is strong reduction

of one ILP framework to another:

Definition 12 (Strong reduction). Consider two ILP tasks T1 = 〈B, E1, T2 =

〈B, E2. T1 is said to strongly reduce to T2 (denoted as T1 →sr T2) if, for every

instance of T1 there exists an instance of T2 such that H1 = H2, given that H1

is a valid hypothesis for T1 and H2 is a valid hypothesis for T2.

In other words, T1 →sr T2 means that any instance of T1 maps to an instance
of T2, given that the same background knowledge is provided for both tasks.
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Hence, it is possible to define a notion of generality as derived from the strong
reduction relation, which is sr-generality. T1 is said to be as sr-general as T2 if
T2 →sr T1; similarly, T1 is said to be more sr-general than T2 if T2 →sr T1, but
T1 6→sr T2. The following important theorem holds:

Theorem 2. The ILASP task with CDPIs in Definition 10 is more sr-general than

the ILASP task in Definition 8, which is more sr-general than the brave induction

task. At the same time, the ILASP task in Definition 8 is more sr-general than the

cautious induction task.

A good measure of generality of an ILP task is the one-to-many distinguisha-

bility class, which evaluates the capability of one task T to distinguish between a
target hypothesis HT and a set of unwanted hypotheses S. In fact, simply stating
that HT can be found by T does not necessarily mean that T is general enough
to find HT. A clarifying example is T = 〈B, E〉 with E = ∅: the empty hypoth-
esis is obviously satisfying for T , whatever ILP task is considered. The formal
definition of one-to-many distinguishability is as follows:

Definition 13 (One-to-many distinguishability). The one-to-many distinguisha-

bility class of an ILP task T = 〈B, E〉 (denoted asD1
m(T )) is the set of all tuples

〈B, H, S〉 such that there exists an instance of T which can distinguish between

H and any hypothesis contained in a set of hypotheses S, given the same back-

ground knowledge B. Given two ILP tasks T1, T2, T1 is said to be at least as

D1
m-general as T2 if D1

m(T2) ⊆ D1
m(T1).

It is possible to establish the following relation between strong reduction and
one-to-many distinguishability:

Theorem 3. Given two ILP tasks T1 and T2, T1 →sr T2 =⇒ D1
m(T1) ⊆

D1
m(T2).

This result, together with Theorem 2, leads to the conclusion that the one-to-
many distinguishability class for the ILASP task in Definition 10 is larger than
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the other ILASP tasks, hence it is the most general framework for the purposes
of learning task knowledge in ASP syntax1.

6.4 ILP for the ring transfer task

In this section, the experimental setup and the results of evaluating the capa-
bilities of ILASP in the context of the ring transfer task are presented. The
main objective was to learn previously unknown axioms describing actions’ pre-
conditions (e.g., Statement 5.1) and effects (e.g., Statement 5.4), and executabil-
ity conditions (Statement 5.3). In order to restrict the search space and improve
the computational efficiency, separate ILASP tasks for each action were defined
to learn the different types of axioms. Also, separate ILASP tasks were defined
for each domain fluent, one each for the initiated and the terminated con-
ditions respectively.

The background knowledge and the search space for ILASP tasks are then de-
fined (Section 6.4.2), and the generation of training examples is explained (Sec-
tion 6.4.3). Finally, the results of comparing the learned axioms with the ground
truth information provided by the designer are discussed (Section ??). In the first
experiment, the length of axioms and the computational time required by ILASP
are used as the evaluation measures, under the hypothesis that the learned ax-
ioms would closely match the ground truth information. In the next experiment,
considered 1000 simulated scenarios are considered that mimic challenging con-
ditions for the ring transfer task, including both sequential and parallel execution
of actions as described in Chapter 5. In each scenario, paired trials are conducted
with the learned and ground truth axioms respectively. In these trials, planning
time and plan length were the evaluation measures (with plans computed using
the Clingo ASP solver).

1In [183], results of complexity and generality are explicitly reported for the task in Definition
10 with ordered examples, T c

LOAS, i.e. when the target is to learn weak ASP constraints. How-
ever, it is straightforward to apply the proofs of theorems in [183] (in particular the equivalence
of complexity class between T c

LOAS and the task in Definition 8) and show that the same results
for complexity hold for the task in Definition 10. For generality, Definition 10 is obviously less
general without ordered examples; however, learning weak constraints is out of the scope of this
thesis, hence Definition 10 ensures the highest needed generality.
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Before presenting the ILASP approach, a slight modification in the syntax
of task knowledge for ring transfer is required for computational efficiency, as
described in the following section.

6.4.1 Re-formulation of the original ASP encoding

The ASP formulation of effects of actions for the ring transfer task presented in
Section 5.2 is challenging for the ILP task from CDPIs of Definition 10. In fact,
as explained in Section 6.3, ILASP2 (and ILASP2i) algorithm solves a meta-
level ASP program, with constraints obtained from reification of examples and
the definition of the search space SM. The ASP formulation of durative effects
includes a high number of NAFs, since the concept of duration of atoms is im-
plicit in the axioms, meaning that they specify that an atom holds until some

other atom does not hold. Axioms with NAFs are more challenging for ILASP,
since a NAF represents unobserved entities of the domain, hence the SM is usu-
ally larger when NAFs must be included in it. For this reason, here a more con-
venient, yet equivalent formulation for durative effects of actions is presented,
based on the temporal logic paradigm of event calculus. which specifies the
starting (initiating) and terminating conditions for each fluent, based on event
calculus [166, 148]. The event calculus is a general approach to representing
and reasoning about events and their effects in a logic programming framework,
born as an attempt to solve the frame problem [166]. An event calculus program
relates the properties of a domain to triggering events, following the common
sense law of inertia [291]. This law formalises the notion that properties of a
domain remain unchanged throughout time unless specific events occur. Hence,
in ASP syntax, events (specific sets of atoms) which trigger the starting and the
ending of a specific atom (initiating and terminating conditions, respectively) are
explicitly and separately defined, thus reducing the use of NAFs in the axioms.
Given a generic fluent subject to the law of inertia, the core ASP axioms of
the event calculus are as follows:

occurs(fluent, t) :- initiated(fluent, t). (6.1)

occurs(fluent, t) :- occurs(fluent, t-1),

not terminated(fluent, t).
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These are equivalent to the following axioms in temporal logic:

not occurs(fluent) U initiated(fluent)

terminated(fluent)R occurs(fluent)

where U ,R are the fundamental temporal operators until, release respectively
[80]. In the ASP program of the ring transfer task, the inertial property 6.1 and
initiating / terminating conditions for effects are defined as follows:

initiated(at(A,peg,C), t) :- move(A, peg, C, t-1). (6.2)

initiated(at(A,center,C), t) :- move(A, center, C,

t-1).

initiated(in_hand(A,ring,C), t) :- grasp(A, ring, C,

t-1).

initiated(closed_gripper(A), t) :- grasp(A, ring, _,

t-1).

initiated(on(ring,C1,peg,C2), t) :- in_hand(A, ring,

C1, t-1), at(A, peg, C2, t-1), release(A, t-1).

initiated(at(A,ring,C), t) :- move(A, ring, C, t-1).

terminated(in_hand(A,ring,C), t) :- release(A, t-1),

in_hand(A, ring, C, t-1). (6.3a)

terminated(closed_gripper(A), t) :- release(A, t-1).
(6.3b)

terminated(on(ring,C1,peg,C2), t) :- extract(_, ring,

C1, t-1), C1 != C2. (6.3c)

terminated(at(A,ring,C), t) :- move(A, ring, C1, t-1),

color(C), C1 != C. (6.3d)

terminated(at(A,ring,C), t) :- move(A, peg, _, t-1),

color(C). (6.3e)

terminated(at(A,ring,C), t) :- move(A, center,_, t-1),
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color(C). (6.3f)

terminated(at(A,peg,C), t) :- move(A, peg, C1, t-1),

color(C), C != C1. (6.3g)

terminated(at(A,peg,C), t) :- move(A, ring, _, t-1),

color(C). (6.3h)

terminated(at(A,peg,C), t) :- move(A, center, _, t-1),

color(C). (6.3i)

terminated(at(A,center), t) :- move(A, O, _, t-1).
(6.3j)

Notice that these axioms are complete when parallel execution is considered. In
the case of sequential execution, the move(A, center, C, t) action implic-
itly moves both arms. Hence, two additional axioms need to be encoded:

initiated(at(A1,ring,C),t) :- A2!=A1, arm(A1),

move(A2, center, C, t-1).

terminated(at(A1,center), t) :- A2!=A1, arm(A1),

move(A2, center, _, t-1).

6.4.2 Background knowledge and search space

In this thesis, action pre-conditions and executability conditions are learned in
one set, and the action effects in another set. Below, the initial ILASP setup for
these two sets of axioms is described.

Pre-conditions and executability conditions

For the experiment that focused on learning action pre-conditions and executabil-
ity conditions, the background knowledge of each ILASP learning task (one per
action) included the definitions of sorts and helper axioms describing the differ-
ence between two different arms or colors:

different(A1, A2) :- arm(A1), arm(A2), A1 != A2.
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different(C1, C2) :- color(C1), color(C2), C1 != C2.

The search space for each ILASP task was defined using mode bias for com-
pactness. Specifically, for the task of learning pre-conditions and executability
conditions for any given action, the search space was defined such that the ac-
tion can only occur in the head of an aggregate rule (to capture pre-conditions) or
in the body of axioms (for executability conditions). In ILASP syntax, this corre-
sponded to the statements #modeha(action) and #modeb(1, action), re-
spectively; #modeb(1, action) specifies that action can appear in the body
of an axiom only once. Also, each environmental (i.e., domain) fluent pre-
sented in Chapter 5 may appear in the body of axioms, by adding the mode
bias statement #modeb(1, fluent). Similarly, the statement #modeb(1,
different) was introduced. When defining the search space, arguments of
atoms which are variables or constants must be clearly stated in ILASP. Axioms
with more variables generally require more computational effort. For the task of
learning pre-conditions and executability constraints, only arm and color were
defined as variables in atoms. Finally, the length of the body of axioms is limited
to three atoms using a specific ILASP flag from command line, to reduce the
dimension of the problem.

Effects of actions

In order to learn the effects of action, we set up two ILASP learning tasks per
environmental fluent, one each for the axioms associated with the initiated

and terminated relations. The background knowledge for these learning tasks
contained the same ASP statements presented in the previous section, and the
laws of inertia (Statement 6.1). Moreover, since effects are delayed with respect
to actions, the concept of temporal sequence was included:

delay(1..N).

prev(T1, T2, D) :- time(T1), time(T2), delay(D),

T2 = T1+D.
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where delay is a variable constrained to the set 1..N and N is an estimate of the
maximum delay between actions and effects in the domain; N can be increased
until ILASP is able to find a suitable hypothesis with the minimum temporal de-
lay. For the ring transfer task, ILASP found the minimum value of N=1. Then,
the search space was defined using the mode bias #modeh(initiated(fluent,
t)) or #modeh(terminated(fluent, t)), which specified the head of can-
didate normal axioms. Moreover, for each environmental fluent f and each ac-
tion action of the task, #modeb(1, ft), #mode(1, actiont) was stated
to allow them in the body of candidate rules. The notation atomt is short-
hand to specify that the time step appears as an argument of atom, from now
on. Also #modeb(1, prev) was included in the mode bias. Note that the in-
ertia laws (Statement 6.1) imply that fluentt :- initiated(fluent, t),
which would lead ILASP to learn the trivial axiom:

initiated(fluent, t) :- fluentt

As a result, in the ILASP task to learn initiated conditions for a specific
fluent, the mode bias #modeb(1, fluentt) was omitted. ILASP variables
included color, arm, and time, while delay was defined as a constant #con-
stant(delay, 1..N) to reduce the size of the search space. The maximum
body length of axioms was limited to three.

6.4.3 Generation of examples

The training and testing examples were extracted from videos of a human or
the robot performing the target task. Specifically, a human execution of the
ring transfer task in standard environmental conditions was considered from the
dataset used for learning DMPs in Chapter 5. In addition, the executions of
Figures 5.6-5.8 were added, to capture anomalous situations and learn full task
knowledge.

From each video, fluents were extracted as explained in Chapter 5. Each
frame in the videos was labeled with the recognized fluents and action being
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executed. This process was repeated in all the videos to generate the set of la-
beled examples that serves as the input to our approach to learn previously un-
known axioms corresponding to executability conditions (Statement 5.3), action
pre-conditions (Statement 5.1), and action effects (Statement 5.4). The target
axioms define logical relations between atoms describing actions and domain
fluents; the corresponding examples will only contain these atoms. The structure
of examples for these types of axioms is described next.

Action pre-conditions and executability conditions

Since all atoms in the axioms corresponding to the pre-conditions and executabil-
ity conditions of actions refer to the same timestep t (see Chapter 5), the timestep
in the literals were omitted to reduce the number of variables in the search
space and speed up learning. For each timestep, the positive examples were
defined as CDPIs of the form 〈einc, eexc, C〉, where einc was the executed ac-
tion, C contained the atoms of the fluents describing the environmental state,
and eexc = ∅. Also actions that could not occur at each timestep were specified,
simulating knowledge from an expert designer analyzing the video under con-
sideration. Then negative examples were defined with forbidden actions in einc

and eexc = ∅. Although it is possible to add forbidden actions in the set eexc in
the positive examples, the fact that ILASP learns through brave induction from
positive examples implies there is no guarantee that actions in eexc will always
be excluded by the solution hypothesis. On the contrary, negative examples are
cautiously entailed by adding executability conditions to the hypothesis set to en-
sure that the learned axioms are reliable. As an illustrative example, consider the
scene in Figure 5.6. The first action moves PSM1 towards the red ring, providing
a positive example:

#pos{ex1, {move(psm1,ring,red)}, {},

{reachable(psm1,ring,red), reachable(psm2,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),
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on(R,red,peg,grey)}}

At the same time, it is not possible to move PSM1 to the blue ring, providing the
negative example:

#neg{ex2, {move(psm1,ring,blue)}, {},

{reachable(psm1,ring,red), reachable(psm2,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),

on(R,red,peg,grey)}}

To reduce the complexity of the learning task, redundant examples are omitted,
i.e., examples that only differ in the grounding of variables in the atoms. For
example, in the scenario in Figure 5.8, both arms moved to a ring (PSM1 moved
to blue ring, PSM2 moved to yellow one) at t=1. This generated two examples
that differ not in context but only in the grounding of move(A, R, C); only
one example was added. Overall, 8 positive examples and 8 negative examples
were generated for move(A, P, C); 9 positive examples and 20 negative ex-
amples for move(A, R, C); 2 positive examples and 1 negative example for
move(A, center, C); 11 positive examples for grasp(A, R, C); 10 posi-
tive examples and 4 negative examples for release(A); and 1 positive example
for extract(A, R, C).

Action effects

Since atoms in axioms corresponding to action effects do not share the same
timestepeg, examples for these axioms must account for the temporal aspects.
Since the ASP task knowledge formulation includes predicates inspired by event
calculus, two examples were generated for each fluent and for each task exe-
cution, one each for the initiated and the terminated axioms of this flu-
ent. Only positive examples were considered since they would not be used to
learn executability conditions (see above). Examples were CDPIs of the form
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〈einc, eexc, C〉, where einc was the set of initiated (or terminated) condi-
tions at all timesteps, while eexc was the set of initiated (or terminated)
conditions that did not hold at all timesteps. The context C was the task his-
tory, i.e., the set of atoms corresponding to actions and fluents that were true
at all timesteps. The set eexc was needed to guarantee that only relevant causal
laws were learned, given that positive examples are subject to brave induction—
see Definition 8. Consider the scene in Figure 5.7 as an illustrative example.
For the fluent at(A, R, C, t), the positive example (considering only the
initiated condition for simplicity) is shown below, with the atoms corre-
sponding to the set eexc underlined:

#pos{ex3,

{init(at(psm1,ring,red,2)),init(at(psm1,ring,blue,7)),...},

{init(at(psm1,ring,blue,2)),init(at(psm1,ring,red,7)),...},

{reachable(psm1,ring,red,_), reachable(psm2,ring,blue,_),

reachable(psm1,peg,red,_), reachable(psm1,peg,blue,_),

reachable(psm2,peg,green,_), reachable(psm2,peg,yellow,_),

reachable(psm1,peg,grey,_), reachable(psm2,peg,grey,_),

on(ring,red,peg,blue,1), on(ring,blue,peg,red,1), ...}}

As before, redundant examples were omitted for action effects. Overall, 1 ex-
ample was generated for the initiated (equivalently, terminated) condition
for closed_gripper(A); 2 examples for in_hand(A, ring, C); 1 exam-
ple for at(A, center); 2 examples for on(ring, C1, peg, C2); and 3
examples for at(A, O, C).

6.4.4 Results of ILASP

The results of ILP task are now presented, distinguishing between executability
constraints and pre-conditions of actions on one hand, and effects on the other
hand. Validation of the learned ASP encoding is performed finally, both for
sequential and parallel task executions. Learning is performed only for the most
complex and general Encoding 2, involving persistence of environmental fluents,
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hence more complex and realistic temporal specifications. In fact, Encoding 1
(standard task description) is represented with the same axioms of Encoding 2,
simply removing persistence in (5.6); Encoding 3 is the same as Encoding 1,
simply adding (5.16) for optimization. ILASP is run on a PC with standard
commercial hardware specifications, using 2.6 GHz Intel Core i7 processor and
16 GB RAM (the same hardware used for experiments in Chapter 5).

Pre-conditions and executability constraints

The learned action pre-conditions are as follows (a single aggregate is added
manually after learning, since ILASP tasks learn pre-conditions for single ac-
tions):

0 {move(A, O, C, t) : reachable(A, O, C, t); (6.4)

move(A, center, C, t) : in_hand(A, ring, C, t);

extract(A, ring, C, t) : in_hand(A, ring, C, t);

grasp(A, ring, C, t) : at(A, ring, C, t);

release(A, t) : in_hand(A, ring, C, t) } 1 :- arm(A).

Executability constraints are:

:- move(A, peg, C2, t), in_hand(A, ring, C, t),

on(ring, C, peg, C1, t). (6.5a)

:- move(_, peg, _, t), in_hand(A, ring, C, t),

not reachable(A, peg, C). (6.5b)

:- move(A, center, C, t), on(ring, C, peg, C1, t).
(6.5c)

:- move(A, ring, C, t), closed_gripper(A, t). (6.5d)

:- on(ring, C1, peg, C, t), move(A, peg, C, t). (6.5e)

Notice that the timestep variable is added to each atom after learning. Axiom
6.4 matches the action pre-conditions in axiom 5.1. Axioms 6.5(a-c) represent
the same conditions as in Axioms 5.3(e), 5.3(a) (forbidding motion when both
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TABLE 6.1: Quantitative results of the ILASP task for pre-
conditions and executability constraints. The lengths of original
and learned axioms are compared, and the learning time is shown

as returned from ILASP.

Actions Original length Learned length Time [s]

move(A,ring,C) 4 4 0.49
move(A,peg,C) 11 10 49.17
move(A,center,C) 5 4 0.09
extract(A,ring,C) 2 2 0.06
grasp(A,ring,C) 2 2 0.09
release(A) 2 2 0.79

total 26 24 50.69

arms hold the same ring is equivalent to forbidding motion when the arm which
cannot reach the peg is holding the ring, after transfer) and 5.3(b) respectively.
Axioms 6.5(e-f) match the constraints in axioms 5.3(c-d). Notice that axiom 6.5b
contains placeholders (_) in the action atom. ILASP is not able to generate place-
holders, hence they are added after learning. In fact, executability constraints are
learned by a separate ILASP instance for each action, with only examples rele-
vant to that action. This results in the following executability constraint without
the action fluent:

:- in_hand(A, ring, C, t), not reachable(A, peg, C, t).

This constraint is obviously infeasible when combined with the set of axioms for
the other actions. Hence, the action atom with placeholders in (6.5)b is added to
relate this constraint only to the action of moving to a peg. Notice that placehold-
ers make the substituted variables arbitrary in the axiom, hence the generality of
the learned constraint is preserved. Table 6.1 shows the computational time of
the learning process for each action specification, as well as the length of the
learned axioms with respect to the original ASP encoding of the domain. The
action move(Arm, peg, Color) has the most influence on the learning time.
In fact, it has the highest length of axioms, hence more time is needed to search
the set of hypotheses and find the correct ones for it. An overall reduction from
26 to 24 of the length of the axioms is gained with ILASP, which finds more
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optimal logical connections between fluents.

Effects of actions

The learned axioms for starting conditions for effects (replacing prev(T1,T2,1))
are as follows:

initiated(in_hand(A,ring,C), t) :- grasp(A, ring, C,

t-1). (6.6a)

initiated(closed_gripper(A), t) :- grasp(A, ring, _,

t-1). (6.6b)

initiated(on(ring,C1,peg,C2), t) :- in_hand(A, ring,

C1, t-1), at(A, peg, C2, t-1), release(A, t-1).
(6.6c)

initiated(at(A,ring,C), t) :- move(A, ring, C, t-1).
(6.6d)

initiated(at(A1,ring,C), t) :- move(A2, center, C,

t-1), different(A1, A2). (6.6e)

initiated(at(A,peg,C), t) :- move(A, peg, C, t-1).
(6.6f)

initiated(at(A,center), t) :- move(A, center, _, t-1).
(6.6g)

while the terminated conditions are as follows:

terminated(in_hand(A,ring,C), t) :- release(A, t-1),

in_hand(A, ring, C, t-1). (6.7a)

terminated(closed_gripper(A), t) :- release(A, t-1).
(6.7b)

terminated(on(ring,C1,peg,C2), t) :- in_hand(A, ring,

C1, t-1), on(ring, C1, peg, C2, t-1). (6.7c)
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terminated(at(A,ring,C), t) :- extract(A, ring, C,t-1).
(6.7d)

terminated(at(A1,ring,C), t) :- at(A1, peg, C, t),

at(A2, center, t), release(A1, t). (6.7e)

terminated(at(A,peg,C), t) :- at(A, peg, C, t-1),

grasp(A, ring, C1, t). (6.7f)

terminated(at(A1,center), t) :- at(A1, center, _),

move(A2, ring, C, t), grasp(A1, ring, C, t). (6.7g)

Notice that ILASP actually finds the following causal law for the initiating con-
dition of closed_gripper(A):

initiated(closed_gripper(A), t) :- in_hand(A, ring, C, t).

(6.8)

In 6.6b, the body of axiom 6.6a is replaced just for clarification (the goal is to
highlight the effects of actions on environmental fluents).

Axiom 6.6c is learnt using intermediate predicate invention. In fact, algo-
rithm ILASP2i returns the partial hypothesis after evaluation of each example.
The algorithm is not able to find a valid hypothesis for all examples at the first
try, but it generates the hypothesis:

initiated(on(ring,C,peg,C), t) :- release(A, t-1),

at(A, peg, C, t-1).

This hypothesis only covers examples in which a ring is placed on the same-
colored peg, but it does not cover anomalous scenarios in which a ring has to be
placed on a grey peg (Figure 5.7). This partial hypothesis is then added as a new
axiom to the background knowledge:

flag(A, C, T1, T2) :- release(A, T1), at(A, peg, C,

T1), prev(T1, T2). (6.9)
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TABLE 6.2: Quantitative results of the ILASP task for
initiated axioms for the effects of actions. The lengths of
original and learned axioms are compared, and the learning time

is shown as returned from ILASP.

Actions Original length Learned length Time [s]

at(A,ring,C) 6 5 17.77
at(A,peg,C) 2 2 24.89
at(A,center) 2 2 13.50
in_hand(A,ring,C) 2 2 10.15
on(ring,C1,peg,C2) 4 4 67.062

closed_gripper(A) 2 2 10.15

total 18 17 143.52

and the mode bias is modified to include flag in the search space. ILASP is
now able to find the correct axiom. Notice that increasing the maximum axiom
length in the hyperparameters would lead to the same result without intermediate
predicate invention, though increasing the search space.

In Section 6.4.3, the importance of specifying not holding fluents in the ex-
amples for effects of actions has been asserted. This axiom is now clarified with
an example. Consider the initiated condition for the fluent at(A,ring,C).
Excluding non-occurring fluents from examples generates the following initiat-
ing axiom:

initiated(at(A,ring,C), t) :- in_hand(A, ring, C, t+1).

which does not always hold actually, and does not properly describe the causal
relation since it inverts the causality condition between body and head of rule.

Validation of learned axioms

Learned axioms are validated in the same set of 1000 simulated scenarios used in
Section 5.3.1, to mimic challenging environmental conditions for the ring trans-
fer task, both for parallel and sequential executions.

2Adding new predicate in axiom 6.9 to the background knowledge.
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TABLE 6.3: Quantitative results of the ILASP task for
terminated axioms for the effects of actions. The lengths of
original and learned axioms are compared, and the learning time

is shown as returned from ILASP.

Actions Original length Learned length Time [s]

at(A,ring,C) 10 8 18.23
at(A,peg,C) 10 3 24.79
at(A,center) 6 4 20.86
in_hand(A,ring,C) 3 3 10.76
on(ring,C1,peg,C2) 3 3 92.36
closed_gripper(A) 2 2 10.76

total 34 23 177.76

The set of learned axioms presented in previous sections does not allow to
compute a plan for all scenarios. Then a systematic approach is used to refine
learned axioms, showing that the proposed ILP approach allows knowledge re-
finement.

First, axioms which mostly affect the plan computational time are identified,
replacing learned axioms with the original ones presented in Chapter 5. Axioms
6.7c-e-f are recognized as the bottleneck for plan computation, by iteratively
removing learned axioms for each single environmental fluent. Then, a new
ILASP task is run for each of the corresponding fluents, i.e. at(A,ring,C),
at(A,peg,C), removing axioms 6.7c-e-f from the search space. This results
in the following final set of terminated axioms (new axioms are underlined),
which allows to compute plans for all simulated scenarios:

terminated(in_hand(A,ring,C), t) :- release(A, t-1),

in_hand(A, ring, C, t-1) (6.10a)

terminated(closed_gripper(A), t) :- release(A, t-1)

(6.10b)

terminated(on(ring,C1,peg,C2), t) :- on(ring, C1, peg,

C2, t-1), extract(A, ring, C1, t-1) (6.10c)

terminated(at(A,ring,C), t) :- extract(A, ring, C,t-1)

(6.10d)
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terminated(at(A,ring,C), t) :- at(A, ring, C, t-1),

release(A,t-1) (6.10e)

terminated(at(A,ring,C), t) :- at(A, ring, C, t-1),

move(A, center, C, t-1) (6.10f)

terminated(at(A,peg,C), t) :- at(A, peg, C, t-1),

at(A,ring,C1,t) (6.10g)

terminated(at(A1,center), t) :- at(A1, center, _),

move(A2, ring, C, t), grasp(A1,ring,C,t) (6.10h)

Tables 6.2-6.3 show the learning performances for the initiated axioms 6.6
and the new terminated axioms. closed_gripper requires the same learn-
ing time as in_hand because of the detected semantic equivalency (6.8). Ini-
tiating and terminating axioms for on(ring,C1,peg,C2), at(A,O,C) and
at(A,center) require most of the overall learning time because the search
space is wider than other axioms. The original ASP encoding for pre-conditions,
executability constraints and effects contains more axioms than learned ones.
Notice that the termnating condition for at(A, peg, C) is significantly shorter.
In fact, a comparison of axioms 6.10g and 6.3g-h evidences that ILASP finds a
single axiom describing the terminating condition, connecting fluents instead of
actions, differently from standard human design logic.

Figures 6.1-6.2 show the comparison between learned and original versions
for ASP Encoding 2 for the sequential and parallel task execution, respectively.
The size of the plans returned by the two ASP programs and the plan computa-
tional times are compared in all simulated scenarios. Plots are obtained similarly
to the ones in Section 5.3.1, sorting and clustering plans from the original ASP
program according to their length and matching environmental fluents for a fair
comparison.

The results show that the learned ASP program for the sequential execution
generates plans of similar length with respect to the original program, while
slightly longer plans are generated with parallel execution.

The average planning time and its variability are significantly lower for the
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learned ASP program in the sequential execution, due to the shorter and more op-
timal axioms found by ILASP. In particular, the average planning time for sixth,
ninth and twelfth clusters is reduced of approximately 100 s, solving critical is-
sues for the real-time application of logic planning to real surgery. The result is
not evidenced in the parallel execution. This is probably because the planning
time is significantly lower with respect to the sequential execution. However, the
computational time is comparable to the original encoding, hence guaranteeing
similar performances in a real planning scenario.

Moreover, in Section 5.3.1 one cluster of six scenarios has been identified
where Clngo with the original Encoding is not able to find a feasible plan within
allowed maximum time of 200 s (as in Chapter 5, the limit of vertical axis is set
to 600 s for visibility reasons). Experiments show that the learned program fails
to find a plan in time only in one scenario (the average planning time in Figure
6.1-bottom is higher than the maximum allowed time). The dataset of simu-
lated scenario is used to compare learned and original axioms also for Encoding
1 (Figure 6.3 for sequential execution, Figure 6.4 for parallel) and Encoding 3
(Figure 6.5 for sequential execution, Figure 6.6 for parallel). The length of the
plans is overall comparable for all Encodings. Some slight improvement is intro-
duced by the learned axioms for sequential execution with Encoding 1, but plans
are slightly longer using the learned axioms for parallel execution with Encoding
3. As for the planning time, it does not vary for Encodings 1 and 3 in the sequen-
tial execution overall. Some initial clusters require longer planning time with
learned Encoding 3, but the original encoding performs worse for last clusters
(longer plans). In the parallel execution, the learned encodings require slightly
higher computational times, but the maximum average time is 5 s, suitable for a
real robotic scenario. In general, learned axioms do not significantly affect the
applicability of the ASP encoding to a real robotic scenario.
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FIGURE 6.1: Comparison between original and learned Encod-
ing 2 for the ring transfer task in the sequential execution, for
clusters of plans with same length for original encoding (hori-

zontal axis).

FIGURE 6.2: Comparison between original and learned Encod-
ing 2 for the ring transfer task in the parallel execution, for clus-
ters of plans with same length for original encoding (horizontal

axis).
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FIGURE 6.3: Comparison between original and learned Encod-
ing 1 for the ring transfer task in the sequential execution, for
clusters of plans with same length for original encoding (hori-

zontal axis).

FIGURE 6.4: Comparison between original and learned Encod-
ing 1 for the ring transfer task in the parallel execution, for clus-
ters of plans with same length for original encoding (horizontal

axis).
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FIGURE 6.5: Comparison between original and learned Encod-
ing 3 for the ring transfer task in the sequential execution, for
clusters of plans with same length for original encoding (hori-

zontal axis).

FIGURE 6.6: Comparison between original and learned Encod-
ing 3 for the ring transfer task in the parallel execution, for clus-
ters of plans with same length for original encoding (horizontal

axis).
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6.5 Discussion

The learned ASP axioms have been compared to the hand-written ones in the
three encodings presented in Section 5.3.1, in terms of plan length and computa-
tion time. The same set of 1000 simulated scenarios of Section 5.3.1 is used as a
benchmark.

Learned encodings exhibit comparable or slightly worse results with respect
to hand-written one in terms of plan size, for sequential and parallel execution
respectively. However, the most relevant metric is the plan computation time,
which affects the real-time performances of a task planner for robotics in general,
and is particularly relevant for a critical scenario like surgery.

For the sequential execution of the task, the average planning time with the
learned encoding is reduced of approximately 100 s in some scenarios for Encod-
ing 2, with reduced variance. This allows to guarantee real time performances
which are not reachable with the original ASP encoding. The result is due to the
optimality of the learned rules by ILASP, which are shorter than the original ones
and identify more efficient semantic relations between atoms in the domain.

In the parallel execution with Encoding 2, the planning time with the learned
encoding is slightly higher. However, the planning time is significantly lower
with respect to sequential execution (< 20s), hence acceptable computational
performances are still guaranteed.

Learned axioms for Encodings 1 and 3 require slightly higher computational
time, but still comparable to the original ones and acceptable for application in
real robotic scenarios (5 s maximum average planning time with optimization
and parallel execution in Encoding 3).

Moreover, learned axioms fail to generate a plan (within maximum allowed
time) with Encoding 2 in only one environmental condition, against six failures
for original axioms. No failure is recorded with other encodings.

Finally, learning time is low (178 sat most for terminating conditions of ef-
fects) even on a computer with standard commercial hardware specifications.
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6.6 Conclusion

In this chapter, an ILP-based approach to surgical task knowledge learning has
been presented, based on learning from context-dependent examples under the
AS semantics with the state-of-the-art tool ILASP. This method can cope with
several issues of the surgical scenario, as the unavailability of large and com-
plete training datasets and the need for interpretable surgical task description for
reliability of an autonomous surgical system.

In order to apply ILASP to the ring transfer task (and in general to complex
surgical robotic tasks) involving time-dependent relations between atoms (en-
coding, e.g., durative environmental fluents and consitnuous mutual influence
between the robot and environment), first a re-formulation of axioms based on
the paradigm of event calculus has been proposed.

Given a set of only four incomplete executions of the ring transfer task, from
human and autonomous robotic agents, all task-relevant axioms in ASP formal-
ism have been learned. Moreover, ILASP is able to identify the minimum ar-
bitrary delay between atoms. This is crucial for application to general complex
robotic tasks.

The ILASP approach solves a number of issues in the context of step-level
SPM learning, including learning of interpretable and reliable action models and
learning from a limited number of (possibly different) examples.

Moreover, ILASP guarantees fast learning, and an improvement in the quality
of learned task knowledge with respect to manually-encoded one, reflecting in
ASP solving with higher computational efficiency.

Finally, distinguishing between different parts of a generic robotic task knowl-
edge (pre-conditions, executability constraints and effects of actions, with or
without dependency on time) allows to easily generalized the framework pro-
posed in this Chapter to other use cases.

A drawback of the presented approach is the need for fully labeled executions
of the task. The annotation of real, long surgical task is tedious and prone to
errors even for expert users, hence it is often difficult. This problem will be
partially solved in the next chapter.
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Chapter 7

Towards unsupervised ILP

7.1 Introduction

The ILP approach presented in former Chapter 6 relies on the assumption that
a complete semantic description of executions in the training dataset is made
available from expert user annotations (labeling) of the execution traces, both in
terms of environmental features (fluents) and actions executed by the robot. This
requirement strongly limits the scalability of the ILP approach to more complex
surgical tasks, since traces of executions are usually long and hence the labeling
process is tedious and prone to errors, even from an expert operator. This is
demonstrated, for instance, by the recently developed supervised algorithms for
surgical action identification, as [293, 338] based on statistical model learning
or [247, 319] based on movement primitives. For this reason, the goal of this
chapter is to investigate an unsupervised approach to the labeling problem, which
can lead to an unsupervised (or at least partially supervised) ILP methodology
for scalable surgical task knowledge learning.

In order to construct examples for ILP, both environmental features and robotic
actions must be labeled. The problem of automatic recognition of environmental
features from surgical videos has been widely investigated by researchers [202],
mainly for surgical tool detection, e.g. in laparoscopic surgery [268], eye surgery
[326] and neurosurgery [32]; event recognition as detection of smoke from elec-
trosurgery [203]; and anatomical feature identification as cystic artery damage
[174], tumor [150], vessels [223] and blood flow for autonomous robotic suc-
tion [274]. The above mentioned applications make use of standard and well
established algorithms from machine learning, especially deep neural networks,
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to match raw environmental data to higher-level semantic features. For the ring
transfer task considered in this thesis, environmental fluents represent relations
between geometric quantities retrieved from the robot kinematics and the video
(e.g., positions of objects). Hence, they can be computed automatically as al-
ready explained for the SA module of the autonomous framework proposed in
Chapter 5, based on relations in (5.7).

The focus of this chapter is on the automatic unsupervised identification of
actions from execution traces. This is a more complex problem than the extrac-
tion of semantic features from the environment, since it does not involve a mere
evaluation and matching of raw information from sensors, but more structured
analysis is needed to discern, e.g., between actions which may occur under very
similar environmental conditions. A novel algorithm for action identification is
proposed in Section 7.2 which exploits semantic features and kinematic analysis
to solve several issues of state-of-the-art methods, including the need for large
datasets, repetitive task executions and downgrade of performances for short ac-
tions. Section 7.3 shows the results of the algorithm as applied to the ring transfer
task. Finally, a methodology for partially unsupervised ILP is proposed in the
scenario of the ring transfer task.

7.2 Unsupervised action identification

Recent research has focused on the unsupervised identification of actions from
surgical datasets. Inspired from advances in human activity recognition [156,
238], researchers have investigated approaches to unsupervised recognition of
surgical actions. [237, 292] use transition-state classification (TSC) with deep
neural networks on videos and kinematics of JIGSAWS dataset of surgical ac-
tions [101], with an identification accuracy below 67%. Approaches based on
statistical models, e.g. TSC with Gaussian mixture models [169], and soft-
boundary algorithms with fuzzy classification scores [90] have shown improve
the accuracy. Recently, weakly supervised methods as [10] have been proposed,
initializing the transition parameters of a Gaussian mixture model from a set of
only three example executions to improve the accuracy of subsequent unsuper-
vised segmentation based on expectation maximization. While this significantly
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mitigates the issue of the size of the training dataset for supervised approaches,
the method is only based on kinematic analysis, without including visual fea-
tures. Moreover, the mentioned works are validated on (often large) datasets
containing homogeneous repetitions of the same task, i.e. executions which do
not differ in the sequence of actions, but present only some kinematic varia-
tions due to execution from multiple users (with possibly different expertise).
Unsupervised identification algorithms usually perform better on homogeneous
datasets, because of the higher similarity between different instances of the same
action. Homogeneity is possible for repetitive tasks as suturing or knot tying, or
standard versions of training tasks as the peg transfer. However, this requirement
is infeasible when tasks which involve multiple possible workflows depending
on dynamic environmental (anatomical) contingencies (as the ring transfer) are
considered. This problem is even more crucial for long complex tasks which
are more relevant to the surgical scenario, e.g. more realistic procedures than
training exercises. A further limitation of state-of-the-art approaches (especially
when only kinematic features are analyzed, as [67]) is the poorer performance
for actions with short durations. The algorithm for unsupervised action iden-
tification proposed in this section tries to solve all the aforementioned issues,
exploiting semantic environmental features extracted from each frame of videos
in the execution traces. The algorithm is presented and validated with reference
to the case study of the ring transfer task, hence environmental features are ex-
tracted from videos with relations in (5.7). Extension to other surgical (and, more
generally, robotic) tasks implies considering specific semantics for the interpre-
tation of geometric features from videos. Environmental features are combined
with a kinematic signature consisting of the Cartesian position pA and the grip-
per angle jA for each PSM, as reported in Table 5.1, plus the orientation of PSMs
qA = {xor,A, yor,A, zor,A, wor,A} (16 kinematic features are considered as a to-
tal, 8 per PSM). Notice that other works include additional features in the kine-
matic signature signature, e.g. the speed of the end effectors [10]) and invariant
geometric measures of Cartesian trajectories as curvature and torsion [67]. How-
ever, these measures have not shown to improve the identification performances
in the experiments presented in this chapter (specifically, [10] evidences that the
speed of end-effectors even downgrades the accuracy), hence they are omitted.
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Action identification is a sequence of two main steps:

• action segmentation to identify changepoints delimiting segments in the
execution trace;

• action classification to group together segments corresponding to the same
action class.

7.2.1 Action segmentation

Given an execution trace, the segmentation algorithm 4 identifies changepoints
corresponding to starting / ending timesteps of actions of the task. The algorithm
involves two main steps: changepoint detection from kinematics, and change-
point filtering from the semantic video stream.

Changepoint detection

Several algorithms for changepoint detection in timeseries have been proposed in
literature, as extensively revised in [312, 35, 45]. Some algorithms assume that
the number of segments in a timeseries is known as a prior. However, this is not
usually the case when a completely unsupervised analysis is required. Change-
point detection algorithms typically seek to optimize the adherency of the input
timeseries to an approximate sequence of segments, also minimizing the num-
ber of segments when it is unknown. Both parametric and non-parametric cost
functions exist to evaluate the goodness of the changepoint approximation [312].
Parametric methods are based on a finite set of parameters to be tuned, while
non-parametric methods (e.g., non-parametric maximum likelihood estimation
[341]) are usually more robust and generic. Moreover, some algorithms solve
the optimization problem exactly [23, 157], under certain assumptions on the
cost function (e.g., linearity in the parameters for [157]). This obviously results
in expensive computation, especially for long timeseries. For this reason, ap-
proximate algorithms, e.g. based on tunable sliding window approximation of
the full timeseries [128], have gained increased popularity.
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The algorithm proposed in this section does not derive from any assumption
on the number of segments. The features in the kinematic signature are first nor-
malized by their maximum values to allow comparison between different con-
figurations of the setup for the task (different locations of objects in the scene
and distances to the PSMs). Then, filtering at 1.5 Hz is applied to each feature,
to consider only relevant motions within the fundamental frequency of human
gestures [201]. Changepoints in the kinematic signature are identified evaluating
peaks in the 2nd derivative of the features. Specifically, peaks above a user-
defined threshold α are selected as candidate changepoints. In order to remove
implicit noise in the 2nd derivative, it is computed using Savitzky-Golay filter
(SGF) [285]. SFG is a digital filter which focuses on a pre-defined time window
of the signal, and performs polynomial fitting for smoothing. Hence,SGF is able
to capture higher-order moments in the data (depending on the size of the time
window), while removing noise in the signal. SGF has a long history of success-
ful applications in time series analysis, e.g. for kinematic analysis of the human
arm [324] and neural signals [265]. One advantage of this approach is the very
limited number of parameters to be tuned for segmentation (time window, set
to 20 in the following experiments as empirically determined from the speed of
variation of the kinematic features; and α = 20% relative to the maximum ab-
solute value of the 2nd order derivative for each kinematic feature). This makes
the algorithm more robust and general.

Changepoint filtering

The analysis of only kinematic features can lead to the detection of spurious
changepoints, corresponding e.g. to abrupt motions during the execution of the
task. Hence, first consecutive changepoints which are distant less than 1s is per-
formed (implicitly assuming an empirical minimum duration for actions, corre-
sponding to the duration of grasp(A,ring,C), release(A) actions involv-
ing the grippers of PSMs). Then, fluents from the video stream are computed in
correspondence of each changepoint. If two or more consecutive changepoints
correspond to the same set of fluents, only the first is considered valid, and oth-
ers are excluded. This choice is made under the assumption that different actions
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Algorithm 4 Action segmentation algorithm

1: Input: Execution trace with temporal kinematic signature K(t) and video
stream V(t), threshold for peak detection α

2: Output: Set of changepoints C
3: Initialize: Normalize and filter K(t), C = []
4: % Changepoint detection
5: for k(t) kinematic feature ∈ K(t) do
6: k̈(t) = SGF(k(t))
7: peaks = PeakDetect(k̈(t))
8: for p ∈ peaks do
9: if |k̈(p)| > α ·max |k̈(p)| then

10: C.append(p)
11: end if
12: end for
13: end for
14: % Changepoint filtering
15: fluents F = []
16: cold = 0
17: for c ∈ C do
18: old_fluents Fold = F
19: F = FluentCompute(V(c))
20: if F == Fold ∨ c− cold < 1s then
21: C.remove(c)
22: end if
23: cold = c
24: end for
25: return C

derive from different environmental conditions: hence, two consecutive change-
points defining the starting timesteps of two different actions cannot share the
same set of fluents.

7.2.2 Action classification

Given the correct changepoints of the execution trace(s), Hence,the segments
corresponding to actions of the task, k-NN classification is used to group seg-
ments corresponding to same action classes. k-NN is preferred over other es-
tablished classification methods as support vector machines (SVMs) [67] and
self-organizing maps based on neural networks [238] because it usually exhibits
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better performance on small datasets. For instance, in [67] k-NN results in better
identification than SVM. Each segment in the execution trace is associated with
a feature vector f = [f1, f2, f3], containing both kinematic information as in [67]
and semantic environmental information from the video stream:

Features f1

It is an array of reals representing the kinematic features of each segment. Each
feature ki(t) in the kinematic signature of the segment is approximated by a
polynomial pi(t) = ∑n

j=1 aj,itj, with n ∈ N arbitrary degree as in [67]. Then,
f1 is built concatenating coefficients aj,i, resulting in an array of dimension
(n + 1) · 16 (2 arms × 8 kinematic features, i.e. 4 for orientation, 3 for po-
sition and 1 for gripper joint). After empirical evaluation, n = 5 is chosen as the
optimal polynomial order for action identification. In order to properly compare
kinematic features corresponding to different instances of the same action, they
are first shifted in time to start from t = 0. Polynomial approximation is not the
only option for kinematic representation. For instance, in [238] coefficients of
Fourier expansion are shown to be more robust against noise in the kinematic sig-
nature for identification of actions in the benchmark CAVIAR dataset for human
action recognition [57]. However, the results of the experiments proposed in this
chapter do not show any variation when Fourier approximation is used in place of
polynomial one. Notice that the classification algorithm must be able to general-
ize over the colors of objects in the setup and the actual PSM executing a specific
action: for instance, two segments corresponding to move(psm1,ring,red),

move(psm2,ring,yellow) must be classified in the same cluster, correspond-
ing to the abstract action move(A,ring,C). Hence, evaluation of which PSM
moves in each segment is needed, evaluating the difference between the kine-
matic signatures at the starting and ending changepoints. In case only one arm
moves, the coefficients of the polynomial approximations of the kinematic fea-
tures for that specific arm are added to f1, and null coefficients for the other arm
are appended to complete the vector. In case both PSMs move along the seg-
ment, coefficients of PSM1 and PSM2 are concatenated to build f1. In this way,
there is no distinction whether an action is executed by one arm or the other.
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Features f2

It is a Boolean array representing fluents holding at the beginning changepoint
of each segment (i.e., grounded by Algorithm 3). Each entry in the array corre-
sponds to an environmental fluent defined in Section 5.2, excluding reachable
(A,ring,C) which is identified at all timesteps in the video stream (all rings
and pegs are always reachable at least by one arm), Hence,it is neglected. Each
entry in the array has true value if the corresponding fluent holds at the beginning
of the segment, otherwise it is set to false. In order to guarantee the invariance
of the classification algorithm with respect to the arm and color instances, f2

has two entries for each fluent, one per PSM, and the color attribute is ignored.
Similarly to the generation of f1, if a fluent holds only for one arm, then the
first corresponding entry is set to true, regardless of the specific arm. The final
dimension of f2 is 12.

Features f3

It is a 16D Boolean vector with entries corresponding to each feature in the
kinematic signature of the segment. If one signature varies from the beginning
to the ending changepoint, the value of the corresponding entry is set to true
(as for f1, the order of entries for the two arms does not depend on the specific
PSM to guarantee the generality of the classification algorithm). f3 is needed
because instances of the same action may significantly differ from a kinematic
perspective, due to the different relative position of objects and arms in the scene.
However, it is reasonable to expect that the same kinematic features vary along
the segment.

Classification algorithm

k-NN classification must then compare feature vectors for different segments
in the execution trace(s) containing both Boolean and real values. Hence, the
standard Euclidean distance metric over the set of polynomial coefficients aj,i is
not suitable. Instead, a mixed distance metric di,l between segments i, l is defined
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as:

di,l =

√
d2

e
d2

emax
+

d2
h

d2
hmax

(7.1)

where de is the standard Euclidean distance between coefficients in f1 for the two
segments, de =

√
∑n

j=1(aj,i − aj,l)2; while dh is the Hamming distance between
[f2, f3] for the two segments

dh =
hi,l

dim([f2, f3]i)

being hi,l the number of different values in [f2, f3] for segment i with respect
to segment l, and dim(·) the dimension of an array. demax, dhmax are normal-
izing factors which are needed to properly combine Euclidean and Hamming
distances, and they are chosen as the maximum cost resulting from k-NN clas-
sification with only Euclidean distance over f1 and only Hamming distance over
[f2, f3], respectively.

k for k-NN classification is chosen as the number of occurrencies of the most
frequent action in the dataset of executions. In this way, the algorithm is able
to recognize all instances of actions in the dataset. A higher k value would also
be valid; however, the experiments will show that the best classification perfor-
mance is achieved with the minimum k.

7.3 Experiments

The unsupervised action identification algorithm is evaluated with three different
experiments.

In Test A, 9 human executions of the ring transfer task are considered from
the dataset used in Chapter 5 to learn DMPs. The executions are in standard

environmental conditions, i.e. with all rings placed on grey pegs and requiring
transfer between arms. Human users are not surgeons, and they have different
expertise in using dVRK. Hence, this test emulates learning from senior and
novice surgeons or trainees, or in general surgeons with a different know-how
and style of operating.
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In Test B, a single autonomous task execution (with the framework proposed
in Chapter 5) under standard environmental conditions is considered. Synthetic
task replications are then generated adding low-frequency noise to the original
execution, to emulate variability between human users with different expertise
and test the robustness of the proposed algorithm with respect to noise.

Test C considers a dataset consisting of only the noiseless standard execution
from Test B and three autonomous executions of the task under different envi-
ronmental conditions, shown in Figures 5.6-5.8. This test shows the performance
in the presence of non-homogeneity in the dataset.

Notice that the use of DMPs in the autonomous executions make the kine-
matic signature very similar to an average one from a human operator. All execu-
tion traces (kinematic sensor readings from dVRK robot and point clouds from
a Reasense D435 RGB-D camera) are collected through ROS topics to ensure
synchronization between videos and kinematics.

It is useful to show how it works with reference to the autonomous execution
in 5.7 (occupied pegs). Figure 7.1 shows that the proposed changepoint detection
algorithm finds more changepoints (red solid lines) than real ones from manual
segmentation (blue lines). However, changepoint filtering exploits fluent detec-
tion from video stream to discard wrong changepoints (red dashed lines) when
two (or more) consecutive changepoints share the same set of fluents.

The goodness of the identification algorithm is evaluated using standard met-
rics. Specifically, a rate of the segmentation accuracy is the matching score:

Mi =
| ∩ (ti, gi)|
|gi|

where ti is the segment identified by the algorithm, gi is the real segment cor-
responding to the i-th action, and | · | denotes the temporal length of a segment.
The matching score measures the overlapping between the identified and actual
segment, normalized by the length of the actual segment. The results of action
classification are quantified using three standard metrics: precision, recall and
F1-score. Precision for a specific action class A is defined as:

Pr =
TP

FP + TP
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FIGURE 7.1: Kinematic signature (after filtering) and seg-
mentation results for the execution in Figure 5.7. Blue verti-
cal lines represent real changepoints, red solid lines represent
changepoints identified by our algorithm, red dashed lines rep-
resent changepoints excluded after fluent detection. Frames
on the top correspond to two consecutive changepoints shar-
ing the same set of fluents (on(ring,red,peg,grey),
on(ring,blue,peg,red) and the reachability fluents), so

the second one is omitted.

being TP the number of true positives, i.e. segments correctly categorized in
A, and FP the number of false positives, i.e. segments wrongly classified as in-
stances of A. Since k for k-NN classification is chosen as the maximum number
of occurrencies of the most frequent action in the dataset, FP + TP is chosen for
the i-th action as dim(P), where P is the maximum set of segments such that:

• dim(P) ≥ nocc,i, where nocc,i is the number of occurrencies of the i-th
action in the dataset;

• the score of the last segment in P is sP = smax, being smax the score of the
nocc,i-th segment in P.
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In this way, the scores for less frequent actions are not strongly affected by the
results of most frequent ones.

Recall for an action class A is defined as:

Rec =
TP

FN + TP

with FN the number of false negatives, i.e. segments wrongly excluded from
class A.

F1-score combines precision and recall as follows:

F1 = 2
Pr · Rec

Pr + Rec

An evaluation of the computational performance of the proposed identifica-
tion algorithm with respect to the state of the art is presented in the end of this
section.

In order to make a fair comparison, all experimental results are reported with
respect to works in the state of the art which address similar issues to the ones
presented at the beginning of this chapter and relevant to surgery. In particu-
lar, comparison is made to [67], which considers a similar task to ring transfer,
i.e. peg transfer, and addresses the problem of identification from small datasets.
Moreover, results in [67] allow a comparison on a per-action base, especially
for classification quality. An average comparison is also made, finally, with
[295], a very recent research addressing the problem of identification in non-
homogeneous datasets of ring transfer.

7.3.1 Test A: Homogeneous dataset from human executions

In this test, 9 executions of the ring transfer task in standard environmental con-
ditions, executed by 3 users with different expertise in using the dVRK. Gripper
actions and extract last 1.05± 1.09 s, while move actions last 3.69± 2.90 s
(comparably with peg transfer in [67] on average). The high variance is due to
the different expertise of users. Each execution trace contains 36 actions (actions
appear multiple times in each execution). Table 7.1 reports the matching scores
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TABLE 7.1: Matching scores for Test A. All values are percent-
ages.

Action Matching score

move(A,ring,C) 85.65
move(A,peg,C) 90.69
move(A,center,C) 82.43
grasp(A,ring,C) 77.05
extract(A,ring,C) 82.73
release(A) 90.18

Average Proposed method
Method in [67]

84.79
81.90

(for each action and on average over all actions). The segmentation results are
slightly better than [67], though comparable.

In Table 7.2, results of our classification algorithm are reported. k = 36 is
chosen for k-NN classification, i.e. the number of occurrencies of the most fre-
quent action (release) in the dataset. As explained in Section 7.2.2, this is the
minimum possible value for k to recognize at least all action instances. However,
there is no prior guarantee that this is the optimal value for the classification per-
formance. Hence, in Figure 7.2 a preliminary test is made wih increasing values
of k ∈ [36, 56] with a step of 2, and the average F1-scores over all actions in the
dataset are compared to identify the best choice of k. Results show that k = 36
is the optimal value. Hence, also in the following experiments k is chosen as the
minimum possible value. Given k, first the full feature array [f1, f2, f3] presented
in Section 7.2.2 is given as input to the classification algorithm. However, this
results in poor performance, especially for short actions. Hence, only Boolean
features [f2, f3] are considered for short actions to obtain the results in Table 7.2.
Results are significantly improved with respect to [67], whose method suffers
from the executions by non-expert users, on the contrary.
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TABLE 7.2: Action classification results for Test A. All values
are percentages.

Action Feature array Pr Rec F1

move(A,ring,C)
[f1, f2, f3]
f1 as in [67]

100.00
22.22

83.33
22.22

90.91
22.22

move(A,peg,C)
[f1, f2, f3]
f1 as in [67]

55.56
19.44

55.56
19.44

55.56
19.44

move(A,center,C)
[f1, f2, f3]
f1 as in [67]

58.33
25.00

58.33
25.00

58.33
25.00

grasp(A,ring,C)
[f2, f3]
f1 as in [67]

41.23
17.78

40.00
22.22

40.61
19.66

extract(A,ring,C)
[f2, f3]
f1 as in [67]

66.67
30.56

66.67
30.56

66.67
30.56

release(A)
[f2, f3]
f1 as in [67]

40.00
26.67

40.00
26.67

40.00
26.67

Average Proposed method
f1 as in [67]

60.30
23.61

57.32
24.35

58.68
23.93

7.3.2 Test B: Homogeneous dataset with noise

The dataset for this test consists of an autonomous task execution in standard
conditions learned from humans with DMPs, and nine more executions gener-
ated adding low-frequency noise to the kinematic signature. This generates an
homogeneous dataset with noise, which increases the kinematic variability be-
tween different users and requires additional robustness. Noise is generated with
power frequency spectrum:

S( f ) = β
1
f λ

with λ = 7.5 so that frequencies above the fundamental frequency 1.5 Hz of
human hand [201] have power below 0.05β, Hence,they can be neglected. β is
related to the noise variance, and varies in the range [0.01, 0.09] with a step
of 0.01 to generate the synthetic executions. Table 7.3 reports the matching
score considering the full synthetic dataset. The average matching score over
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FIGURE 7.2: Average F1-score over all actions for Test A, with
increasing k value. The minimum value (red bar) is the optimal

one.

all actions with the proposed Algorithm 4 improves the results of [67].
The performance of action classification algorithm is reported in Table 7.4.

k = 36 (number of occurrencies of release action) is chosen for k-NN clas-
sification. Results are comparable with Test A, though the improvement with
respect to [67] is significant only for short actions.

TABLE 7.3: Matching scores for Test B. All values are percent-
ages.

Action Matching score

move(A,ring,C) 94.78
move(A,peg,C) 90.47
move(A,center,C) 97.53
grasp(A,ring,C) 76.02
extract(A,ring,C) 71.80
release(A) 93.18

Average Proposed method
Method in [67]

87.30
81.90
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TABLE 7.4: Action classification results for Test B. All values
are percentages.

Action Feature array Pr Rec F1

move(A,ring,C)
[f1, f2, f3]
f1 as in [67]

75.00
75.00

75.00
75.00

75.00
75.00

move(A,peg,C)
[f1, f2, f3]
f1 as in [67]

100.00
100.00

100.00
100.00

100.00
100.00

move(A,center,C)
[f1, f2, f3]
f1 as in [67]

40.82
45.00

55.56
50.00

47.06
47.37

grasp(A,ring,C)
[f2, f3]
f1 as in [67]

40.00
17.78

50.00
22.22

44.44
19.66

extract(A,ring,C)
[f2, f3]
f1 as in [67]

51.02
47.37

69.44
50.00

58.82
48.65

release(A)
[f2, f3]
f1 as in [67]

40.00
26.67

40.00
26.67

40.00
26.67

Average Proposed method
f1 as in [67]

57.81
51.97

65.00
53.98

60.89
52.89

7.3.3 Test C: Non-homogeneous dataset

The dataset for Test C consists of only 4 autonomous executions under non-
homogeneous environmental conditions, i.e. the initial conditions of the setup
and the action sequence vary between executions. One execution is in standard
environmental conditions (36 actions), while 3 other ones are depicted in Figures
5.6-5.8.

Specifically, execution in Figure 5.6 (the ring falls and re-planning is needed)
includes 18 actions; execution in Figure 5.7) (occupied colored pegs) includes 17
actions; execution in Figure 5.8 (simultaneous motion of PSMs) includes 12 ac-
tions. Actions in each execution repeat multiple times. This is a challenging
dataset for unsupervised action identification, since not all actions appear in all
executions, and both kinematic and semantic features do not repeat in the same
way over the whole dataset. Table 7.5 shows that the matching score is compa-
rable with Test B both for each action and on average, and higher than [67] on
average. Results of k-NN classification with k = 21 (number of occurrencies of
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TABLE 7.5: Matching scores for Test C. All values are percent-
ages.

Action Matching score

move(A,ring,C) 95.36
move(A,peg,C) 92.83
move(A,center,C) 96.35
grasp(A,ring,C) 78.40
extract(A,ring,C) 83.08
release(A) 85.45

Average Proposed method
Method in [67]

88.58
81.90

release action) are shown in Table 7.6. The proposed method outperforms the
scores in [67] (average F1-score rises from 54% to almost 67%). The results for
extract action are significantly improved, reaching precision of 100% and F1-
score of 77% (both scores reach only 12% on the dataset of [67]). Also F1-score
and precision (almost double) for move(A,center,C) are better. This is even
more significant considering that this action is the least frequent in the dataset,
appearing only in two scenarios (once in Figure 5.6 and 4 times under standard
environmental conditions). A slight decrease in the performance is only recorded
for move(A,ring,C), though the F1-score is the highest among all actions.

7.3.4 Computational performance

The computational performance of the proposed action identification algorithm
is tested on a PC using 2.6 GHz Intel Core i7-6700HQ CPU (4 cores / 8 threads).
The full action identification procedure (segmentation + classification) for one
execution trace requires 0.45 s on average (maximum 0.58 s for the standard ex-
ecution with the highest number of actions). For changepoint filtering, the time
required for fluent identification from video frames must be also accounted for.
Fluent identification from a single frame requires 0.09 s on average; thus, fluent
identification in a full execution trace requires at most 2.88 s for the execution
with most actions (standard environmental conditions).
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TABLE 7.6: Action classification results for Test C. All values
are percentages.

Action Feature array Pr Rec F1

move(A,ring,C)
[f1, f2, f3]
f1 as in [67]

81.82
90.00

90.00
90.00

85.72
90.00

move(A,peg,C)
[f1, f2, f3]
f1 as in [67]

80.00
80.00

80.00
80.00

80.00
80.00

move(A,center,C)
[f1, f2, f3]
f1 as in [67]

40.00
22.22

40.00
40.00

40.00
28.57

grasp(A,ring,C)
[f2, f3]
f1 as in [67]

60.00
56.25

75.00
75.00

66.66
64.29

extract(A,ring,C)
[f2, f3]
f1 as in [67]

100.00
12.50

62.50
12.50

76.92
12.50

release(A)
[f2, f3]
f1 as in [67]

52.38
52.38

52.38
52.38

52.38
52.38

Average Proposed method
f1 as in [67]

69.03
52.23

66.65
58.31

66.95
54.62

This results in better performance than [67], where 5 s are needed for action
identification using a better CPU (3.4 GHz Intel Core i7-3770 with 4 cores / 8
threads). In fact, one main limitation of [67] lies in the use of persistence analysis
[76] and dynamic time warping (DTW) [279] to identify changepoints. Persis-
tence analysis removes noise and identifies relevant local minima and maxima
in the kinematic features, but still results in spurious changepoints which must
be removed with further post-processing through DTW based on Euclidean dis-
tance. DTW evaluates the alignment of all possible consecutive segments in the
kinematic signature, including spurious ones. As also claimed by the autrhors of
[67], this increases computational complexity. Notice that the computational per-
formance also depends on the number of segments to be identified in execution
traces.

In [67], 12 actions are involved in a single execution trace (with possibly
some repetitions), while the highest number of segments in an execution trace
under standard environmental conditions for the experiments in this thesis is 32;
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hence, the comparison of computational performance is fair.
The computational performance of the proposed algorithm is also compara-

ble with TSC [krishnan2018transition] (≈ 1− 10 s, though the authors do not
provide hardware information and do not consider automatic extraction of visual
features, presented as a future work).

7.3.5 Discussion

The proposed algorithm for unsupervised action identification addresses some
limitations introduced by the surgical scenario, as identification from datasets in-
cluding short actions, few executions of the task and possibly non-homogeneous
(anomalous) flows of actions. The algorithm has been validated in three differ-
ent experimental conditions. First, the performance on a limited dataset of 9
executions from humans with different expertise in using dVRK has been evalu-
ated. The algorithm has proved able to significantly improve results in the state
of the art under different experimental conditions (but considering only expert
executions), doubling F1-score also for short actions.

Then, the robustness of the algorithm has been evaluated on a similar dataset,
where a single human execution was augmented with low-frequency kinematic
noise (10 executions total). Results were comparable with the previous test,
though the improvement with respect to the state of the art was not similarly
relevant.

Finally, the algorithm has been able to improve the state of the art (especially
for short actions) on a non-homogeneous dataset including only 4 executions and
actions appearing rarely (only 2 times).

The average F1-score over all actions is 58− 66%, comparable or better than
state-of-the-art methods based on deep learning [295] (51%) for a similar task to
ring transfer. Improvements mainly arise from the inclusion of semantic visual
features for classification, which compensate kinematic variability.

In addition, the algorithm exhibits comparable or better computational per-
formance than state of the art, allowing feature extraction and action identifica-
tion within few seconds.
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7.4 From unsupervised action labels to ILP exam-
ple definition

The action identification algorithm presented in Section 7.2 returns unsupervised
labels actioni (with i ∈ {1, ..., n}, being n the number of actions, 6 for the ring
transfer task), i.e. without any specific meaning with respect to the semantics
of the task. Labels for actions used in Chapter 6, on the contrary, contain in-
formation about the specific instance of action inside the example. This allows
to infer ASP axioms which relate relevant variables appearing in environmental
and action fluents, and it is necessary for proper definition of the ILP problem.
For better clarity, consider the scenario in Figure 5.7. The first action of the
autonomous execution is move(psm1,ring,red), associated to the following
ILP example:

#pos{ex1, {move(psm1,ring,red)}, {} (7.2)

{reachable(psm1,ring,red), reachable(psm1,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),

on(ring,red,peg,blue), on(ring,blue,peg,red),

on(ring,green,peg,green)}}

While the fifth action is move(psm1,ring,blue), associated to the following
ILP example:

#pos{ex2, {move(psm1,ring,blue)}, {} (7.3)

{reachable(psm1,ring,red), reachable(psm1,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),

on(ring,red,peg,grey), on(ring,blue,peg,red),

on(ring,green,peg,green)}}
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Unsupervised action segmentation clusters both actions together with the same
label, say action1. This makes the ILP problem ill-defined, since examples
cannot be undistinguished, hence pre-condition action1 :- reachable(A,

ring,C) as in (5.1) cannot be inferred. This section is to propose a method-
ology to overcome this limitation, towards a feasible approach for unsupervised
ILP applied to the ring transfer case study. The goal is to enrich the semantics
of unsupervised labels actioni with argument (logic) variables characterizing
the single actions. The first observation is that actions in ASP command specific
gestures to either PSM1 or PSM2, thus all action labels must have the variable
Arm as an argument, resulting in actioni(A). Notice that move(A,center,C)
action actually corresponds to the simultaneous motion of the PSMs to the cen-
ter of the peg base for transfer. As a consequence, the unsupervised action label
shall be actioni(A1,A2). However, this is still not enough to solve the is-
sue for examples (7.2)-(7.3). In fact, instances of actions in both examples are
executed by PSM1, hence they still remain undistinguished. As a second obser-
vation, it is reasonable to assume that relevant argument variables should be the
ones which are influenced by the occurrency of actions. Hence, it is possible to
retrieve them from environmental fluents which are modified after the action has
been executed. Specifically, fluents which have the variable Arm as an argument
are of interest, since they are explicitely related to the action of one PSM. Con-
sider again the examples (7.2)-(7.3). After the move(A,ring,C) actions are
executed, the grasp(A,ring,C) actions occur, generating the following ILP
examples:

#pos{ex3, {grasp(psm1,ring,red)}, {} (7.4)

{reachable(psm1,ring,red), reachable(psm1,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),

on(ring,red,peg,blue), on(ring,blue,peg,red),

on(ring,green,peg,green), at(psm1,ring,red)}}



138 Chapter 7. Towards unsupervised ILP

#pos{ex4, {grasp(psm1,ring,blue)}, {} (7.5)

{reachable(psm1,ring,red), reachable(psm1,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),

on(ring,red,peg,grey), on(ring,blue,peg,red),

on(ring,green,peg,green), at(psm1,ring,blue)}}

Analyzing the contexts of examples (7.4)-(7.5), the only changing environmental
fluent with Arm variable as its argument is at(A,ring,C) (at(psm1,ring,
red) in (7.4),at(psm1,ring,blue) in (7.5)). Hence, the unsupervised action
labels shall be enriched as action1(psm1,red), action1(psm1,blue) for
examples (7.2)-(7.3), respectively. In a similar way, it is possible to identify the
relevant environmental fluents which change after the execution of other actions,
as resulting from the execution traces for experiments in Chapter 6:

• move(A,peg,C): at(A,peg,C), at(A,ring,C) (only after transfer),
resulting in unsupervised label action2(A,C);

• move(A,center,C): at(A,center),at(A,ring,C),at(A1,ring,
C), resulting in unsupervised label action3(A,A1,C);

• extract(A,ring,C): on(ring,C,peg,C1) (neglected since it does
not contain the variable Arm), at(A,ring,C), resulting in unsupervised
label action4(A,C);

• grasp(A,ring,C): in_hand(A,ring,C), closed_gripper(A), re-
sulting in unsupervised label action5(A,C);

• release(A): in_hand(A,ring,C), on(ring,C,peg,C1) (ignored),
closed_gripper(A), resulting in unsupervised label action6(A,C).

Notice that unsupervised labels depend on the same argument variables as origi-
nal labels from supervised ILP. Hence, the ILP approach presented in Chapter 6
returns identical results even with unsupervised labels. The only exceptions are
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actions release(A) and move(A,center,C), with unsupervised labels hav-
ing an additional argument variable, action6(A,C) and action3(A,A1,C),
respectively. However, axioms involving release(A) are the pre-condition
release(A) :- in_hand(A,ring,C) in (6.4), and the effect axioms 6.6c-
6.10a-b-e. They all already depend on the variable Color, hence the ILP results
are identical even with unsupervised labeling. As for move(A,center,C), it
appears in the pre-condition move(A,center,C) :- in_hand(A,ring,C)

of (6.4), in (6.5)c, and in effect axioms 6.6e-f and 6.10f. All of these axioms
are not affected when the unsupervised label action3(A,A1,C) is introduced,
since the original label appears as a safe atom. Only the pre-condition needs a
slight modification, since axiom action3(A,A1,C) :- in_hand(A,ring,C)

is not safe because of A1. Running ILASP for this specific action results in the
following new pre-condition:

action3(A,A1,C,t) :- reachable(A1,peg,C,t),

closed_gripper(A,t)

This is equivalent to the former pre-condition: in fact, it prescribes that move(A,
center,C) is possible when A is holding some ring and the peg with color C is
reachable only with the other PSM (hence transfer is needed).

As a final remark, the proposed approach to unsupervised ILP does not take
into account negative examples, which usually lead to learning executability con-
straints. As explained in Section 6.4.3, negative examples represent forbidden
actions which are manually annotated by expert users. Then, they cannot be di-
rectly identified with unsupervised methods in execution traces. The problem of
automatically generating negative examples for ILP applications has been faced
by several researchers. One simple approach [294] relies on the closed-world
assumption, and considers as negative examples all occurrencies which are not
covered by positive examples. However, this approach is computationally ineffi-
cient in non-trivial scenarios, since many examples have to be generated. More-
over, it is non-feasible in most realistic applications, since it assumes only one
action is possible in any environmental conditions. For instance, consider the
ring transfer scenario in Figure 5.6. Given that the first action to be executed in
move(psm1,ring,red), the following negative examples should be generated
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under the closed-world assumption:

#neg{ex5, {move(psm1,ring,blue)}, {} (7.6)

{reachable(psm1,ring,red), reachable(psm2,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),

on(ring,red,peg,grey)}}

#neg{ex6, {move(psm1,ring,green)}, {}

{reachable(psm1,ring,red), reachable(psm2,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),

on(ring,red,peg,grey)}}

#neg{ex7, {move(psm1,ring,yellow)}, {}

{reachable(psm1,ring,red), reachable(psm2,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),

on(ring,red,peg,grey)}}

#neg{ex8, {move(psm2,ring,_)}, {}

{reachable(psm1,ring,red), reachable(psm2,ring,blue),

reachable(psm1,peg,red), reachable(psm1,peg,blue),

reachable(psm2,peg,green), reachable(psm2,peg,yellow),

reachable(psm1,peg,grey), reachable(psm2,peg,grey),

on(ring,red,peg,grey)}}

These examples exclude the axiom 0{move(A,ring,C) : reachable(A,

ring,C)}1 in (6.4) from the feasible hypotheses. In fact, it is in contradic-
tion with the negative example ex:8, forbidding the motion of PSM2 to the blue
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ring, though it is reachable. A more computationally efficient solution is pro-
posed in [185], generating negative examples by randomly modifying variables
in positive examples. Similarly, in [4] negative examples are first generated ran-
domly, then omitted if they do not lead to learning more specific hypotheses.
This approach still does not solve the issue evidenced with examples in (7.6),
since negative examples may be generated which prevent the learning of correct
axioms, especially when aggregate axioms are in the target hypothesis as in the
ring transfer case study. Very recent research in [59] has investigated the imple-
mentation of generative policy models for autonomous agency in unexperienced
environment. Policies expressed in ASP syntax are generated and evaluated on-
line by an oracle, marking them as feasible or not. Infeasible policies are used
as negative examples in an ILP framework based on ILASP to refine available
task knowledge and generate an acceptable strategy. This methodology appears
the most correct approach to the problem of automatic generation of negative
examples in an unsupervised ILP framework. Moreover, experiments in Section
6.4.4 have shown the possibility of hypothesis refinement with ILASP as new
examples are acquired. In a surgical context, the autonomous robotic system
may query a supervisory expert surgeon when unexperienced situations occur,
and learn online from his choice for future executions.

7.5 Conclusion

This chapter has presented an approach to unsupervised ILP for the ring transfer
task, and the surgical scenario in general, exploiting automatic recognition of
environmental features and action identification. This solves issues of supervised
ILP, related to the tedious and error-prone labeling of long execution traces.

In particular, a novel algorithm has been proposed for action identification,
which combines kinematic and semantic visual features to identify clusters of
actions in execution traces. Presented experiments highlight a number of advan-
tages of the algorithm with respect to state-of-the-art approaches.

The algorithm can be generalized to different robotic (surgical) tasks, defin-
ing appropriate environmental fluents to be extracted from the video stream of
the executions.
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Chapter 8

Conclusion

8.1 Summary of results

This thesis has faced the problem of reaching level 2 of autonomy in robotic
surgery, as of the classification of autonomy levels described in [336]. The goal
is the automation of repetitive and often tedious surgical steps, in order to re-
duce surgeon’s fatigue, improve recovery time for the patient with more precise
motion, and optimize hospital resource usage Specifically, in the first part of
the thesis the task planning problem has been analyzed, which is a fundamental
functionality of general-purpose deliberative robots. The paradigmatic scenario
of the ring transfer training task for novice surgeons with dVRK robot has been
considered for validation. The framework for autonomous surgical step execu-
tion presented in this thesis implements for the first time a task planning module
based on logic programming, in detail answer set programming (ASP). This al-
lows to address some major issues of state-of-the-art applications:

• explainability of the surgical workflow, helpful for monitoring purposes
and to guarantee reliability of the overall surgical system;

• adaptability of the surgical workflow in presence of dynamic and par-
tially unknown environmental conditions, thanks to the non-monotonicity
of knowledge representation in ASP;

• the possibility to encode surgical knowledge as directly retrieved from ex-
perts, hence representing the reasoning process of the surgeon, rather than
an explicit enumeration of possible surgical workflows.
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Moreover, an extended literature review of logic programming formalisms, to-
gether with experiments on the ring transfer task, has shown the feasibility of
ASP for most practically relevant robotic scenarios, even when temporal rela-
tions between domain entities are to be expressed (e.g., arbitrary delays between
actions and effects).

In the second part of the thesis, the problem of surgical knowledge learning
has been studied. An approach based on inductive logic programming (ILP)
under the answer set semantics with benchmark tool ILASP has been proposed
for the first time in the surgical context. The advantages of ILP with respect to
state-of-the-art learning approaches for surgery are:

• limited learning time (≈ 180 s maximum) of full task knowledge for the
ring transfer;

• the need for a very limited training dataset, specifically only four incom-
plete executions of the ring transfer task. This solves the problem of the
lack of training data for surgery;

• learning of interpretable human-readable knowledge for reliability.

Moreover, ILP has shown to improve the efficiency of hand-written ASP specifi-
cations in terms of length of axioms, thus significantly reducing the plan compu-
tation time even for a complex task description involving delayed effects of ac-
tions. This guarantees the applicability of learned ASP encoding to real robotic
setups, with a maximum planning time of approximately 10 s even for long se-
quences of actions, when both PSMs of dVRK can move simultaneously.

Finally, for the first time (to the best of the knowledge of the author) ILP has
been successfully applied to complex learning tasks in robotics, involving mul-
tiple agents and actions, and temporal constraints under the paradigm of event
calculus. In order to overcome the limitation of annotated executions of the task
needed for ILP, an unsupervised learning approach has also been proposed, based
on a novel unsupervised action identification algorithm relying on semantic envi-
ronmental features extracted from videos of example executions. The proposed
algorithm is able to improve the performance of state-of-the-art approaches to
unsupervised surgical action identification, addressing for the first time issues
including:



8.2. Discussion and future works 145

• limited datasets of actions, including executions which present increasing
hand-frequency noise to emulate different expertise of surgeons;

• non-homogeneous datasets with non-uniform action sequences under var-
ious environmental conditions, hence lowering the performance of identi-
fication algorithms based only on kinematics;

• identification of actions with short duration (e.g., actions of the grippers).

The proposed algorithm for action identification is also able to outperform state
of the art in terms of computational efficiency.

8.2 Discussion and future works

The proposed framework for autonomous surgical task execution has been val-
idated only on one standard training task for novice surgeons from the Funda-
mentals of Laparoscopic Surgery (FLS) [299]. The considered ring transfer task
involves several challenges of real surgery, as dual-arm coordination, motion in
constrained (possibly with obstacles) space, optimization of the solving strategy
depending on user-defined (or patient-specific) criteria, reasoning on dynamic
environmental conditions due to the continuous interaction with the environment.

However, the ring transfer domain involves a rigid environment, hence the
proposed strategy for motion control in the framework only accounts for pose
control. Other standard tasks from FLS, as suturing, require interaction control
based on force feedback, in order to cope with the deformability of real anatom-
ical environment.

Though DMPs can be easily extended to account for force feedback from
the environment, using the framework of Associative Skill Memories [255], the
main limitation lies in the lack of accurate force feedback from the dVRK. In
fact, positioning force sensors directly at the tip of surgical instruments would
be infeasible both from a mechanical point of view (instruments are usually small
and offer very little space for sensor integration), and considering the safety of
the patient (sensors cannot be close to anatomical parts).

A possible solution is using current / torque readings from built-in sensors
of dVRK at joint level, and translating them to force information at the tip of



146 Chapter 8. Conclusion

instruments through a dynamical model of the robotic system. Recently, the
dynamical model of dVRK has been estimated in [264], achieving an error of at
most 15% in the estimation of force / torque at the end effectors, when compared
with actual sensors on the tips of the instruments. Implementing force feedback
would lead the way to the validation of the proposed framework to other tasks
from FLS, which is a major development of the work in this thesis.

It is important to remark, however, that the limitation of the applicability of
the framework depends mainly from low-level control aspects. The task-level
reasoning system and context interpretation, which are the main proposed con-
tributions in this thesis, remain valid and can be extended to other tasks, consid-
ering only a different semantic description of the new domain.

Other research problems remain to be investigated after the results of this the-
sis. A first limitation regards the kinematic precision of the autonomous system.
In fact, though a state-of-the-art localization precision (≈ 1.6 mm) is reached
with accurate hand-eye calibration of PSMs and the camera, an error is reg-
istered in arm positioning, which may become infeasible in precision surgery.
This is due to the very small scale of the setup for surgical applications, and to
the intrinsic kinematic accuracy of the dVRK, which has been recently proved to
have an average accuracy in localization of fiducial markers of 1 mm on average
(2.7 mm maximum error) [126, 172]. Moreover, the use of a standard surgi-
cal endoscope with smaller baseline and depth range will further deteriorate the
performance. In order to solve this issue, the implementation of visual servoing
techniques is needed to guarantee accurate positioning even in the presence of
localization errors, exploiting continuous visual information from the camera.
Most efficient visual servoing techniques in robotics currently generate velocity
commands to match visual features during the execution, hence without being af-
fected from model inaccuracy [304, 135]. The main limitation of this approach
is that dVRK does not currently implement velocity control for the instruments
of PSMs.

Subsequently, a comparison with human performance will be needed to as-
sess the performance of the autonomous surgical system towards its application
in a real surgical scenario. Currently used metrics in the surgical context are
speed of execution, smoothness of motion trajectories and deviation from human
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demonstration [317], number of errors and workspace range [8].
Another important metric is the planning time, i.e. the delay between the

beginning of the task execution session and the actual beginning of the motion
of either one of the robotic arms. While it is easy to evaluate the planning time
for the autonomous framework from the output of Clingo, the planning time of
a human user cannot be derived in a straightforward way. When testing the au-
tonomous framework in Chapter 5, some very preliminary experiments in this
direction have been conducted, with promising results in terms of real-time ca-
pabilities. However, further and more robust validation is needed, especially
making the evaluation of the human planning time more rigorous.

This thesis has approached the problem of surgical knowledge learning us-
ing ILP. This method has shown a number of advantages with respect to other
standard machine learning tools. However, several other frameworks exist in
the context of inductive learning. In particular, though ILP has been shown to
succesfully refine knowledge as new examples are available or unconventional
situations occur, a comparison with hybrid methods as semantic reinforcement
learning (SRL) [302, 177, 43] will be interesting to investigate. SRL is designed
for real-time knowledge refinement, generalizing over new labeled examples,
e.g. from human instructions. SRL has been recently shown to guarantee proofs
of correctness and reliability in human-robot interaction, with accuracy perfor-
mance gracefully degrading as noise in the observations increases [302]. Notice
that also ILASP tool for ILP used in this thesis allows to deal with noise in the ex-
amples [180]. However, the level of noise of one example is simply defined as a
penalty which increases the cost of learning axioms satisfying that example. On
the contrary, SRL provides a more statistically relevant mechanism to account
for noisy observations, in the context of classical statistical and reinforcement
learning. Hence, it is possible to integrate ILP- and SRL-based learning to incre-
mentally refine surgical task knowledge.

Finally, the unsupervised learning approach presented in Chapter 7 still re-
lies on existing knowledge of the surgical scenario, encoded in the environmental
(anatomical) description. Though the research community agrees that ontologies
encoding such knowledge are needed for the surgical operating room of the fu-
ture [110], it is unrealistic to assume that all relevant features for surgery may
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be perfectly formally described and standardized. Hence, one interesting ad-
vance of the here presented work is the comparison and integration of reliable
ILP approach with unsupervised event classification and recognition techniques,
recently proposed in the context of human activity recognition [99, 301].
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